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Introduction: In the domain of women’s health, the intricate conditions of
Polycystic Ovary Syndrome (PCOS) demand sophisticated methodologies for
accurate identification and intervention.

Methods: This study introduces an innovative machine learning framework
tailored to precisely classify instances of PCOS. The methodology incorporates
stacked learning and depends on the Adaptive Synthetic (ADASYN)
algorithm, Synthetic Minority Over-sampling Technique (SMOTE), and random
oversampling methods for addressing data imbalances. The BORUTA technique
is used for feature selection, with the overarching objective of advancing
precision and performance metrics in classification tasks.

Results: Within the scope of PCOS classification, the proposed framework
achieves a commendable 97% accuracy. These results underscore the
proficiency of the proposed framework in discriminating PCOS cases with a
high degree of precision. Critical to this contribution is the rigorous comparative
analysis against existing methodologies, affirming the superior accuracy and
performance attributes of the proposed framework.

Discussion: This substantiates its potential as a transformative tool in medical
classification. Moreover, beyond immediate applications, this paper explores the
generalization of the proposed framework, demonstrating its adaptability and
efficacy across different medical classifications. This versatility is exemplified
by its successful application to cervical cancer, showcasing the framework
potential as a pioneering force in reshaping the landscape of machine-learning
applications in healthcare diagnostics.
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1 Introduction

Cervical cancer and Poly-Cystic Ovary Syndrome (PCOS)
are two significant health issues that greatly impact women’s
health worldwide. Cervical cancer is the fourth most common
cancer among women, and early detection is crucial to improving
survival rates (Terasawa et al., 2022). Similarly, PCOS, a common
endocrine disorder affecting fertility and metabolic health, requires
timely diagnosis to prevent long-term health risks (Norman et al.,
2024). Globally, PCOS affects approximately 6%–10% of women
of reproductive age (Johnstone et al., 2010), with the prevalence
in the United States estimated to be as high as 12%–18%
(March et al., 2010; Goodman et al., 2015).

Despite advancements in diagnostic methods, women in
underdeveloped regions face significant barriers in accessing reliable
diagnostic tools, such as the Pap smear, which is the gold standard
for cervical cancer detection (Saslow et al., 2012; Crum et al., 2018).
In these regions, the lack of access to essential screeningmethods has
led to higher mortality rates due to delayed diagnosis and treatment.
Even in areas where Pap smears are available, the test has limitations,
including lower sensitivity, which can result in false negatives for
detecting pre-cancerous cells (Wiley et al., 2004).

The situation is equally concerning for PCOS, as the condition
presents with non-specific symptoms that often complicate early
diagnosis. This further highlights the need for innovative diagnostic
approaches that can enhance accuracy and accessibility, especially in
low-resource settings (McCartney and Marshall, 2016; Barber et al.,
2007). By improving early detection of both cervical cancer and
PCOS, there is an opportunity to significantly improve women’s
health outcomes globally.

Machine learning (ML) has shown great promise in addressing
these challenges by providingmore accurate, efficient, and accessible
diagnostic tools. Al Mudawi and Alazeb (2022) proposed a
comprehensive approach for cervical cancer prediction using classic
ML classifiers such as Random Forest (RF), Decision Tree (DT),
and Support Vector Machine (SVM). They reported an impressive
100% accuracy, demonstrating the potential of ML in the medical
domain. In another study, Tak et al. (2022) applied machine
learning to predict the outcomes of Hinselmann, Schiller, cytology,
and biopsy tests for cervical cancer. Their study achieved a high
accuracy of 97.5% using a Fine Gaussian SVM for Hinselmann
classification. However, both studies faced challenges related to
class imbalance, which can bias predictions toward the majority
class (negative cases) and reduce the effectiveness of the model for
minority classes.

Addressing class imbalance has become a focal point in cervical
cancer diagnosis using ML techniques. Kuruvilla and Jayanthi
(2023) proposed an Ensemble Feature Selection (EFS) approach
combined with SMOTE (Synthetic Minority Over-sampling
Technique) to handle class imbalance and improve diagnostic
accuracy across multiple tests, including Hinselmann, Schiller,
cytology, and biopsy. Their approach achieved accuracy values of
over 94% for these diagnostic methods. Furthermore, Le Ngoc and
Huyen (2023) explored the use of deep learning techniques with the
Keras framework, incorporating class weighting and oversampling
to improve cervical cancer detection, achieving a 94.18% accuracy.
Despite these advancements, challenges such as overfitting and
dataset generalization remain, especially in imbalanced datasets.

In addition to cervical cancer, ML techniques have also been
applied to improve the diagnosis of PCOS. Aggarwal et al. (2023)
used statistical feature selection methods, including Chi-Square,
ANOVA, and Mutual Information (MI), to enhance the prediction
of PCOS, achieving a 93.52% accuracy with a Random Forest
classifier. Bharati et al. (2020) employed univariate feature selection
and reported an accuracy of 91.01% with an RFLR classifier.
Although these studies have made significant strides in improving
PCOS diagnosis, they are often limited by the use of small, domain-
specific datasets, which reduce the generalizability of the models.

Furthermore, research on cervical cancer diagnosis using
more advanced deep learning and feature selection methods is
expanding. Ashok and Aruna (2016) explored feature selection
methods for cervical cancer detection using SVM classifiers.
Their approach involved image pre-processing, multi-thresholding
techniques, and shape and textural feature extraction, leading
to a classification accuracy of 98.5%. Plissiti et al. (2018) used
a Convolutional Neural Network (CNN) architecture with 3×
3 filters and 2× 2 max-pooling to classify cervical cancer based
on cytomorphological features, achieving superior performance
compared to Multi-Layer Perceptron (MLP) and SVM classifiers.
Another deep learning method proposed by Kuruvilla and Jayanthi
(2023) integrated the EFS with feature optimization techniques
like Entropy Elephant Herding Optimization (EEHO) and Entropy-
based Butterfly Optimization (EBFO), achieving high accuracy for
multiple cervical cancer tests.

While these models have demonstrated high accuracy in
cervical cancer diagnosis, there remains a need for improved
techniques to integrate feature selection and handle class imbalance
simultaneously. This paper proposes a novel approach to improve
the classification of both PCOS and cervical cancer by combining
a stacked ensemble framework with advanced machine learning
algorithms. The proposed framework addresses class imbalance by
incorporating the ADAYSN algorithm, which generates synthetic
samples to balance the dataset and reduce bias toward the majority
class. Additionally, the BORUTA feature selection method is
employed to identify the most relevant features, enhancing model
interpretability and reducing computational complexity.

The contributions of this paper are as follows:

• A stacked ensemble framework that improves classification
accuracy for both PCOS and cervical cancer compared to
existing methods.

• The integration of the ADAYSN algorithm to effectively handle
class imbalance, leading to more accurate detection of rare
conditions such as cervical cancer.

• The use of the BORUTA feature selection method to enhance
feature relevance, reduce dimensionality, and improve model
interpretability.

The rest of this paper is structured as follows. Section 2
presents a detailed review of the dataset and explains the proposed
methodology, focusing on the stacked ensemble framework,
ADAYSN algorithm, and BORUTA feature selection. Section 3
provides the results and compares the proposed framework
with state-of-the-art methods. Finally, Section 4 concludes with a
summary of the findings and the potential future applications of the
proposed approach.
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2 Materials and methods

2.1 Data description

The dataset utilized in this study to examine cervical cancer
risk factors was obtained from the University of California, Irvine
(UCI) Machine Learning Repository (ICS, 2024). It was collected at
Hospital Universitario de Caracas in Caracas, Venezuela, specifically
in 2019, and it comprises demographic data, lifestyle choices,
and previous medical records of 858 patients. For PCOS analysis,
the dataset was acquired from the Kaggle Dataset Repository
(Kaggle, 2023), containing information from 10 different Indian
hospitals and encompassing data for 541 women. The dataset
consists of 43 features, including physical attributes, hormone
levels (Luteinizing Hormone (LH), Follicle-Stimulating Hormone
(FSH), First Beta-Human Chorionic Gonadotropin (I beta-HCG),
Second Beta-Human Chorionic Gonadotropin (II beta-HCG),
Thyroid-Stimulating Hormone (TSH), Anti-Müllerian Hormone
(AMH), Prolactin (PRL), Progesterone (PRG), Random Blood
Sugar (RBS)), and other medical indicators. These features are
used to classify women as either diagnosed with PCOS (177
instances) or not diagnosed (364 instances). Both datasets provide
critical information for analyzing cervical cancer and PCOS risk
factors. Descriptions of each dataset’s features can be found
in Tables 1, 2.

2.2 Evaluation of datasets

Both datasets have significant challenges due to missing
values, small size, and class imbalance. Addressing these issues is
crucial for building robust classification models. In the cervical
cancer dataset, several attributes contain missing values. For
example, attributes related to sexually transmitted diseases
(STDs) have over 100 missing values, while two attributes have
787 missing values. These missing values can introduce biases
and reduce the predictive power of the model if not properly
addressed. Similarly, in the PCOS dataset, certain features such
as Marriage Status, beta-HCG, AMH, and Fast Food had missing
values. During data preparation, the missing values in these
features were filled using the median value of the corresponding
instances.

The cervical cancer dataset is relatively small, with only
858 samples, and is severely imbalanced. Only 2.1% of the
patients (18 individuals) were diagnosed with cervical cancer,
leading to a significant class imbalance that could bias the
model towards the majority class (non-cancer cases). The
PCOS dataset faces a similar challenge. Out of 541 women,
only 177 were diagnosed with PCOS, leading to an imbalance
between the two classes (PCOS and non-PCOS). Addressing
this imbalance is crucial to avoid a model biased towards the
majority class. To address these challenges, we employed data
balancing techniques such as SMOTEandADASYN,which generate
synthetic samples to balance the dataset and improve the model
ability to predict minority class outcomes. These preprocessing
steps are essential for achieving robust and accurate classification
results.

2.3 Theoretical background

2.3.1 Data balance techniques
In order to address the issue of data imbalance in our dataset,

we employed three data balance techniques: SMOTE, Radom over-
sampling and ADAYSN.

1. Synthetic Minority Over-sampling Technique: SMOTE is
popular for addressing class imbalance in machine learning
datasets (Sowjanya and Mrudula, 2023). When dealing with
imbalanced datasets, where the number of instances in the
minority class is much smaller than that in the majority
class, traditional classifiers may perform poorly, as they work
in favor of the majority class due to its higher frequency
(Demir and Şahin, 2022). SMOTE is designed to alleviate this
issue by generating synthetic samples for the minority class,
thus balancing the class distribution (Fernández et al., 2018).
Given a dataset with the minority class represented by Xmin
and the majority class represented by Xmaj, SMOTE proceeds
as follows (Chawla et al., 2002):
(a) Choose a minority class instance, denoted as xi, from Xmin.
(b) Select k nearest neighbors of xi from Xmin using a distance

metric, such as Euclidean distance.
(c) Randomly select one of the k nearest neighbors, denoted as

xnn.
(d) Generate a synthetic instance, denoted as xnew, by

interpolating between xi and xnn using Equation 1:

xnew = xi + rand (0,1) × (xnn − xi) , (1)

where rand(0,1) is a random number between 0 and 1.
(e) Repeat steps 1-4 to generate a desired number of synthetic

samples for the minority class.
(f) Append the synthetic samples to the originalminority class

instances, resulting in a balanced dataset.
2. Adaptive Synthetic Sampling: ADASYN (He et al., 2008) is

an extension of the SMOTE algorithm that addresses the
limitations of SMOTE in handling imbalanced datasets with
overlapping classes. ADASYN adaptively generates synthetic
samples based on the level of difficulty in learning the
minority class instances. The ADASYN algorithm starts by
determining the number of synthetic samples to be generated
for each minority class instance based on the ratio of the
difference between the number of its k-nearest neighbors from
the majority and the minority class instances. The minority
class instance is xi, and its set of k nearest neighbors is Ni.
The number of synthetic samples to be generated for xi is
calculated using Equation 2:

Gi =
(|Ni| − |Ni ∩minorityclass|) × desired_ratio

|Ni ∩minorityclass|
(2)

where desired_ratio is the desired balance ratio of the number of
instances between the majority and minority classes. Next, for each
minority class instance xi, ADASYN generates Gi synthetic samples.
Similar to SMOTE, a random neighbor xn is chosen from Ni, and a
synthetic instance xnew is created using Equation 3:

xnew = xi + λ× (xn − xi) (3)
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TABLE 1 Cervical cancer dataset description.

No. Attribute No. of missing values No. Attribute No. Of missing values

1 Age 0 19 STDs: pelvic inflammatory disease 105

2 Number of sexual partners 26 20 STDs: genital herpes 105

3 First sexual intercourse 7 21 STDs: molluscum contagiosum 105

4 Num of pregnancies 56 22 STDs: acquired immunodeficiency
syndrome (AIDS)

105

5 Smokes 13 23 STDs: human immunodeficiency
virus (HIV)

105

6 Smokes (years) 13 24 STDs: hepatitis B 105

7 Smokes (packs/year) 13 25 STDs: human papillomavirus (HPV) 105

8 Hormonal contraceptives 108 26 STDs: number of diagnoses 0

9 Hormonal contraceptives (years) 108 27 STDs: time since first diagnosis 787

10 IUD (intrauterine device) 117 28 STDs: time since last diagnosis 787

11 Sexually transmitted diseases (STDs) 105 29 Dx: cancer 0

12 STDs (number) 105 30 Dx: cervical intra-epithelial (CIN) 0

13 STDs: condylomatosis 105 31 Dx: HPV 0

14 STDs: cervical condylomatosis 105 32 Dx 0

15 STDs: vaginal condylomatosis 105 33 Hinselmann 0

16 STDs: vulvo-perineal
condylomatosis

105 34 Schiller 0

17 STDs: syphilis 105 35 Cytology 0

18 STDs: pelvic inflammatory disease 105 36 Biopsy 0

where 0 < λ < 1. The ADASYN algorithm iterates through all
minority class instances, generating synthetic samples adaptively
according to the difficulty of learning the instances. This adaptivity
allowsADASYN to focus on the regions of theminority class that are
harder to learn, providing a more effective approach for handling
imbalanced datasets with overlapping classes. ADASYN has been
widely used in various classification tasks and has demonstrated
improvements in performance compared to SMOTE and other
traditional over-sampling techniques.

2.3.2 BORUTA feature selection
The BORUTA algorithm focuses on identifying the most

relevant features for classification tasks. Given a dataset X with
n instances and p features, BORUTA aims to determine the
importance of each feature with respect to the target variable y
(Kursa and Rudnicki, 2010).

• RF Feature Importance Calculation: BORUTA depends on an
RF classifier to calculate feature importance scores. For each
feature j, the algorithm constructs shadow features by shuffling

the values of feature j, while preserving the relationships
between features. The dataset with the original features and
shadow features is used to train the RF classifier, which yields
importance scores for each feature (refers to Equation 4).

Imp (j) = Importancescoreof feature j (4)

• Feature Selection: BORUTA compares the importance scores
of the original features with those of their shadow features.
Features with higher importance scores than the maximum
importance score of their shadow features are considered
relevant and retained for further analysis (refers to Equation 5).

MaxImpshadow = max
shadowfeatures

(Imp (j)) (5)

Features with Imp(j) >MaxImpshadow are selected as relevant.

• Iterative Process: The feature selection process is repeated
until BORUTA identifies the relevant features with high
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TABLE 2 PCOS dataset description.

No. Feature No. Feature No. Feature

1 PCOS class
label

15 I beta-HCG 29 Weight gain

2 Age 16 II beta-HCG 30 Hair growth

3 Weight 17 FSH 31 Skin darkening

4 Height 18 LH 32 Hair loss

5 BMI 19 FSH/LH 33 Pimples

6 Blood Group 20 Hip (inch) 34 Fast food

7 Pulse rate 21 Waist (inch) 35 Regular
Exercise

8 RR
(breaths/min)

22 Hip Ratio 36 BP Systolic

9 Hb 23 TSH 37 BP Diastolic

10 Cycle 24 AMH 38 Follicle No. (L)

11 Cycle length
(days)

25 PRL 39 Follicle No. (R)

12 Marriage
Status

26 Vitamin D3 40 Avg. F size (L)

13 Pregnant 27 PRG 41 Avg. F size (R)

14 No. of
abortions

28 RBS 42 Endometrium

confidence. The algorithm evaluates the importance scores
in each iteration and stops when the difference between the
maximum importance score of the original features and the
maximum importance score of their shadow features is not
statistically significant. The selected relevant features can then
be used to build accurate classification models for the target
variable y.

The proposed algorithm focuses on cervical cancer and PCOS
classification using the BORUTA feature selection technique and
ensemble learning based on correlation work. BORUTA employs an
RF classifier to identify the most relevant features for classification
tasks, rather than minimizing feature sets for specific models. It
undergoes iterative steps to determine the important features. For
cervical cancer classification with a dataset of 36 features, BORUTA
outputs important features based on their importance scores,
such as Feature1, Feature5, Feature10, and Feature20. Similarly,
for PCOS classification with a dataset of 42 features, BORUTA
suggests significant features like Feature2, Feature8, Feature15,
and Feature30. The iterative evaluation of feature importance and
statistical tests allows BORUTA to pinpoint the most relevant
features for cervical cancer and PCOS classification. These selected
features are then used to train classification models, such as RF
and SVM, to predict the presence or absence of cervical cancer or

PCOS. BORUTA feature selection algorithm offers a systematic and
robust approach for identifying relevant features in cervical cancer
and PCOS classification. By being model-independent in feature
importance assessment, it facilitates the development of accurate
classification models for medical conditions.

2.3.3 Stacked learning
Stacked learning, also known as stacked generalization or

stacking, is an ensemble learning technique that combines
the predictions of multiple base classifiers to make more
accurate and robust predictions. The idea behind stacked
learning is to leverage the diverse perspectives of individual
classifiers by training them on the same dataset and then
using their predictions as input features for a higher-level
meta-classifier. This meta-classifier learns to combine the
base classifiers predictions and generate the final prediction
(Mohamed et al., 2023).

The advantages of stacked learning are significant. Firstly, it
often leads to improved predictive performance compared to using
a single classifier. By aggregating the predictions from multiple
base classifiers, stacked learning can capture complex patterns
and relationships that may be missed by individual classifiers.
It benefits from the ensemble effect, where the errors made
by individual classifiers can be mitigated when combined. This
reduction in bias and variance leads to more accurate and reliable
predictions.

Secondly, stacked learning enhances the robustness of the
classification model. Since it relies on the consensus of multiple
base classifiers, stacked learning is less susceptible to the biases and
errors of individual classifiers. Outliers or noise in the data that
may disproportionately affect a single classifier are attenuated by
the ensemble approach, resulting in more robust predictions that
generalize well to unseen data.

In the proposed structure with LR, RF, and KNN as base
classifiers and XGBoost as the meta-classifier, each component
serves a crucial role. LR, RF, and KNN are selected as base
classifiers due to their distinct modeling approaches and strengths.
LR, a linear classifier, can capture linear relationships and provide
interpretable coefficients. RF, an ensemble of decision trees, excels
at handling complex interactions and nonlinear relationships. KNN,
a non-parametric classifier, relies on nearest neighbors to make
predictions, and can capture local patterns, effectively. By combining
these diverse classifiers, the ensemble model benefits from their
complementary strengths and can capture a broader range of
patterns and relationships in the data.

XGBoost is chosen as the meta-classifier for several reasons.
XGBoost is a gradient boosting algorithm known for its high
performance and ability to handle complex relationships. It
effectively learns from the meta-features generated by the base
classifiers and makes accurate predictions. Additionally, XGBoost
offers flexibility in hyperparameter tuning, enabling further
optimization of the ensemble model. Its boosting capabilities
amplify the strengths of the base classifiers and improve the overall
predictive performance of the stacked model.

Overall, the proposed structure leverages the power of stacked
learning by combining LR, RF, and KNN as base classifiers
and utilizing XGBoost as the meta-classifier. This ensemble-based
approach benefits from the diversity and flexibility of the base
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TABLE 3 Hyperparameters for the proposed machine learning classifiers.

Classifier Parameter Definition Value

LR

random_state Controls the random seed for reproducibility 42

max_iter Maximum number of iterations for convergence 1,000

C Inverse of regularization strength
smaller values specify stronger regularization

1.0

RF

n_estimators Number of trees in the forest 100

random_state Controls the random seed for reproducibility 42

max_depth Maximum depth of the trees 10

min_samples_split Minimum number of samples required
to split an internal node

2

KNN n_neighbors Number of neighbors to consider for classification 5

XgBoost

learning_rate Step size shrinkage to prevent overfitting 0.1

max_depth Maximum depth of a tree 3

n_estimators Number of boosted trees 100

subsample Subsample ratio of the training instances 0.8

classifiers, while harnessing the boosting capabilities of XGBoost to
create a powerful classification model with improved accuracy and
robustness.

Table 3 showcases the classifiers used in the code, along
with their respective parameters, definitions, and example
values. This tabular representation highlights the significance of
optimizing parameter values through the grid search algorithm.
The obtained parameter values are essential as they have been
carefully selected to enhance the performance of each classifier.
By conducting an extensive search over various combinations, the
grid search algorithm identifies the best parameter configuration
for each classifier. These optimized values are crucial for
achieving improved classification accuracy and ensuring that
the classifiers are appropriately calibrated for the specific dataset
and classification task at hand. Therefore, the provided table
not only serves as a reference for the parameter values but also
emphasizes the importance of parameter optimization through
grid search, ultimately contributing to more effective and reliable
classification outcomes.

2.4 Proposed approach

Figure 1 illustrates the proposed framework, which involves
pre-processing steps to ensure data suitability for classification.
Initially, redundant features are removed through a feature selection
process, and categorical variables are transformed into numerical
representations. The imputation technique addresses missing
values, ensuring data completeness. Subsequently, BORUTA feature
selection is applied to identify the most relevant features, reducing
dataset dimensionality and focusing on informative features for

classification. To address class imbalance, over-sampling techniques
are employed, creating a balanced dataset split into training and
testing sets. Stacked learning is utilized with base classifiers (LR,
RF, and KNN) to generate meta-features that capture collective
knowledge. These meta-features, along with the target variable,
train a meta-classifier (XGBoost), which is optimized using grid
search cross-validation. The trained meta-classifier is used to
predict the target variable for the testing set. Evaluation metrics,
such as ROC curve, AUC score, and confusion matrix, are used
to assess the model performance. By integrating pre-processing,
feature selection, and stacked learning with a meta-classifier, the
proposed framework achieves an enhanced classification accuracy,
providing more reliable predictions. The algorithm commences
with a pre-processed dataset, StackedFeatures, and corresponding
labels, y, as inputs for binary classification. The dataset is split into
training and testing sets (80% and 20%, respectively). Base models
(LR, KNN, RF) and the meta model (XGBoost) are initialized. The
BORUTA feature selection algorithm identifies relevant features
based on their importance scores. Stacking learning is performed,
and meta-features are created by combining base model predictions
on the training and testing sets. The meta-model, XGBoost, is
trained on the stacked features, StackedTrainX. Predictions on the
stacked test features, StackedTestX, are made using the trained
meta-model. The algorithm outputs the predicted labels for the test
instances, allowing for the classification of unseen data. Throughout
the algorithm, various variables, such as StackedFeatures, y,
StackedTrainX, StackedTestX, and selected features, represent
the data and computations during the execution. The proposed
algorithm, as depicted inAlgorithm 1, aims to enhance classification
performance through a combination of BORUTA feature selection
and stacking learning with base models (LR, KNN, RF) and a meta

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1435036
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Emara et al. 10.3389/fphys.2025.1435036

FIGURE 1
Block diagram of the proposed approach.

model (XGBoost). The algorithm starts by taking the pre-processed
dataset, StackedFeatures, and corresponding labels, y, as input. To
evaluate themodel performance, the dataset is split into training and
testing sets using the TrainTestSplit function, resulting in TrainX,
TestX, Trainy, and Testy. The base models, LR, KNN, and RF, and
the meta model, XGBoost, are initialized, setting the foundation for
the subsequent feature selection and stacking learning steps.

The algorithm proceeds with feature selection using the
BORUTA algorithm. The base models (LR, KNN, RF) are iteratively
trained onTrainX, and their feature importance scores are obtained.
The BORUTA algorithm then selects relevant features based on the
comparison of feature importance scores, ensuring the retention of
the most informative features. Following feature selection, stacking
learning is applied. The base models (LR, KNN, RF) are trained
on the selected features from TrainX. The predictions of these
base models on both TrainX and TestX are concatenated, creating
StackedTrainX and StackedTestX, respectively. Next, the meta
model, XGBoost, is trained on StackedTrainX. This meta-classifier
learns from the base models’ predictions and combines their
knowledge to make more accurate predictions on unseen instances.
Finally, the algorithm employs the trainedmetamodel to predict the
target labels for StackedTestX. providing the predicted labels for the
test instances.

The output of the algorithm comprises the predicted labels for
the test instances, allowing for the classification of unseen data.

2.5 Performance metrics

The number of correct estimates from all predictions is used to
determine if a model is successful when it is developed from scratch
or when it is employed in place of an existing model. But this data

Input: Preprocessed dataset StackedFeatures,

Labels y

Output: Predicted labels for test instances

TrainX, TestX, Trainy, Testy←TrainTestSplit

(StackedFeatures, y); //Split data into training

and test sets

Initialization:

Initialize base models: LR, KNN, RF

Initialize meta model: XGBoost

Feature Selection using BORUTA:

while BORUTA feature selection not converged do

 Train base models LR, KNN, RF on TrainX

 Obtain feature importance scores from

base models;

 Apply BORUTA algorithm to select

relevant features;

end

Stacking Learning:

Train base models LR, KNN, RF on

selected features;

Obtain stacked features StackedTrainX,

StackedTestX by

concatenating predictions of base models on

TrainX, TestX

Train meta model XGBoost on StackedTrainX

Prediction:

Make predictions on StackedTestX

return Predicted labels for TestX

Algorithm 1. BORUTA Feature Selection and Stacking Learning with LR,
KNN, RF, and XGBoost.
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TABLE 4 Confusion matrix: actual vs. Predicted classes.

Predicted

Positive Negative

Actual Positive Tp Fn

Negative Fp Tn

TABLE 5 Calculation formulas and explanations of performance metrics.

Measure Formula Evaluation focus

Accuracy Tp+Tn

Tp+Tn+Fp+Fn
It is used to calculate the ratio of

the number of correctly
estimated samples to all samples
If the model utilized is highly

accurate, it might be regarded as the best

Precision Tp

Tp+Fp
The proportion of positively identified

samples that were accurately
predicted to be positive samples

Recall
Tp

Tp+Fn
It is used to calculate the percentage of

positive values
that are considered to be true

F1-Score 2∗ Precision×Recall
Precision+Recall

It is the sensitivity harmonic mean.
Consequently

it considers both false positives and false
negatives

simply reveals if the classification was accurate. The classification
accuracy alone is typically insufficient to assess a model suitability.
The confusion matrix is used to describe the estimated outputs of a
classifier. The classification model performance with a set of known
test data is typically described using Table 4 with 4 parameters
called a confusion matrix. False positives Fp, false negatives Fn, true
positivesTp, and true negativesTn are their names.The performance
metrics are presented in Table 5.

3 Results

This section presents the outcomes of the classification models
applied to two healthcare domains: PCOS and Cervical Cancer
classification.

3.1 Results for PCOS classification

The initial phase of the study involved applying four distinct
machine learning algorithms (RF, KNN, LR, and XGBoost)
to the dataset to assess each model’s predictive capabilities
for PCOS classification. The stacked learning technique was
then employed, combining predictions from multiple models,
which significantly improved classification accuracy compared to
individual models.

To address the challenge of data imbalance, the ADASYN
algorithm was applied, balancing the skewed class distributions.
This created a more representative training set, enhancing the
model’s ability to classify PCOS cases. Additionally, BORUTA
feature selection was integrated with stacked learning to identify
the most important features, leading to a reduced dataset size and
improved interpretability. This approach not only streamlined the
model but also made its decision-making process more transparent,
aiding clinical application.

3.1.1 PCOS classification using machine learning
models

Four machine learning models were used for PCOS
classification: RF, KNN, LR, and XGBoost. These models
were selected due to their ability to handle complex
classification tasks. Figure 2 displays the confusion matrices and
ROC curves for each model.

Table 6 summarizes the performance metrics, including
accuracy, recall, precision, and F1 score, for each model.

RF and XGBoost achieved the highest accuracy (92% and 91%),
while KNN had the lowest (76%). Both RF and XGBoost also
demonstrated strong recall (92% and 91%), with LR following at
88%. In terms of precision, RF and LR performed best (92% and 89).

3.1.2 Results for stacked learning model
The performance of the stacked learning model was evaluated

using 5-fold cross-validation. This technique divides the dataset
into five subsets, with each subset being used as a validation set
once, while the others are used for training. The results across
the folds were averaged to obtain robust performance metrics,
such as Precision, Recall, F1-score, and Support, which provide a
thorough understanding of themodel’s performance across different
partitions.

Figure 3 illustrates confusion matrices for training and testing
using the stacked learning model with imbalanced data. Table 7
presents the classification results, showing that in the testing set,
non-PCOS instances achieved a Precision of 0.92, Recall of 0.96,
and F1-score of 0.94, while PCOS cases exhibited a Precision of 0.90,
Recall of 0.81, and F1-score of 0.85. The overall accuracy was 0.92.

The training set results demonstrated higher performance, with
non-PCOS showing a Precision of 0.98, Recall of 1.00, and F1-score
of 0.99, while PCOS attained Precision of 0.99, Recall of 0.97, and
F1-score of 0.98, achieving an overall accuracy of 0.99. Despite these
results, themodel struggled to identify PCOS cases in the testing set,
indicating a challenge with data imbalance.

To address the issue of imbalanced data, various techniques such
as SMOTE, ADASYN, and random undersampling were employed.
These methods adjusted the class distribution within the training
data to create a more balanced representation. Figure 4 and Table 8
show the results for stacked learning combined with random
undersampling.

Table 9 compares various methods for PCOS classification.
The proposed ADASYN-based approaches show significant
improvements in feature selection and performance. ADASYN
+ Boruta reduces the feature count to just 9, while achieving
a competitive accuracy of 97%, compared to Danaei et al.‘s 33
features and 98.89% accuracy. The proposed methods demonstrate
strong recall, particularly with ADASYN achieving a recall of 98%,

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2025.1435036
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Emara et al. 10.3389/fphys.2025.1435036

FIGURE 2
Confusion matrices and ROC curves for machine learning models: (A) RF, (B) XGBoost, (C) LR, and (D) KNN.

matching the best in the comparison. ADASYN effectively addresses
class imbalance, and when combined with Boruta, improves model
interpretability while maintaining high performance. Overall,

the proposed approaches outperform traditional methods in
both efficiency and accuracy, emphasizing the value of advanced
oversampling and feature selection techniques.
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TABLE 6 Performance metrics for machine learning models on PCOS classification.

Model Accuracy (%) Recall (%) Precision (%) F1 score (%)

RF 92 92 92 92

XGBoost 91 91 92 91

LR 88 88 89 89

KNN 76 76 75 76

FIGURE 3
Confusion matrices for training and testing using stacked learning with imbalanced data.

TABLE 7 Classification report for training and testing using stacked learning on imbalanced data for PCOS classification.

Testing set Training set

Precision Recall F1-score Support Precision Recall F1-score Support

Non-PCOS 0.92 0.96 0.94 75 0.98 1.00 0.99 285

PCOS 0.90 0.81 0.85 32 0.99 0.97 0.98 143

Accuracy 0.92 0.99

Macro avg 0.91 0.89 0.90 107 0.99 0.98 0.98 428

Weighted avg 0.92 0.92 0.91 107 0.99 0.99 0.99 428

3.2 Results for cervical cancer detection

The models that demonstrated superior performance in PCOS
detection, including the Stacked Learningmodel with ADASYN and
BORUTA, were applied to the cervical cancer classification task.The
primary aim was to evaluate the effectiveness of these models in
detecting cervical cancer and to assess their generalizability across
different medical conditions.

The cervical cancer dataset presented a significant class
imbalance. Out of the total instances, only 18 samples belonged to

the cancer class, while 840 instances were classified as no-cancer.
This severe imbalance posed a challenge for accurate classification,
as models could be biased toward predicting the majority class.
To address this issue, the ADASYN algorithm was employed to
oversample the minority class. As a result, the cancer class was
balanced to 837 samples, closely matching the no-cancer class with
840 samples. This adjustment mitigated the imbalance, allowing for
more effective model training and evaluation.

Following data balancing, the BORUTA feature selection
algorithm was used to identify the most relevant features for
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FIGURE 4
Confusion matrices for training and testing using stacked learning combined with random undersampling for PCOS classification.

TABLE 8 Classification report for training and testing using stacked learning with random undersampling for PCOS classification.

Testing set Training set

Precision Recall F1-score Support Precision Recall F1-score Support

Non-PCOS 0.95 0.92 0.93 75 Non-PCOS 1.00 1.00 1.00 143

PCOS 0.82 0.88 0.85 32 PCOS 1.00 1.00 1.00 143

Accuracy 0.91 Accuracy 1.00

Macro avg 0.88 0.90 0.89 107 Macro avg 1.00 1.00 1.00 286

Weighted avg 0.91 0.91 0.91 107 Weighted avg 1.00 1.00 1.00 286

classification. Out of the initial 36 features, 13 were identified as
important for the cervical cancer detection task, as shown in the
heatmap in Figure 5. These features include Age, Number of sexual
partners, First sexual intercourse, Num of pregnancies, Smokes,
Smokes (years), Smokes (packs/year), Hormonal Contraceptives,
Hormonal Contraceptives (years), IUD, IUD (years), Dx: HPV, and
Dx. The heatmap highlights the correlations between these selected
features and the target variable, offering insights into the key factors
influencing cervical cancer detection.

The performance of the stacked learning model combined with
ADASYN and BORUTA is illustrated in Figure 6, which shows
the confusion matrix and ROC curve. The model achieved a high
accuracy in detecting both cancer and no-cancer cases, with true
positives (Tp) of 172 and true negatives (Tn) of 161. The low number
of false positives (Fp) at 3 indicates the model’s ability to minimize
misclassifications, while the absence of false negatives (Fn) reflects
its success in detecting all cancer cases in the dataset. The AUC of
1.00 further underscores the model’s excellent performance and its
capacity to differentiate between cancer and no-cancer instances.

In summary, the results for cervical cancer classification
using the proposed framework demonstrate its effectiveness and
generalizability. With an accuracy of 99%, recall of 98%, precision

of 100%, and an F1-score of 99%, the model performs exceptionally
well in identifying both cancer and non-cancer cases. The recall of
98% reflects the model’s ability to correctly identify the majority
of cancer cases, while the precision of 100% indicates its capability
to avoid false positive predictions. These results highlight the
robustness and reliability of the proposed framework, making it
a promising tool for real-world applications in cervical cancer
detection.

Table 10 presents a comparative analysis of the proposed
classification framework for cervical cancer detection alongside
state-of-the-art methods. The proposed framework, utilizing Stacked
Learning, ADASYN, and BORUTA, achieves an accuracy of 99%,
outperforming most other models listed in terms of accuracy and
reliability.Thesuperioraccuracyof theproposedframeworkhighlights
its effectiveness in distinguishing between cervical cancer and non-
cancer cases, making it a highly accurate tool for medical diagnosis.
Theframework’srecallof98%andprecisionof100%furtheremphasize
its ability to minimize both false negatives and false positives, which
is critical in medical decision-making. Compared to other methods,
which show a range of accuracies from 68% to 99.3%, the proposed
framework excels by consistently demonstrating robustness and
generalizability across different datasets. This suggests its potential
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TABLE 9 Comparison of the proposed classification approach for PCOS detection with state-of-the-art methods.

Authors Classifier Technique Selected features Performance measure

Denny et al. (2019) RF PCA 23 Accuracy of 89.02%

Bharati et al. (2020) RFLR Univariate feature selection 10 Accuracy of 91.01% and Sensitivity of 90%

Nandipati et al. (2020) RF SMOTE 41 Accuracy of 93.12%

Aggarwal et al. (2023) RF ANOVA 11 Accuracy of 93.52%

Munjal et al. (2020) RF GA 9 Accuracy of 83% and Sensitivity of 64%

Tiwari et al. (2022) KNN and SVM - 10 Accuracy of 93.25%

Tanwani (2020) LR Filter-based (correlation) 10 Accuracy of 92% and Sensitivity of 93%

Neto et al. (2021) RF - - Accuracy of 95% and Sensitivity of 94%

Inan et al. (2021) XGBoost Chi-Square and ANOVA 23 Accuracy of 96.03% and Sensitivity of 98%

Danaei Mehr and Polat (2022) RF Pearson filter 33 Accuracy of 98.89% and Sensitivity of 100%

Proposed Approach Stacked Learning ADASYN 43 Accuracy of 98% and Recall of 98%

ADASYN + Boruta 9 Accuracy of 97% and Recall of 96%

applicability in various clinical settings and populations, offering a
reliable solution for cervical cancer detection.

4 Discussion

4.1 PCOS detection

The performance of various machine learning models for
PCOS classification was thoroughly evaluated in this study.
As shown in Table 6, RF and XGBoost models performed
significantly better in terms of accuracy, recall, precision, and F1-
score compared to LR andKNN. RF andXGB achieved accuracies of
92% and 91% respectively, indicating their superior ability to predict
PCOS cases. Additionally, the F1-score, which balances precision
and recall, shows that RF (92%) and XGB (91%) outperform LR and
KNN, which have lower F1-scores of 89% and 76%, respectively.

The introduction of stacked learning further enhanced the
model performance, particularly in addressing the issue of class
imbalance. Utilizing the ADASYN (Adaptive Synthetic Sampling)
algorithm for oversamplingminority classes improved the predictive
ability of the models, as evidenced by the improved recall (81%)
for the PCOS class, and an overall accuracy of 92%. Despite
this, the model still exhibited a lower performance in predicting
PCOS instances on the testing set, indicating potential challenges
related to the class imbalance, even with the use of ADASYN.
Incorporating BORUTA for feature selection further improved
model interpretability and reduced overfitting, allowing the model
to focus on the most relevant features for PCOS detection.

Theresults of differentdatabalancing techniques, suchasRandom
Undersampling,SMOTE,andADASYN,demonstrated thatADASYN
consistently produced the best results, as evidenced by the confusion

matrix and classification reports. The oversampling strategy enabled
themodel tobetter learnandclassifyminority instanceswithout losing
significant information from the majority class.

The study reveals that RF, XGB, and SL models combined
with ADASYN and BORUTA algorithms offer robust performance
in classifying PCOS. Despite the challenges posed by class
imbalance, the application of data balancing techniques and feature
selection significantly improved classification accuracy and model
generalizability.

4.2 Cervical cancer detection

The proposed framework was also applied to the cervical cancer
classification task, and the results were equally promising. The
dataset exhibited a severe class imbalance, with only 18 instances of
cervical cancer compared to 840 instances of non-cancer. To address
this imbalance, ADASYNwas used to oversample theminority class,
resulting in a balanced dataset that allowed for effective training and
evaluation of the models.

The stacked learning model, combined with ADASYN and
BORUTA, performed exceptionally well, achieving an accuracy
of 99%, a recall of 98%, and a precision of 100%. These
results underscore the effectiveness of the proposed framework in
accurately detecting cervical cancer, even in cases where the class
distribution is highly skewed. The confusion matrix in Figure 6
illustrates the model’s ability to correctly classify both cancer and
non-cancer instances with minimal false positives and no false
negatives, resulting in a high area under the curve (AUC) score of
100. This high performance is critical in clinical settings where both
precision and recall are of utmost importance for ensuring accurate
diagnosis and treatment planning.
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FIGURE 5
Heatmap for the selected features using BORUTA algorithm for cervical cancer classification.

FIGURE 6
Confusion matrix and ROC curve of stacked learning model combined with ADASYN and BORUTA algorithms for cervical cancer classification.
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TABLE 10 Comparison of the proposed classification framework for cervical cancer detection with state-of-the-art methods.

Authors Technique Dataset Total
images/Attributes

Performance
measure

Al Mudawi and Alazeb (2022) PMS + SVM + KNN UCI dataset 32 attributes SVM: 99% accuracy

Logit model + Deep learning UCI dataset 36 attributes 94.18% accuracy

William et al. (2018) SVM Real dataset (150 images) 150 Accuracy 98.5%, Sensitivity
98%, Specificity 97.5%

Sompawong et al. (2019) Enhanced fuzzy c means Herlev dataset 917 95.00% accuracy, 100%
sensitivity, 90.00% specificity

William et al. (2019) autoencoders and softmax Real dataset - Accuracy 97.8%

Adem et al. (2024) GoogleNet Herlev dataset 917 Accuracy 94.5%

Lin et al. (2019) CNN Herlev dataset 917 68.0% accuracy

Gorantla et al. (2019) KNN, SVM, DT, RF, XGBoost,
CNN

Herlev dataset 917 Accuracy 93%

Yilmaz et al. (2009) CNN-SVM Real dataset 2000 Accuracy 99.3%, Sensitivity
98.9%, Specificity 99.4%

Kano et al. (2021) 2D UNet and 3D UNet Real dataset 98 cases Not mentioned

Mohammed et al. (2021) CNN SIPaKMeD 4,049 Accuracy of 99%

Xu et al. (2020) KNN, SVM, DT Herlev dataset 917 Public dataset Accuracy 99.27%

Proposed Approach Stacked Learning + ADAYSN
+ BORUTA

UCI 13 Accuracy of 99%, recall of 98%
and precision of 100%

Furthermore, BORUTA feature selection played a key role in
reducing the feature set from 36 to 13 relevant attributes. These
features were highly correlated with the target variable and included
significant clinical parameters such as age, number of pregnancies,
smoking history, and human papillomavirus (HPV) diagnosis. The
correlation heatmap in Figure 5 visually demonstrates the strength
of these associations, providing a clear understanding of the factors
contributing to cervical cancer detection.

In comparison to state-of-the-art methods, as
summarized in Table 10, the proposed framework consistently
outperformed existing approaches. While previous studies reported
accuracies ranging from 68% to 99.3%, the proposed framework
achieved an unparalleled accuracy of 99%. Moreover, the precision
of 100% and recall of 98% further affirm the model’s reliability and
robustness in clinical applications.

4.3 Strengths and limitations

This study has several strengths that highlight its contribution
to the field of medical diagnosis. First, the use of stacked learning
models, combined with ADASYN for class imbalance handling
and BORUTA for feature selection, enabled the development of a
robust and interpretable diagnostic framework for both PCOS and
cervical cancer detection. The proposed framework achieved high
classification accuracy and recall, outperforming existing methods
in detecting both conditions.The application of ADASYN effectively

improved the model’s ability to handle imbalanced datasets, making
it particularly relevant for real-world medical scenarios where
such imbalances are common. Additionally, the use of BORUTA
for feature selection reduced the feature space, improving model
interpretability and enabling a clearer understanding of the key
factors influencing disease detection. Despite these strengths, there
are some limitations that should be acknowledged. First, the study
was conducted on relatively small datasets for both PCOS and
cervical cancer detection, which may limit the generalizability
of the findings. Future research should focus on validating the
proposed framework on larger, more diverse datasets to ensure its
robustness across different populations and demographic groups.
Furthermore, while ADASYN was effective in addressing class
imbalance, more advanced techniques could be explored in future
research to further optimize performance, particularly in highly
imbalanced datasets. Additionally, the reliance on BORUTA for
feature selection, although it improved model interpretability, may
have excluded latent features or interactions that could be important.
Future work could investigate more advanced feature selection
methods, such as deep learning-based approaches, to capture
hidden patterns in the data. Lastly, while ensemble techniques like
stacked learning models were beneficial for performance, they are
computationally intensive. Future studies may explore lightweight
models that maintain high accuracy while being more efficient
for real-time applications, especially in resource-constrained
clinical environments.
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4.4 Clinical implications

The results of this study have significant clinical implications
for the early detection and diagnosis of both PCOS and cervical
cancer. The proposed framework, combining Stacked Learning with
ADASYN and BORUTA, not only addresses the common issue
of class imbalance in medical datasets but also enhances model
performance in terms of accuracy, precision, and recall. In clinical
practice, accurate detection of these conditions is critical for timely
intervention and personalized treatment. For PCOS, early and
accurate diagnosis can lead to better management of symptoms
and prevent long-term complications such as infertility, metabolic
syndrome, and cardiovascular disease. The high performance of
the proposed models, particularly in detecting PCOS cases with
imbalanced data, indicates their potential for use in real-world
clinical settings where accurate diagnosis is crucial for effective
treatment.

Similarly, the accurate classification of cervical cancer is essential
for preventing disease progression and improving patient outcomes.
The high recall and precision rates achieved by the proposed
framework minimize the risk of false negatives, which is vital in
ensuring that all cancer cases are detected and treated promptly.This
has profound implications for cervical cancer screening programs,
where early detection plays a pivotal role in reducing mortality
rates. The study demonstrates the potential of advanced machine
learningmodels, combinedwith feature selection anddata balancing
techniques, to significantly improve the accuracy and reliability of
medical diagnoses. These findings offer valuable insights into the
application of artificial intelligence in healthcare, paving the way for
more efficient and effective diagnostic tools that can be integrated
into clinical practice.

5 Conclusion

This paper introduced a framework for the classification of
PCOS and cervical cancer, demonstrating promising results with
significant implications. By employing an integrated approach
that combines stacked learning, the ADAYSN algorithm for data
balancing, and the BORUTA technique for feature selection, a
classification accuracy of 97% for PCOS diagnosis was achieved. For
cervical cancer classification, the framework exhibited exceptional
performance, achieving an accuracy of 99%, a recall of 98%, a
precision of 100%, and an F1 score of 99%. While these results
represented a substantial advancement, it is crucial to validate
the robustness and generalizability of the framework through
extensive testing on diverse and larger datasets. Future research
directions include enhancing the interpretability of the model to
gain insights into its decision-making processes and integrating
it with established clinical protocols. This will facilitate a better
understanding of the complexities associated with PCOS and
cervical cancer diagnosis and treatment. The proposed framework
demonstrated considerable promise in improving classification
accuracy for PCOS and cervical cancer. This potential has the
capacity to significantly impact healthcare practices by providing
clinicians with a reliable tool for informed decision making,
ultimately leading to improved patient outcomes. Continued
scholarly investigation in this area is essential for the development

of innovative computer-aided diagnostic systems tailored to address
the complexities of these medical conditions, effectively.
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