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Introduction: Nephroblastoma or Wilms’ tumor is the most prevalent type
of renal tumor in pediatric oncology. Although the overall survival rate for
this condition is excellent today (∼90%), there have been no significant
improvements over the past two decades. In silicomodels aim to simulate tumor
progression and treatment responses over time; they hold immense potential for
enhancing the predictive accuracy and optimizing treatment protocols as they
are inspired by the digital twin paradigm.

Methods: The present study uses T2-weighted magnetic resonance images,
chemotherapy treatment plans, and post-surgical histological profiles from
three patients enrolled in the SIOP 2001/GPOH clinical trial, where each patient
represents a distinct clinically assessed risk group. We investigated the clinical
adaptation of the Nephroblastoma Oncosimulator to the datasets from these
patients with the goal of deriving appropriate value distributions of the model
input parameters that enable accurate prediction of tumor volume reduction in
response to preoperative chemotherapy.

Results:Our primary focuswas on the total cell kill ratio as a parameter reflecting
treatment effectiveness. We derived the distribution of this parameter for one
patient from each risk group: low (Mdn = 0.875, IQR [0.750, 0.875], n = 178),
intermediate (Mdn = 0.875, IQR [0.750, 0.875], n = 175), and high (Mdn = 0.485,
IQR [0.438, 0.532], n = 103). Statistically significant differences were observed
between the high-risk group and both the low- and intermediate-risk groups (p
< 0.001).

Discussion: The present work establishes a foundation for further studies using
available retrospective datasets and additional patients per risk group. These
efforts are expected to help validate the findings, advance model development,
and extend this mechanistic multiscale discretized cancer model. However,
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clinical validation is ultimately required to assess the potential uses of the model
in clinical decision-support systems.

KEYWORDS

multiscale cancer modeling, in silico medicine, clinical adaptation, decision-support
system, Nephroblastoma Oncosimulator

1 Introduction

Nephroblastoma or Wilms’ tumor (WT) is known to be the
most common type of renal tumor in childhood and adolescence
(Wilms, 1899). Approximately nine out of 10 malignant tumors in
the kidneys are known to be WTs (Nakata et al., 2020). It is a rare
type of pediatric cancer that has an incidence of approximately 1
in 10,000 children under the age of 15 years in Europe and North
America. The median age of onset of WT is approximately 3.5 years;
it occurs slightly more frequently in female patients, with a male-
to-female incidence ratio of 0.9 (Steliarova-Foucher et al., 2017).
Unilateral tumor cases are far more common (∼95%) than bilateral
cases (∼5%) (Graf et al., 2006); in contrast, bilateral tumors are
more often associated with hereditary predisposition syndromes
(Dome et al., 2015; Graf et al., 2022).

WTs have been investigated and treated in prospective,
randomized, and multicentric clinical studies and trials for over
50 years. These efforts are mainly attributable to the Children’s
Oncology Group (COG) in North America and the International
Society of Pediatric Oncology (SIOP) in Europe. While the COG
favors primary surgery before chemotherapy (Geller et al., 2023),
SIOP recommends preoperative chemotherapy based on medical
imaging studies that assess tumor localization and metastatic status
to determine the disease stage (Vujanić et al., 2018). Preoperative
chemotherapy aims to reduce the tumor volume and minimize the
risk of intraoperative tumor rupture. One of the key advantages
of this approach is the ability to assess treatment responses before
surgery; this enables stratifying the risk-adapted postoperative
therapy. Patients who respond well to preoperative chemotherapy
may require less intensive treatment, whereas the treatment can
be intensified early for those who show poor treatment responses.
One of the main drawbacks of preoperative chemotherapy in
this condition is the risk of initially mistreating non-WT cases.
However, the likelihood of incorrectly treating a benign tumor is
below 1% (Graf et al., 2000). After surgical removal, the tumors
undergo histopathological examination for determination of the
histological subtype, which is based on the proportion of vital
(blastema, epithelium, stroma) and non-vital (necrosis, regressive)
tissue components (Vujanić et al., 2018). Both histology and tumor
stage are consideredwhen classifying the risk group, i.e.,malignancy,
according to current treatment protocols. This classification is
crucial for guiding postoperative treatment and prognosis.

The overall survival rate for WT is excellent and exceeds 90%.
However, the survival outcomes may vary by risk group, which
is determined by the histology and disease stage (Spreafico et al.,
2021). The 10% mortality rate among children who still die from
WT primarily includes those with diffuse anaplasia and high local
or overall stage after a first relapse; this trend has not changed
substantially over the last 20 years. Hence, further research is needed
to improve patient survival rates and increase their life expectancy
as well as quality of life. If the quantitative effectiveness of treatment

can be accurately predicted at the time of diagnosis, the most
appropriate treatment with minimal complications can be selected
as early as possible (Graf et al., 2009). Ideally, this prediction would
focus on not only the chemotherapeutic responses but also the
possible late effects of therapy, such as impacts on renal function and
cardiotoxicity (Wright et al., 2009; Irtan et al., 2016;Weil et al., 2023).

In silico oncology is one approach toward this goal, where
the evolution of tumor volume and its responses to preoperative
chemotherapy or radiation are modeled. This approach aims
to estimate treatment effectiveness and potential risks before
treatment administration. The Nephroblastoma Oncosimulator
(Stamatakos et al., 2007) is a computational tool that evolved
from several European research projects, including ACGT
(Graf et al., 2009; Stamatakos et al., 2011; Stamatakos et al.,
2014; Georgiadi et al., 2012; Bucur et al., 2016), p-medicine
(Georgiadi et al., 2012; Stamatakos et al., 2014; Bucur et al.,
2016), ContraCancrum (Georgiadi et al., 2012; Stamatakos et al.,
2014), and CHIC (Bucur et al., 2016; Kolokotroni et al., 2024).
This tool is a top–down, mechanistic, and multiscale discretized
cancer model designed to simulate the dynamic evolution of
tumor volume in response to treatments like chemotherapy at the
cellular and tissue scales. By integrating patient-specific imaging
and treatment data, the model creates a digital twin of the tumor to
predict its evolution over time (Stamatakos et al., 2007, 2011, 2014;
Graf et al., 2009; Georgiadi et al., 2012).

In the present study, we investigated the clinical adaptation
of real patient data using the Nephroblastoma Oncosimulator.
As ground-truth examples, we analyzed three distinct histological
profiles of WTs that each corresponded to a clinically assessed risk
group. The adaptation focused on the tumor volume responses to
preoperative chemotherapy, and the primary goal was to determine
whether distinct and appropriate joint distributions of the input
parameter values could be established for all three risk groups.
We focused on the total cell kill ratio (CKRTotal) parameter that
reflects the effectiveness of preoperative chemotherapy. First, we
explored the value ranges of the parameter using an optimization
algorithm and evaluated the model’s ability to predict actual tumor
volume reduction by quantifying the relative deviation between the
predicted and observed values. Second, we incorporated histological
profiles to identify representative simulation iterations; this allowed
us to assess the impacts on refining suitable parameter distributions
as different tumor components respond differently to chemotherapy.

Previous studies have successfully demonstrated the clinical
adaptation of the model to real patient data as proof of principle
(Stamatakos et al., 2011; Stamatakos et al., 2014; Georgiadi et al.,
2012; Kolokotroni et al., 2024). However, the present work is a
pilot study aimed at evaluating the model’s performance in relation
to different risk groups and their respective histological profiles.
Our evaluations are based on a prior sensitivity analysis and an
error metric that serve as a method for uncertainty quantification
in the simulation results. The feasibility of model adaptability is
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crucial for thorough clinical validation using more comprehensive
datasets encompassing additional examples for all three risk groups;
this is also a key factor for addressing scalability. Ultimately, such
decision-support systems are expected to become valuable tools
for physicians in clinical oncology to predict chemotherapeutic
outcomes before treatment (Pawloski et al., 2019;Nafees et al., 2023).
Such systems also require implementation through appropriate
validated workflows (Bucur et al., 2016) and the necessary
infrastructure (Christodoulou et al., 2016).

2 Materials and methods

2.1 Patient dataset

The patient dataset used in this work was derived from a
retrospective database hosted by the Department of Pediatric
Oncology and Hematology, Saarland University, Germany; this
dataset was a result of the SIOP 2001/GPOH clinical trial
(ClinicalTrials.gov: NCT00047138). Ethical approval for this
study was obtained from the Independent Ethics Committee
“Ärztekammer des Saarlandes” under the following reference
numbers: 136/01 (20 September 2002; 16 September 2010; 31March
2011), 104/10 (20 July 2010), and 248/13 (13 January 2014; 1 July
2015). The trial was conducted as a registry study from 2011 to
2022, followed by the UMBRELLA SIOP-RTSG 2016. The clinical,
histological, and imaging data from one representative patient per
clinically assessed risk group were retrieved from the database
(Table 1): low risk (P1), intermediate risk (P2), and high risk
(P3). These risk groups were determined on the basis of tumor
histology after surgery and disease staging, as outlined in the
SIOP protocol (SIOP 2001/GPOH, 2010).

All the tumors analyzed in this study were unilateral cases
in which the subjects had received preoperative chemotherapy
according to the referenced SIOP protocol. Table 1 shows the drug
administration plan and a summary of further characteristics.
Specifically, P2 and P3 were administered four-week treatment
plans including vincristine (VCR, weekly) and actinomycin (ACT,
biweekly). In contrast, P1 was administered a 6-week treatment plan
including VCR, ACT, and doxorubicin (DOX), which is specific
to metastatic diseases. Magnetic resonance imaging (MRI) scans
were obtained in DICOM format before and after preoperative
chemotherapy, and the tumor volumes were calculated using
the ellipsoid formula, as outlined in the SIOP protocol. All
three patients responded well to the administered preoperative
chemotherapy, as indicated by tumor volume reductions of more
than 50%. However, P3 was notable owing to the unfavorable
tumor histology characterized by predominantly treatment-resistant
vital blastema (Table 1); this results in worse prognosis, as indicated
by the high-risk group classification. To better understand this
relationship, it is essential to consider that proliferative cells are
more susceptible to chemotherapy than differentiated cells as they
divide actively and are more likely to be affected by cytotoxic
agents. Blastema is highly proliferative and contrasts with the
epithelial and stromal components that contain higher fractions
of differentiated cells. This explains why chemotherapy-resistant
blastema persistence after treatment is a critical risk factor for poor
prognosis.

The postoperative histological tumor profiles of the patients
provide insights into the initial cellular compositions of the
tumors at the time of diagnosis. Post-chemotherapy necrosis
and regressive changes likely arise from the initial blastema
that was effectively targeted by chemotherapy. Together with the
remaining vital blastema, this allows estimation of the tumor’s
minimum initial fraction of proliferative cells (IFPC) prior to
the start of chemotherapy. This minimum value reflects the
possibility that other proliferative tumor cells may have also
responded to chemotherapy and are thus not accounted for in this
estimation. The IFPC remains an approximation as the tumor’s
initial histological composition before treatment is unknown and
histopathological assessments are typically performed after surgical
resection. Similarly, the initial presence of necrotic tissues cannot
be determined with certainty in retrospect. These necrotic tissues
may have resulted from insufficient vascularization, oxygen supply,
and nutrient availability rather than therapy. Cysts and hemorrhages
are also excluded from this estimation. Despite these limitations,
this approach provides a reasonable approximation of the tumor’s
estimated IFPC, given by Equation 1.

IFPC =
(Vpost−chemo × fregressivechanges) + (Vpost−chemo × fvital tissue × fvitalblastema) .

Vpre−chemo
(1)

This results in the following minimum fractions for the three
patients: P1 (IFPC) = 8.2%, P2 (IFPC) = 10.2%, and P3 (IFPC) =
32.8%. These lower bounds are defined as the histology criterion.

2.2 Image data preprocessing

The original T2-weighted MRI scans of the patients were
preprocessed as inputs to the Nephroblastoma Oncosimulator.
This preprocessing step is necessary to address the heterogeneous
scanner settings (Table 2) and to convert the scans into the input
format required by the model. Although the SIOP protocol specifies
the imaging dates and modalities, the device-specific settings may
still vary. The MRI scans were converted from DICOM to NRRD
format using 3D Slicer (Version 4.10.2) (Fedorov et al., 2012).
The tumor regions for each patient were segmented manually
and annotated on the image slices using MITK Workbench
(Version 2018.04) (Wolf et al., 2005). These annotations were then
validated and verified by a pediatric oncology expert. Based on the
annotations, 3D Slicer was used to assign binary labels (0 = non-
tumor tissue, 1 = tumor tissue) to each of the voxels of the tumor’s 3D
discretization. As a result, the WT in each patient was represented
as a 3D matrix of discrete geometrical cells, where each geometrical
cell consists of multiple biological cells grouped into equivalence
classes in the model. Cells within the same equivalence class are
assumed to undergo identical cytokinetic transitions within the cell
cycle (Stamatakos et al., 2014). The original voxel spacing (Table 2)
was standardized to 1 mm along all image axes using the integrated
resampling method with nearest neighbor interpolation available in
the software. The final 3D tumor representations were saved in the
common MetaIO standard (FAIRsharing, 2015).
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TABLE 1 Wilms’ tumor (WT) characteristics of the patients as retrieved from the database along with the magnetic resonance imaging (MRI) scans and
surgery dates (expressed as dd/mm/yy). The risk groups and histological subtypes were assessed after surgery according to the protocol (SIOP
2001/GPOH, 2010). ACT = actinomycin, VCR = vincristine, DOX = doxorubicin.

Patient ID P1 P2 P3

MRI date (pre-chemo) 07/09/11 22/08/16 04/02/13

Tumor volume (pre-chemo) [cm3 =
mL]

143.99 536.73 306.99

Start of chemotherapy 13/09/11 01/09/16 06/02/13

Treatment plan 13/09/11 (ACT, VCR, DOX)
20/09/11 (VCR)
29/09/11 (ACT, VCR)
06/10/11 (VCR)
13/10/11 (ACT, VCR, DOX)
20/10/11 (VCR)

01/09/16 (ACT, VCR)
08/09/16 (VCR)
15/09/16 (ACT, VCR)
22/09/16 (VCR)

06/02/13 (ACT, VCR)
13/02/13 (VCR)
22/02/13 (ACT, VCR)
01/03/13 (VCR)

MRI date (post-chemo) 26/10/11 23/09/16 08/03/13

Tumor volume (post-chemo) [cm3 =
mL]

10.62 89.49 126.29

Tumor volume reduction percentage
(post-chemo) [%]

92.6 83.3 58.9

Surgery date 02/11/11 27/09/16 19/03/13

Necrosis/regressive changes
(macroscopic) [%]

98 70 5

Vital blastema [%] 0 20 70

Vital epithelium [%] 100 0 5

Vital stroma [%] 0 80 25

Histological subtype Regressive Regressive Blastemal

Risk group Low risk Intermediate risk High risk

TABLE 2 Original voxel spacing in MRI scans before resampling for standardization during preprocessing. MRI = magnetic resonance imaging.

Patient ID P1 P2 P3

Risk group Low risk Intermediate risk High risk

Spacing of voxels along
the image axes

Pre-chemo Post-chemo Pre-chemo Post-chemo Pre-chemo Post-chemo

x-axis [mm] 0.9375 0.9375 1.125 1.031 0.7813 0.6875

y-axis [mm] 0.9375 0.9375 1.125 1.031 0.7813 0.6875

z-axis [mm] 5.5 5.5 6.5 6.5 3.2999 4.4

2.3 Nephroblastoma Oncosimulator

Simulations conducted using the Nephroblastoma
Oncosimulator provide in silico predictions of tumor evolution,
including both growth and regression as well as treatment responses
over time, where the model is based on a 3D representation

of a patient’s tumor. The input parameters regulate the cell
population kinetics at both cellular and tissue scales. The model
incorporates the cell cycle and accounts for varying proportions
of stem cells, progenitor cells, differentiated cells, and dead cells
(apoptotic and necrotic). The complex interactions among the
proliferative, apoptotic, and necrotic processes are simulated in a
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FIGURE 1
Flowchart of the Oncosimulator procedures for a macroscopically homogeneous nephroblastoma of arbitrary shape. The diagram outlines key steps
from tumor initialization to treatment response simulation, including the morphological and mechanical adaptations.

parameterized manner; by considering these factors, the model
captures the dynamics of tumor volume development, including
treatment-induced shrinkage.

Figure 1 presents a flowchart illustrating the model’s simulation
algorithm. The key steps of the process are outlined below. A
comprehensive description of the generic simulation algorithm was
published previously by Stamatakos et al. (2025), but its distinction
from the current study is that the radiotherapy treatment described
therein is replaced by the chemotherapy regimen.

• Tumor definition (STEP 0): The mesh initialization phase
involves defining the occupied and non-occupied geometrical
cells based on available patient-specific imaging data.

• Free growth condition check (STEP 1): A condition is applied
to assess whether the given combination of input parameters
leads to tumor growth or spontaneous regression. Tumors that
fail to exhibit sustained growth are then excluded from the
model.

• Adaptation of tumor cell category fractions (STEP 2):The initial
distribution of tumor cell categories is adjusted to align with the
kinetics of untreated tumor growths.

• Initialization of tumor-occupied mesh cells (STEP 3): The
geometrical cells occupied by the tumor tissues are initialized
by incorporating the population per cell category and
phase duration.

• Tumor response simulation (STEP 4): This simulation accounts
for the tumor’s response to treatment based on the cytokinetic
diagram. This step involves the first complete scan of the mesh.

• Morphological and mechanical adaptations (STEP 5): The
morphological and mechanical rules governing tumor growth,
shrinkage, and structural changes are applied during a
second mesh scan.

This structured framework underpins the in silico modeling of
tumor evolution by allowing dynamic adjustments based on patient-
specific clinical data.

2.3.1 Model parameters
The Nephroblastoma Oncosimulator produces a spatial voxel-

based representation of the tumor and its microenvironment
based on MRI scans before and after chemotherapy as well as

a set of input parameters defining the treatment characteristics
and cell cycle dynamics. These elements collectively influence
tumor growth, therapy response, and the overall simulation
outcome. The treatment-specific input parameters are derived
from patient-specific clinical data, e.g., timing of chemotherapy
drug administration and total treatment duration. These time
points are aligned with the MRI scan dates before and after
chemotherapy (Georgiadi et al., 2012) (Table 3). Another key set
of parameters is used to map the cell cycle dynamics (Table 4)
(Stamatakos et al., 2011; Georgiadi et al., 2012). For example, Psym
and Psleep regulate tumor cell division and quiescence to influence
tumor aggressiveness by affecting the proportions of differentiated,
proliferative, and dormant cells. Here, Td represents the tumor
doubling time.

The chemotherapeutic response parameters quantify the
effectiveness of treatment, where CKRVCR and CKRACT represent
the drug-specific effects of VCR and ACT, respectively. CKRTotal
indicates the overall impact of a four-week chemotherapeutic
treatment plan with ACT and VCR, according to the SIOP
protocol; it indicates the fraction of tumor cells eradicated by
treatment and is defined as the sum of its drug-specific components
(Table 4; Equation 2).

CKRTotal = CKRACT +CKRVCR

CKRACT = (3/5) ∗CKRTotal

CKRVCR = (2/5) ∗CKRTotal

(2)

A higher CKRTotal value leads to increased apoptosis, reducing
the proliferative and dormant cell populations while increasing the
fraction of differentiated and dead cells. The output parameters of
the model (Table 5) include the predicted tumor volume reduction
percentage as well as the initial and final tumor compositions
categorized into five different cell populations.

Sensitivity analyses have been previously used to examine
the impacts of the input parameters on the simulation outcomes
(Stamatakos et al., 2011; Stamatakos et al., 2014; Georgiadi et al.,
2012). These analyses showed that CKRTotal has the strongest
influence on tumor volume response to chemotherapy. More details
on the sensitivity analyses as well as performance-related aspects,
such as application profiling, and code optimization for high-
performance simulations (Panagiotidou et al., 2022) are beyond
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TABLE 3 Input parameters to simulations with the Nephroblastoma Oncosimulator and their values derived from clinical data. As these are
patient-specific parameter values, they remain unchanged for all VPs during optimization for clinical adaptation. MRI = magnetic resonance imaging,
VP = virtual patient, VCR = vincristine, ACT = actinomycin.

Input parameter Description P1 P2 P3

VCR-ADMIN-A Time point of first VCR administration (days after MRI pre-chemo) 4 4 4

VCR-ADMIN-B Time point of second VCR administration (days after MRI pre-chemo) 12 11 11

VCR-ADMIN-C Time point of third VCR administration (days after MRI pre-chemo) 19 18 20

VCR-ADMIN-D Time point of fourth VCR administration (days after MRI pre-chemo) 26 25 27

ACT-ADMIN-A Time point of first ACT administration (days after MRI pre-chemo) 4 4 4

ACT-ADMIN-B Time point of second ACT administration (days after MRI pre-chemo) 19 18 20

DT-post-treat Duration in days between last drug administration (ACT-ADMIN-B) and time point of simulation completion (MRI
post-chemo)

6 1 7

the scope of this study as the present focus is on clinical,
adaptation.

2.3.2 Clinical adaptation
Thegoal of clinical adaptation is to determine a joint distribution

of the input parameter values that maximizes the accuracy of the
predicted tumor volume reduction, i.e., the real percentage of tumor
volume reduction observed clinically for a patient. This process
involves performing a predefined number (N) of simulations,
which are referred to as virtual patients (VPs), for each patient
in each risk group. As a proof of principle, we explored two
different sample sizes of VPs per patient, i.e., N = 20 and N =
200. To evaluate the accuracies of the simulations, we used the
relative deviation between the predicted and observed (ground-
truth) tumor volume reductions. This deviation is referred to as the
clinical adaptation error. A maximum deviation of 5% was set as the
threshold for the adaptation criterion based on the recommendation
of a pediatric oncology expert. This threshold balances tumor
volume deviations with biological variability and imaging
uncertainties.

For each VP, an optimization algorithm is used to determine a
value for a selected adaptation parameter that satisfies the adaptation
criterion while retaining fixed values for all other parameters. The
algorithm follows a binary search approach, where the adaptation
parameter is initially set to the median value between predefined
lower and upper bounds before conducting the simulation. The
algorithm terminates when the predicted tumor volume reduction
meets the adaptation criterion. If the predicted tumor volume
reduction exceeds the ground-truth value, the current adaptation
parameter value is set as the new upper bound; conversely, if
the predicted tumor volume reduction is less than the ground-
truth value, the current value becomes the new lower bound. The
algorithm iterates until the adaptation criterion is met or the bounds
converge. In the latter case, no suitable value is found for the
adaptation parameter.

In each iteration, the algorithm assigns an updated median
value to the adaptation parameter that is quantified by the clinical
adaptation error of the simulation.Thedistribution of the adaptation
parameter values for each VP is then determined by analyzing

the frequency of values assigned to the input parameters. The
final iteration of the algorithm for each VP typically provides an
optimized value for the adaptation parameter corresponding to a
simulation outcome satisfying the adaptation criterion. If no suitable
value is found, it is considered that the input parameter values
did not allow the adaptation criterion to be met. The results from
all iterations of the optimization algorithm are evaluated for all
VPs of each patient. The distribution of the adaptation parameter
values is determined by analyzing the frequency of assigning
values in all iterations. Each simulation execution is performed
with a specific adaptation parameter value that is characterized
by its corresponding clinical adaptation error. Both the adaptation
criterion and histology criterion (see Section 2.1) can be applied
to further refine the permissible distribution of the adaptation
parameter values by excluding simulations that do not satisfy
these criteria.

In the present study, CKRTotal was chosen as the adaptation
parameter given its substantial influence on the model outcome.
During the first iteration of the optimization, the lower bound was
set to 0 while the upper bound was set to 1. The treatment-specific
input parameter values were retrieved from the clinical data for
each patient in each of the risk groups (Table 1) and were fixed
for all VPs of a given patient (Table 3). P1 was simulated in the
same manner as P2 and P3 following a 4-week treatment regimen
starting on 29 September 2011 by excluding the administration
of DOX.

Input parameters representing the cell cycle dynamics (Table 4)
were assigned individually for each VP. These values remained
fixed over all iterations of the optimization algorithm for each
VP. Since no experimental data were available for the clinical
patient cohort for these parameters, we used reference values
from literature (Stamatakos et al., 2011; Georgiadi et al., 2012).
These reference values served as the central values for uniform
probability distributions, from which the parameter values were
drawn. A maximum deviation of 50% from the reference value
was allowed to ensure sufficient exploration of the parameter
space; this method enabled systematic variations of parameter
values across multiple VPs, increasing the robustness of the
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TABLE 4 Reference values for the input parameters of the simulation with the Nephroblastoma Oncosimulator, which serve as foundation for clinical
adaptation for all three patients. d = days, h = hours, STEM = stem cells, LIMP = cell with limited mitotic potential, CKR = cell kill ratio.

Input parameter Description References value Unit References

Td Doubling time of the tumor (size
and cell population)

29 d Stamatakos et al. (2011)

Tc Cell cycle duration 23 h Revazova and Petrova (1981)

TG0 Time required for dormant cells
to die through necrosis

96 h Måseide and Rofstad (2000)

TN Time required for complete
necrosis and removal of the
products from the tumor

20 h Düchting et al. (1992); Wein et al.
(2000); Anderson et al. (2006)

TA Time required for complete
apoptosis and removal of the
products from the tumor

6 h Dewey et al. (1995); Ribba et al.
(2006)

RA Percentage of undifferentiated
cells that die by apoptosis per
hour (STEM and LIMP)

0.001 1/h Dewey et al. (1995); Ribba et al.
(2006)

RADiff Percentage of differentiated cells
that die by apoptosis per hour

0.003 1/h Dewey et al. (1995); Ribba et al.
(2006)

RNDiff Percentage of differentiated cells
that die by necrosis per hour

0.001 1/h Düchting et al. (1992); Wein et al.
(2000); Anderson et al. (2006)

PG0toG1 Percentage of undifferentiated
cells leaving the resting G0 phase
to re-enter the cell cycle (STEM
and LIMP)

0.01 1/h

NLIMP Maximum number of mitoses
that a LIMP cell can undergo
before terminal differentiation

3 -

Psym Percentage of stem cells that
divided symmetrically

0.45 1/h

Psleep Percentage of cells entering the
resting G0 phase after mitosis
(STEM and LIMP)

0.28 1/h

CKRVCR Fraction of tumor cells affected by
the administered vincristine drug
dose

0.3 Dahl et al. (1976); Groninger et al.
(2002)

CKRACT Fraction of tumor cells affected by
the administered actinomycin
drug dose

0.2 Sawada et al. (2005); Veal et al.
(2005)

CKRTotal Overall fraction of tumor cells
affected by the administered
chemotherapy

0.5

simulation to account for biological diversity (Stamatakos et al.,
2011; Stamatakos et al., 2014; Georgiadi et al., 2012;
Panagiotidou et al., 2022).

The model simulations were implemented in C++ (version
C++14). All simulations were conducted on a Linux server with
two Intel®Xeon®CPU E5-2658 A v3 @2.20 GHz processors. Each
processor contained twelve physical cores running two threads each,

resulting in a total of 48CPUs.This setup enabled parallel executions
and minimized the runtime of the computationally intensive
tasks.

2.3.3 Statistical analysis
Statistical analysis was conducted using IBM SPSS Statistics

(Version 28.0.1.1). Two-sided p-values <0.05 were considered to
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TABLE 5 Output parameters of the simulation with the Nephroblastoma
Oncosimulator, including the computed initial percentages of different
cell types at the start of simulation and final percentages at the end of
simulation.

Output parameter Description

PROLIFInitial Initial percentage of proliferative cells

DORMANTInitial Initial percentage of dormant cells

DIFFInitial Initial percentage of differentiated cells

DEADInitial Initial percentage of dead cells

PROLIFFinal Final percentage of proliferative cells

DORMANTFinal Final percentage of dormant cells

DIFFFinal Final percentage of differentiated cells

DEADFinal Final percentage of dead cells

DV Final percentage of tumor reduction

be statistically significant. Since the assumption of normality was
not met, non-parametric tests were applied. The Mann–Whitney U
test was used to compare distributions between two samples. The
Kruskal–Wallis H test, a non-parametric alternative to ANOVA,
was applied to comparisons involving more than two samples.
The post hoc analyses included pairwise comparisons using Dunn’s
method with Bonferroni correction of p-values for multiple tests.
To quantify the effect size for the pairwise comparisons, Pearson’s
r value was calculated using the standard test statistics z and sample
size (Fritz et al., 2012). The effect sizes of |r| = 0.1, 0.3, and 0.5
were interpreted as small, medium, and large effects, respectively
(Cohen, 2013).

3 Results

3.1 Image data preprocessing

Table 6 shows the tumor volumes from the SIOP 2001/GPOH
database and the manually segmented 3D tumor representations.
These results are from the preprocessed MRI scans before and after
preoperative chemotherapy for the three patients. The database
volumes are approximations based on the ellipsoid formula.
In contrast, the segmentation volumes are directly computed
from the 3D representations of the manually segmented and
preprocessed MRI scans of tumors. The data reveal some variability
between the two methods, particularly in the prechemotherapeutic
tumor volumes. For example, the database reports a volume
of 143.99 cm3 for P1, whereas manual segmentation yields a
volume of 126.25 cm3; the post-chemotherapy volumes differ
to a lesser degree as both methods provide more similar
estimates.

3.2 Clinical adaptation with the
Nephroblastoma Oncosimulator

The results from the optimization algorithm are visualized for
each patient using pair plots consisting of scatter plots (Figures 2–7).
These plots include the input parameters Psym, Psleep, CKRVCR,
CKRACT, and Td. Here, Psym, Psleep, and Td were also included in the
plots to assess the degree to which the uniform distributions of these
parameters were covered. The rows and columns correspond to the
input parameters, and the scatter plots display the joint distributions
of the corresponding parameter values. The color of the data points
in the scatter plots indicates the resulting clinical adaptation error
for the combination of values, ranging from blue (low error) to red
(high error).

The diagonal plots depict the probability distributions of each
of the input parameters during the iterations of the optimization
algorithm. In these plots, the red curves represent values assigned
over all iterations of the optimization algorithm for all VPs of a
patient. In contrast, the blue curves display only values from the
final iterations of all VPs. The number of data points in each scatter
plot corresponds to the total number of optimization iterations
across all VPs. The red and blue horizontal lines indicate the mean
values of the distributions for each of the input parameters. The first
three figures refer to N = 20 VPs for P1, P2, and P3 (Figures 2–4,
respectively), while the last three figures refer to N = 200 VPs
for P1, P2, and P3 (Figures 5–7, respectively). The color-coded
clinical adaptation errors in the scatter plots reveal that not all
joint distributions of the parameter values satisfy the adaptation
criterion. As the number of VPs increases, the value ranges of
the uniform distributions for the parameters Psym, Psleep, and Td
are represented more extensively. The scatter plots for CKRVCR
and CKRACT demonstrate their dependency, as evidenced by the
distribution of the data points.

Table 7 presents the distribution of explored value ranges for the
parameters CKRTotal, CKRACT, and CKRVCR derived from the final
iterations of the optimization algorithm, as shown in the respective
diagonal plots in Figures 2–7. The distributions are categorized
according to the numbers of VPs explored per patient (N = 20,
N = 200). The ranges of the respective clinical adaptation errors
confirmed that not all simulations in the final iteration of the
optimization algorithm with N = 200 satisfied the adaptation
criterion except for P3. Specifically, 11 out of 200 VPs (5.5%) for
P1 did not meet the adaptation criterion, while 12 out of 200
VPs (6%) for P2 did not meet the criterion and had a maximum
clinical adaptation error of approximately 19.5%. In contrast, the
adaptation criterion was met for all three patients whenN = 20. The
median values of CKRTotal and clinical adaptation error decreased
with increasing risk groups. This pattern was not observed for
N = 200, where the low- and intermediate-risk groups exhibited
similar median values. The Kruskal–Wallis H test indicated that
the distributions of CKRTotal values differed significantly among the
three patients for N = 20 (χ2 (2, N = 60) = 42.14, p < 0.001). Post
hoc comparisons also indicated significant differences with a large
effect size between P1 and P3 (z = 5.62, p < 0.001, |r| = 0.89) as well
as between P2 and P3 (z = −5.62, p < 0.001, |r| = 0.89), while no
significant difference was observed between P1 and P2. ForN = 200,
the distributions ofCKRTotal values also differed significantly among
the three patients (χ2 (2, N = 600) = 418.3, p < 0.001). Post-hoc
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TABLE 6 Overview of the tumor volume data retrieved from the retrospective database (calculated using the ellipsoid formula) and the volumes of
manually segmented tumors from the preprocessed MRI scans. MRI = magnetic resonance imaging.

Patient ID P1 P2 P3

Risk group Low risk Intermediate risk High risk

Database Segmentation Database Segmentation Database Segmentation

Tumor volume (pre-chemo) [cm3 = mL] 143.99 126.25 536.73 526.99 306.99 235.64

Tumor volume (post-chemo) [cm3 = mL] 10.62 10.58 89.49 70.72 126.29 108.22

Tumor volume reduction percentage
(post-chemo) [%]

92.6 91.6 83.3 86.6 58.9 54.1

comparisons confirmed significant differences with a large effect size
between P1 and P3 (z = 17.60, p < 0.001, |r| = 0.88) as well as between
P2 and P3 (z = −17.82, p < 0.001, |r| = 0.89), while no significant
difference was observed between P1 and P2. The Mann–Whitney U
test revealed that the distributions of CKRTotal values did not differ
significantly between N = 20 and N = 200 for all three patients.

Table 8a presents the distribution of the explored values ranges
for CKRTotal based on the subset of final iterations for which the
adaptation criterion was met. This resulted in reduced numbers (n)
of the 200 eligible VPs per patient used to define the distribution
of CKRTotal values. Since the number of eligible VPs remained
unchanged for N = 20, the statistical analysis was not repeated
for this case as the previous tests remained valid. Regarding the
eligible VPs from N = 200, the high-risk group exhibited the lowest
median CKRTotal value, while the low- and intermediate-risk groups
displayed similar median values. The distributions of the CKRTotal
values differed significantly among the three patients (χ2 (2, N =
577) = 412.3, p < 0.001). Post hoc comparisons confirmed significant
differences with a large effect size between P1 and P3 (z = 17.42, p <
0.001, |r| = 0.88) as well as between P2 and P3 (z = −17.57, p < 0.001,
|r| = 0.89), but no significant difference was observed between P1
and P2. The Mann–Whitney U test revealed that the distributions
of the CKRTotal values did not differ significantly between the two
subsets of eligible VPs derived from N = 20 and N = 200 for all
three patients. However, the distributions of the clinical adaptation
error rates differed significantly between the three patients for the
eligible VPs from N = 200 (χ2 (2, N = 577) = 8.6, p = 0.014). Post
hoc comparisons revealed significant differences with a small effect
size between P1 and P2 (z = −2.52, p = 0.036, |r| = 0.13) as well as
between P2 and P3 (z = −2.56, p = 0.031, |r| = 0.15), whereas no
significant difference was observed between P1 and P3. The median
clinical adaptation error was highest at 2.7% for P2 .

Table 8b considers only the VPs for which both the adaptation
criterion and histology criterion (see Section 2.1) were met. The
number of eligibleVPs (n) per patient decreased further, particularly
for P3, where 13 out of 20 VPs (65%) and 97 out of 200 VPs (48.5%)
failed to meet both criteria. The high-risk group also exhibited the
lowest median CKRTotal value, while the low- and intermediate-risk
group displayed similarmedian values. For the eligibleVPs fromN =
20, the distributionsCKRTotal values differed significantly among the
three patients (χ2 (2,N =44) = 19.8, p< 0.001). Post hoc comparisons
confirmed significant differences with a large effect size between P1

and P3 (z = 4.19, p < 0.001, |r| = 0.82) as well as between P2 and P3
(z = −4.08, p < 0.001, |r| = 0.82), whereas no significant difference
was observed between P1 and P2. For the eligible VPs from N =
200, the distributions of CKRTotal values also differed significantly
(χ2 (2,N = 456) = 260.5, p < 0.001). Post hoc comparisons confirmed
significant differences with a large effect size between P1 and P3 (z =
14.56, |r| = 0.87, p < 0.001) as well as between P2 and P3 (z = −14.59,
p < 0.001, |r| = 0.88), but no significant difference was observed
between P1 and P2. The Mann–Whitney U test revealed that the
distributions of CKRTotal values differed significantly between the
two subsets of eligible VPs derived fromN = 20 andN = 200 for P3.
The mean rank of CKRTotal was higher for the eligible VPs from N
= 20 (78.9) than those from N = 200 (53.9) (z = −2.03, p = 0.043,
|r| = 0.19), indicating a small effect size. The distributions of the
clinical adaptation error rates differed significantly among the three
patients for the eligible VPs fromN = 200 (χ2 (2,N = 456) = 6.2, p =
0.044). Post hoc comparisons revealed a significant difference with a
small effect size between P1 and P2 (z = −2.45, p = 0.043, |r| = 0.13),
while no significant differences were observed between P1 and P3 or
between P2 andP3.Themedian clinical adaptation errorwas highest
at 2.7% for P2.

4 Discussion

In this study, we investigated the clinical adaptation of the
Nephroblastoma Oncosimulator to clinical MRI scans, treatment
data, and histological profiles from three patients across different
clinically assessed risk groups. The main focus of this work
was modeling the tumor volume responses to preoperative
chemotherapy over time. We evaluated the model’s ability to
predict actual tumor volume reductions by quantifying the
relative deviations between predicted and observed values (clinical
adaptation error) by setting a deviation of 5% as the tolerable
adaptation criterion.

The primary goal of the simulations was to determine whether
distinct and appropriate joint distributions of the input parameter
values could be established for all three risk groups. In particular,
we focused on the parameter CKRTotal that represents the fraction
of tumor cells eradicated by chemotherapy and serves as an
indicator of treatment effectiveness. We explored the value ranges
of CKRTotal across multiple VPs for each real patient using an
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FIGURE 2
Pair plot showing the joint distribution of values assigned to the input parameters of the simulation during iteration of the clinical adaptation
optimization algorithm for patient P1 (N = 20 VPs). The dots in the scatter plot are color-coded to represent the resulting clinical adaptation errors for
the assigned values. Here, optimal adaptation refers to the final iteration of the optimization algorithm. VP = virtual patient.
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FIGURE 3
Pair plot showing the joint distribution of values assigned to the input parameters of the simulation during iteration of the clinical adaptation
optimization algorithm for patient P2 (N = 20 VPs). The dots in the scatter plot are color-coded to represent the resulting clinical adaptation errors for
the assigned values. Here, optimal adaptation refers to the final iteration of the optimization algorithm. VP = virtual patient.
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FIGURE 4
Pair plot showing the joint distribution of values assigned to the input parameters of the simulation during iteration of the clinical adaptation
optimization algorithm for patient P3 (N = 20 VPs). The dots in the scatter plot are color-coded to represent the resulting clinical adaptation errors for
the assigned values. Here, optimal adaptation refers to the final iteration of the optimization algorithm. VP = virtual patient.
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FIGURE 5
Pair plot showing the joint distribution of values assigned to the input parameters of the simulation during iteration of the clinical adaptation
optimization algorithm for patient P1 (N = 200 VPs). The dots in the scatter plot are color-coded to represent the resulting clinical adaptation errors for
the assigned values. Here, optimal adaptation refers to the final iteration of the optimization algorithm. VP = virtual patient.
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FIGURE 6
Pair plot showing the joint distribution of values assigned to the input parameters of the simulation during iteration of the clinical adaptation
optimization algorithm for patient P2 (N = 200 VPs). The dots in the scatter plot are color-coded to represent the resulting clinical adaptation errors for
the assigned values. Here, optimal adaptation refers to the final iteration of the optimization algorithm. VP = virtual patient.
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FIGURE 7
Pair plot showing the joint distribution of values assigned to the input parameters of the simulation during iteration of the clinical adaptation
optimization algorithm for patient P3 (N = 200 VPs). The dots in the scatter plot are color-coded to represent the resulting clinical adaptation errors for
the assigned values. Here, optimal adaptation refers to the final iteration of the optimization algorithm. VP = virtual patient.
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TABLE 7 Distributions of the adapted CKR parameters and corresponding clinical adaptation errors for the three patients obtained from the final
iteration of the optimization algorithm for the VPs. CKR = cell kill ratio, VP = virtual patient,Mdn = median, IQR = interquartile range,Min = minimum,
Max = maximum.

Patient ID P1 P2 P3

Risk group Low risk Intermediate risk High risk

N = 20

CKRACT Mdn = 0.488
IQR = [0.450, 0.525]
Min = 0.450
Max = 0.525

Mdn = 0.450
IQR = [0.450, 0.525]
Min = 0.450
Max = 0.562

Mdn = 0.310
IQR = [0.286, 0.364]
Min = 0.263
Max = 0.412

CKRVCR Mdn = 0.325
IQR = [0.300, 0.350]
Min = 0.300
Max = 0.350

Mdn = 0.300
IQR = [0.300, 0.350]
Min = 0.300
Max = 0.375

Mdn = 0.207
IQR = [0.191, 0.243]
Min = 0.175
Max = 0.275

CKRTotal Mdn = 0.813
IQR = [0.750, 0.875]
Min = 0.750
Max = 0.875

Mdn = 0.750
IQR = [0.750, 0.875]
Min = 0.750
Max = 0.937

Mdn = 0.516
IQR = [0.477, 0.606]
Min = 0.438
Max = 0.687

Clinical adaptation error [%] Mdn = 2.5
IQR = [1.4, 3.5]
Min = 0.2
Max = 4.9

Mdn = 2.3
IQR = [1.0, 3.2]
Min = 0.1
Max = 4.3

Mdn = 2.2
IQR = [0.95, 3.8]
Min = 0.2
Max = 5.0

N = 200

CKRACT Mdn = 0.525
IQR = [0.450, 0.525]
Min = 0.450
Max = 0.600

Mdn = 0.525
IQR = [0.450, 0.525]
Min = 0.450
Max = 0.600

Mdn = 0.300
IQR = [0.281, 0.337]
Min = 0.225
Max = 0.431

CKRVCR Mdn = 0.350
IQR = [0.300, 0.350]
Min = 0.300
Max = 0.400

Mdn = 0.350
IQR = [0.300, 0.350]
Min = 0.300
Max = 0.400

Mdn = 0.200
IQR = [0.188, 0.225]
Min = 0.150
Max = 0.288

CKRTotal Mdn = 0.875
IQR = [0.750, 0.875]
Min = 0.750
Max = 1.000

Mdn = 0.875
IQR = [0.750, 0.875]
Min = 0.750
Max = 1.000

Mdn = 0.500
IQR = [0.469, 0.562]
Min = 0.375
Max = 0.719

Clinical adaptation error [%] Mdn = 2.1
IQR = [1.0, 3.6]
Min = 0.03
Max = 15.4

Mdn = 2.8
IQR = [1.3, 4.1]
Min = 0.01
Max = 19.5

Mdn = 2.1
IQR = [0.8, 3.4]
Min = 0.00
Max = 5.0

optimization algorithm and assessed the corresponding clinical
adaptation errors. Additionally, we incorporated histological profiles
under consideration of a histology criterion (see Section 2.1) to
identify representative simulations runs. We assessed the impact of
this consideration on refining suitable parameter distributions and
examined the effects of increasing the number ofVPs per real patient
on the robustness of parameter estimation.

Our results indicate thatCKRTotal varied across the different risk
groups and that accurate predictions of tumor volume reductions
could be achieved within the defined adaptation criterion. A higher
CKRTotal was associated with greater reduction of the tumor volume,
reinforcing its relevance as a key therapeutic descriptor. Patients
P1 (low risk) and P2 (intermediate risk) exhibited similar CKRTotal

distributions, whereas P3 (high risk) demonstrated lower CKRTotal
values with reduced variability. This finding aligns with the clinical
observations, suggesting that treatment effectiveness generally
decreases with increasing patient risk. However, distinguishing
between the low and intermediate risk groups remained challenging
even when the histology criterion was considered in addition
to the adaptation criterion. Although the CKRTotal distributions
differed significantly between the high-risk and other groups, no
clear separation was observed between the low- and intermediate-
risk patients. The only significant difference between these two
groups was observed in the distributions of the clinical adaptation
error, albeit with a small effect size. Given that the allowed clinical
adaptation error is restricted to 5%, this approach does not appear to
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TABLE 8 Distributions of the adapted CKR parameters and corresponding clinical adaptation errors obtained from the final iteration of the optimization
algorithm for the VPs satisfying (a) the adaptation criterion and (b) both adaptation and histology criteria. CKR = cell kill ratio, VP = virtual patient,Mdn
= median, IQR = interquartile range,Min = minimum,Max = maximum, n = number of VPs satisfying the criteria.

Patient ID P1 P2 P3

Risk group Low risk Intermediate risk High risk

N = 20 N = 200 N = 20 N = 200 N = 20 N = 200

CKRTotal (a)

Mdn
IQR
Min
Max

n

0.813
[0.750, 0.875]
0.750
0.875
20

0.875
[0.750, 0.875]
0.750
0.992
189

0.750
[0.750, 0.875]
0.750
0.937
20

0.875
[0.750, 0.875]
0.750
0.998
188

0.516
[0.477, 0.606]
0.438
0.687
20

0.500
[0.469, 0.562]
0.375
0.719
200

Clinical adaptation error [%] (a)

Mdn
IQR
Min
Max

n

2.5
[1.4, 3.5]
0.2
4.9
20

2.0
[1.0, 3.3]
0.03
5.0
189

2.3
[1.0, 3.2]
0.1
4.3
20

2.7
[1.3, 3.9]
0.01
5.0
188

2.2
[0.9, 3.8]
0.2
5.0
20

2.1
[0.8, 3.4]
0.00
5.0
200

CKRTotal (b)

Mdn
IQR
Min
Max

n

0.875
[0.750, 0.875]
0.750
0.875
19

0.875
[0.750, 0.875]
0.750
0.992
178

0.750
[0.750, 0.875]
0.750
0.937
18

0.875
[0.750, 0.875]
0.750
0.998
175

0.532
[0.500, 0.625]
0.438
0.625
7

0.485
[0.438, 0.532]
0.375
0.657
103

Clinical adaptation error [%]

Mdn
IQR
Min
Max

n

2.4
[1.2, 3.0]
0.21
4.9
19

2.1
[1.0, 3.2]
0.03
5.0
178

2.1
[0.9, 3.0]
0.1
4.2
18

2.7
[1.2, 4.0]
0.01
5.0
175

2.3
[1.0, 3.4]
0.2
4.0
7

2.2
[0.9, 3.5]
0.00
5.0
103

hold promise for distinguishing between these two groups. Notably,
varying the numbers of VPs (N = 20 vs. N = 200) did not lead to
statistically significant differences in theCKRTotal value distributions
regardless of the applied criteria, except for one test for P3 from the
high-risk group, where a significant difference was found. However,
this difference was also associated with a small effect size, suggesting
that the results are stable across different sample sizes for the
three patients.

Several modeling assumptions should be considered when
interpreting the results of this study. The Nephroblastoma
Oncosimulator employs a discretized multiscale approach to
model tumor volume development as a response to therapy. The
model assumes that tumor volume development follows predefined
biological rules and does not explicitly incorporate interactions
with the immune system. This may limit model generalizability,
especially in cases where immune responses play key roles in
therapeutic effectiveness. Additionally, the treatment responses
were simulated under the assumption of direct cytotoxic effects
of chemotherapy, without accounting for variations in drug
penetration or metabolism at the cellular level. This could lead
to overestimation of the treatment efficacy. CKRTotal was selected as

the primary parameter to quantify treatment effectiveness because
it provides a direct and interpretable measure of tumor volume
reduction; however, it does not capture delayed treatment effects.
The current model does not integrate the 6-week treatment regimen
with additional administration of DOX, which was prescribed
for P1. This regimen should be incorporated in addition to the
already implemented four-week chemotherapy. Chemotherapeutic
resistance mechanisms, such as adaptive resistance and clonal
selection, are also not integrated into the model. Another
limitation is that the model does not explicitly represent the tumor
microenvironment, including factors such as oxygenation, nutrient
supply, and extracellular matrix composition. These factors are
critical for understanding the full complexity of tumor behaviors
and treatment responses. Further refinement to incorporate these
factors could enhance the predictive accuracy and relevance of
the model.

The MRI data used in this work were characterized by
heterogeneous, non-standardized acquisition settings that reflect the
real conditions in clinical practice evenwhen protocols are provided.
The preprocessing procedure involved manual tumor segmentation,
annotation, and resampling, which could introduce bias. However,
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this bias was quantified to be marginal, as shown in Table 6.
The tumor volume calculated using the ellipsoid formula is often
an overestimation of the tumor size as the formula assumes a
simplified tumor geometry that may not accurately reflect its actual
shape. In contrast, manual segmentation accounts for the tumor’s
irregular spatial structure by delineating it slice by slice. Although
this technique is reliable when validated by experts, its inherent
subjectivity and potential for errors should be acknowledged,
along with the more time-consuming nature. This underscores the
importance of standardization and the potential roles of automated
segmentation methods in reducing variability while improving
accuracy in clinical assessments.

Although the dataset explored in this work was limited to one
patient per risk group, it serves as a foundation for future studies.
Additional retrospective clinical and imaging data are already
available for further model validation and verification. Expanding
the dataset and optimizing themodel parameters could help identify
more distinct distributions. Since the model operates under specific
assumptions, uncertainty quantification is essential for assessing
robustness. The adaptation criterion was initially defined on the
basis of expert knowledge, which is a common approach in such
cases. However, the choice of error metric used to define acceptable
deviation in actual tumor reduction is not fixed but rather variable,
allowing flexibility in model calibration. The selection of different
errormetricsmay influence theweighting of specific tumor response
characteristics, potentially affecting model predictions and their
clinical interpretability; these drawbacks also apply to the histology
criterion. The influences of different adaptation criteria on model
predictions should be further investigated to enable a more nuanced
approach to uncertainty quantification and refinement of the clinical
adaptation process.

The numbers of VPs per real patient were limited to N = 20 and
N = 200 in the present study as these choices weremeant as an initial
attempt. Although we did not observe any statistically significant
differences between these two VP numbers for the distributions,
varying the number of VPs remains relevant. Increasing the number
of VPs allows robustness checks of the parameter distributions,
ensuring that the findings are not artifacts of small sample sizes.
If the distributions remain stable across different VP numbers, it
suggests that reliable conclusions can be drawn even with lower
numbers of VPs, thereby optimizing the computational efficiency.
However, larger VP numbers could still provide more robust
parameter estimates to help detect potential model instabilities
or sensitivities that may not be evident in smaller samples. This
is especially important for ensuring the representativeness of
the derived parameter distributions and reduces the risk of the
outcomes being influenced by random fluctuations. Higher VP
numbers are advantageous when handling more heterogeneous
tumor characteristics or complex treatment responses as they allow
more accurate representations; this is because subtle differences or
trends may not be apparent with smaller sample sizes. The impact of
VP number on the model’s performance depends on the underlying
variability of the system being modeled. Understanding the point at
which increasing VP numbers cease to provide additional insights
is crucial for optimizing future simulations. Therefore, systematic
evaluations of different VP numbers can help refine the best
practices for model application as well as enhance confidence in the
stability and generalizability of the results.

We employed a uniform probability distribution for the cell-
cycle-related parameters and allowed deviations of up to 50%
from the reference values. Since these parameters cannot be
directly inferred from patient-specific medical data, a distribution-
based variation is a reasonable approach to account for biological
uncertainties. The choice of a uniform distribution ensures
systematic and broad exploration of the parameter space by
preventing bias toward a specific value range. Although a Gaussian
distributionmight better reflect natural biological variability, precise
mean values and standard deviations of the parameters are not
sufficiently documented in literature. In the absence of well-
established distributions, the uniform distribution was chosen as
a pragmatic alternative to ensure that all parameter values were
equally likely within the defined range. This approach allows
comprehensive representation of biological heterogeneity. Future
studies should assess alternative distribution models that might
better reflect known biological mechanisms. Evaluating the impacts
of different distribution assumptions on model outcomes could
enhance the robustness and biological plausibility of the simulations.

One of the advantages of the top–down model is extensibility
with new data and sources. Incorporating longitudinal patient
data can provide a dynamic view of the tumor responses over
multiple time points (Kumar et al., 2012; Jin et al., 2021). Integrating
detected genetic and molecular markers like specific mutations or
expression profiles (Perotti et al., 2023; Zheng et al., 2023), e.g., for
miRNA (Kolokotroni et al., 2024), could help refine the model’s
predictive power by accounting for underlying biological differences
between tumors (Mahamdallie et al., 2019; Brzezinski et al.,
2021). This also includes indications of chemotherapeutic resistance
(Choochuen et al., 2024). Analyzing the side effects of chemotherapy
and their impacts on treatment is crucial for balancing tumor
reduction against the immediate and late adverse effects (Weil et al.,
2023). The role of the immune system in tumoral response
to chemotherapy could be considered by adding immunological
parameters. There is also evidence that the time between start
of therapy and surgery could impact preoperative chemotherapy
(Meier et al., 2023). Further, exploring radiation treatment and its
effects could add value to the model (Wein et al., 2000). Adapting
the model to more specific renal tumors, e.g., clear cell sarcoma
(Kang et al., 2021), mesoblastic nephroma, and rhabdoid tumor,
could enhance the utility of the model. Another crucial aspect
that must be considered is the tumor microenvironment, including
factors such as hypoxia, vascularization, and stroma interactions,
which can influence chemotherapeutic responses (Junttila and
de Sauvage, 2013). Literature suggests that multiparametric MRI
scans can provide relevant information (Hoffmann et al., 2024).
Hence, integrating additional imaging modalities, such as diffusion-
weighted imaging, could help improve the assessment of tumor
tissue types prior to treatment (Hötker et al., 2021).

Artificial intelligence, machine learning, and related methods,
such as deep-learning or neural networks, can assist with
the aforementioned tasks. Omics data can be considered
as input parameters or histology estimated before surgery
(van der Beek et al., 2022; van der Kamp et al., 2023). These
technologies are linked to advances in semi-automatic and
automatic segmentation of tumor areas (Li et al., 2024). Such
methods could help standardize image data provision, reduce
preprocessing time, and compensate for data heterogeneity.
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Comparative studies on MRI-based, manual, and automatic
segmentation (Buser et al., 2023) reveal interesting results
considering the deviations between these methods. Initial studies
show promising results in predicting treatment outcomes using
machine learning algorithms (Jin et al., 2021; Li et al., 2023).

Scaling the Nephroblastoma Oncosimulator for clinical use
requires further development. Some of the key improvements
include increasing the predictive power and versatility. However,
these enhancements must be accompanied by further sensitivity
analyses to understand the impacts of varying input parameters
on model predictions and to quantify the uncertainties of
these predictions. Comparing the developed model with other
prediction models (Kutikov and Uzzo, 2009; Rickard et al.,
2020) could also provide insights into the model performance,
capabilities, and limitations. Access to clinical data remains
a critical challenge in predictive modeling approaches. To
enhance reproducibility, robustness, and generalizability, studies
incorporating comprehensive datasets are essential. Simultaneously,
a mechanistic multiscale model such as the one presented
here differs from purely data-driven artificial-intelligence-based
models as it is grounded in various biological, physiological, and
biomechanical processes that enable credible predictions even with
limited clinical data. Following clinical validation, predictivemodels
have the potential to improve our understanding of cancer biology
and contribute to personalized treatment strategies (Karam et al.,
2024). They can also serve as clinical decision-support tools,
particularly for nephroblastoma, where preoperative chemotherapy
regimens still rely on imaging studies reviewed by reference
pathologists. Currently, histological data are available only after
surgery, but these models could improve decision making by
providing insights before surgery and aid in better treatment
planning. By leveraging patient-specific data, these models can
enhance precision medicine and support more individualized
treatment decisions to ultimately improve patient outcomes.

The Nephroblastoma Oncosimulator could also serve as a core
component in digital twin frameworks for in silico clinical trials.
For example, in silico trials are often used to evaluate the impacts
of dose adjustments or alternative drug combinations in specific
risk groups to prioritize the most promising strategies for real-
world clinical trials. This could enhance the efficiency of trial
design and improve the interpretation of results. Clinician trust and
user-friendly interfaces are just as essential as model accuracy for
broad clinical adaptation. Hence, the interfaces should be intuitive
and seamlessly integrable into existing clinical systems (Elhaddad
and Hamam et al., 2024). Additionally, continuous training of
healthcare professionals is necessary to ensure effective model
utilization. The cost-effectiveness of such models should also
be evaluated by weighing the financial investment in model
development and maintenance against potential savings from
optimized treatment plans.

Interdisciplinary collaborations amongoncologists, radiologists,
pathologists, bioinformaticians, and data scientists are crucial for
continuously refining such models and validating their predictions.
Engaging patients and the public in the development process
ensures that the models align with stakeholder needs and concerns
(Hughes et al., 2023). Although predictive models offer significant
potential, their clinical adaptation must be carefully aligned with
real-world patient data, as demonstrated in this study. A model’s

output must be tailored to the unique characteristics of the
patients and risk groups. This adaptability is essential for integrating
predictive models into routine clinical practice and transitioning
them from theoretical frameworks to actionable decision-support
tools. Diverse data sources and multimodality approaches are
recommended for such tools (Salvi et al., 2024). By refining such
models through the use of larger datasets, improved parameter
estimation, and validation studies, predictive simulations can evolve
into reliable tools for personalized medicine.

High-fidelity simulations are necessary given that data
availability demands are constantly increasing, and this requires
access to high-performance hardware or cloud-based computing
resources as well as advanced database management systems. To
be effective in real-world settings, the models must be seamlessly
integrable into clinical information systems and imaging databases.
Standardized data formats and automated pipelines for MRI
preprocessing and parameter extraction would help reduce clinician
workload. Regardless of the technical setup, the models must
comply with legal, ethical, and other relevant regulatory principles
related to patient consent, data privacy, and data protection.
Artificial-intelligence-based approaches pose additional ethical
and regulatory challenges (Naik et al., 2022), for which federated
learning is emerging as a potential solution (Teo et al., 2024).
This approach allows data sharing and model training without
compromising patient privacywhile addressing the challenges posed
by artificial-intelligence-based models.

Our future efforts will focus on validating the proposed
model using a larger dataset that is already available. Additionally,
parameter estimations will be refined and biological features like
immune responses and chemotherapy resistance mechanisms will
be considered for integration. These enhancements are expected
to further improve the model’s clinical applicability and reliability.
In summary, interdisciplinary collaborations, continued model
refinement, and addressing the challenges related to data access and
ethical considerations will be essential for successfully translating
predictive modeling into clinical practice. This ongoing evolution is
key to transforming predictive modeling from an academic concept
to a practical, clinically relevant, and reliable tool for enhancing
patient care.
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