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Association between changes in
corrected anion gap and
mortality among critically ill
patients during ICU stay: a
multicenter observational study
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Ya Gao1, Xuting Jin1, Yanni Luo1, Xiaochuang Wang1 and
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1Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University,
Xi’an, Shaanxi, China, 2Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong
University), Ministry of Education, Xi’an, Shaanxi, China

Background: The research on the impact of dynamic corrected anion gap (cAG)
on prognosis is scarce.

Objective: This study aimed to investigate the relationship between changes in
cAG (ΔcAG) during intensive care unit (ICU) hospitalization and mortality.

Methods: In this multicenter, retrospective cohort study, patients with both
initial and final records of serum sodium, potassium, chloride, bicarbonate, and
albumin were recruited from the eICU Collaborative Research Database. Two
cohorts were included in the study: cohort A (final cAG > initial cAG) and cohort B
(final cAG < initial cAG). Multivariable logistic regressionwas utilized to assess the
association between mortality and ΔcAG in each cohort. ΔcAG was calculated
as shown as follows: ΔcAG = | finalcAG ‐ initialcAG|

initialcAG
× 100%.

Results: Among the 11,216 enrolled patients, 4,147 (37%) individuals were
classified into cohort A, while 7,069 (63%) patients were assigned to cohort
B. In cohort A, for every 10% increase in ΔcAG, ICU and hospital mortalities
increased by 46.1% (odds ratio: 1.461, 95% confidence interval [1.378, 1.548])
and 55.5% (1.555 [1.467, 1.648]), respectively. Interaction and subgroup analyses
demonstrated consistent results among patients with different Acute Physiology
and Chronic Health EvaluationⅣ (APACHEⅣ) scores (≤58 vs. >58), time interval
(≤97 h vs. >97 h) and initial cAG (≤16 mEq/L vs. >16 mEq/L). Meanwhile, in
cohort B, ICU and hospital mortalities decreased by 31.4% (0.686 [0.619, 0.759])
and 29.4% (0.706 [0.651, 0.764]), respectively, with each 10% increase in ΔcAG,
especially among patients with higher APACHE IV scores (>62) and initial cAG
(>16 mEq/L). When analyzed categorically, the ΔcAG still exhibited a significant
risk gradient across quartiles.

Conclusion: Further elevated cAG after ICU admission demonstrates a robust
association with an increased mortality risk in critically ill patients. ICU patients
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with higher APACHE Ⅳ scores or initial cAG may benefit from measures aimed
at reducing cAG.

KEYWORDS

changes in corrected anion gap, mortality, intensive care unit, eICU Collaborative
Research Database, retrospective cohort study

1 Introduction

Critically ill patients commonly experience a variety of acid-
base disorders (Achanti and Szerlip, 2023; Cerdá et al., 2012).
Among these, acute metabolic acidosis is recognized as one of the
most severe forms (Yagi and Fujii, 2021). This condition exerts
multisystem effects, including diminished cardiac contractility
and reduced cardiac output, induced arterial vasodilation, and
neurological manifestations such as mental confusion and
lethargy. These pathophysiological alterations promote systemic
inflammation, compromise immune response, and trigger cellular
death (Kraut and Madias, 2010). The anion gap (AG) is routinely
employed to estimate the difference between measured and
unmeasured major extracellular fluid cations and anions, helping
to identify the underlying cause of metabolic acidosis (Kraut and
Madias, 2010). Possible causes include lactic acidosis, ketoacidosis,
and uremic acidosis; ingestion of salicylate, methanol, ethylene
glycol, or propylene glycol; and many inborn errors of metabolism
(Goodkin et al., 1984). However, hypoalbuminemia, which is
commonly observed in critically ill patients, can lower the AG and
mask an acidosis. Albumin-corrected anion gap (cAG) is a more
suitable screening tool for the diagnosis of metabolic acidosis in
intensive care unit (ICU) (Hatherill et al., 2002).

Previous studies have indicated that elevated levels of cAG
upon ICU admission serve as prognostic indicators for mortality
in patients with sepsis (Hu et al., 2021), chronic obstructive
pulmonary disease (Giri et al., 2025), acute pesticide poisoning
(Lee et al., 2019), and severe cardiac disease (Zhao et al., 2023).
However, conflicting evidence suggested that cAG may not reliably
predict hospital mortality in critically ill patients, as indicated
by small areas under the receiver operating characteristic curve
(AUROC) values (Rocktaeschel et al., 2003). Therefore, previous
studies have primarily focused on examining the relationship
between baseline cAG levels and prognosis, and findings have been
somewhat controversial. Given the dynamic and rapidly evolving
clinical status of ICU patients, it is necessary to further explore
the correlation between prognosis and cAG by utilizing a relative
dynamic index in this patient population.

A published retrospective study involving 18,985 critically ill
patients demonstrated that an elevation in AG between prehospital

Abbreviations: AG, anion gap; cAG, corrected AG; ICU, intensive care
unit; AUROC, areas under the receiver operating characteristic curve;
ΔcAG, change in cAG; cAGDiff, absolute change in cAG; eICU-CRD, eICU
Collaborative ResearchDatabase; APACHEⅣ, Acute Physiology andChronic
Health Evaluation Ⅳ; ICD-9, International Classification of Diseases-9; DIC,
disseminated intravascular coagulation; Na+, sodium; K+, potassium; Cl-,
chloride; HCO3

−, bicarbonate; IQRs, interquartile ranges; MICE, multivariate
imputation by chained equation; RCS, restricted cubic spline; OR, odds ratio;
CI, confidence interval; RRT, renal replacement therapy.

admission and critical care initiation predicted the risk of all-
cause mortality in this population (Lipnick et al., 2013). Similarly,
another retrospective cohort study found that the change in
cAG (ΔcAG) during the first 3 days after ICU admission was
a prognostic indicator for hospital mortality and 90-day overall
survival outcomes (Xie et al., 2022). However, these studies defined
ΔcAG as changes occurring over relatively short period during
the ICU stay. More investigations are warranted to explore the
relationship between ΔcAG occurring over an extended duration
and its impact on patient prognosis. Therefore, this study aimed to
evaluate the association between ΔcAG during ICU hospitalization
and mortality among critically ill patients, utilizing data from the
eICU Collaborative Research Database (eICU-CRD, version 2.0).

2 Materials and methods

2.1 Data description

This multicenter observational cohort study employed
the publicly available eICU-CRD version 2.0, a de-identified
ICU database comprising 139,367 unique patients admitted to
335 units across 208 hospitals in the United States between
2014 and 2015 (Pollard et al., 2018). The database is maintained by
the Laboratory for Computational Physiology at the Massachusetts
Institute of Technology (MIT; Cambridge, MA, United States)
and can be accessed at https://physionet.org/content/eicu-crd/.
The eICU database was released under the Health Insurance
Portability and Accountability Act safe harbor provision, and all
protected health information was de-identified. Hence individual
patient consent was not required. Furthermore, all authors of
the manuscript underwent the required training and obtained
permission to access the database.

2.2 Data extraction

We extracted patient data from the eICU-CRD using SAS
version 9.4 (SAS Institute, Cary, NC). The extracted data
encompassed demographic records, clinical comorbidities at ICU
admission, administered treatments, severity-of-illness scores as
assessed by the Acute Physiology and Chronic Health Evaluation
Ⅳ (APACHE Ⅳ) score, ICU length of stay, discharge status from
the ICU and hospital, and comprehensive records of biochemical
indicators at both ICU admission and discharge. Demographic
information included age, sex, and ethnicity. Clinical comorbidities
were identified using the International Classification of Diseases-
9 (ICD-9) codes and comprised metabolic derangements (e.g.,
acidosis, alkalosis and mixed acid base disorder), heart failure,
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respiratory failure, renal failure, disseminated intravascular
coagulation (DIC), diabetes, shock, tumor, trauma, sepsis, and
hepatic disease. Treatments of interest included catecholamine and
diuretic therapy, fluid resuscitation, mechanical ventilation, and
dialysis during the ICU stay.The dataset also included initial records
of serum sodium (Na+), potassium (K+), chloride (Cl−), bicarbonate
(HCO3

−), blood pH, serum creatinine, and serum lactate levels after
ICU admission. Additionally, the final records of Na+, K+, Cl−, and
HCO3

− levels before ICU discharge were included. Serum albumin
concentrations were measured within 24 h of the recording of Na+,
K+, Cl−, and HCO3

− levels.

2.3 ΔcAG and outcome

We calculated AG using the formula: AG = ([Na+] mEq/L +
[K+] mEq/L) - ([Cl−] mEq/L + [HCO3

−] mEq/L) (Seifter, 2014).
To account for the influence of abnormal albumin concentration,
the corrected AG was derived as: cAG = AG + 2.5 × [4.4 -
albumin (g/dL)] (Figge et al., 1998). The exposure of interest was
ΔcAG, calculated as: ΔcAG = | final cAG ‐ initial cAG|

initial cAG
× 100%. Moreover,

the absolute change in cAG (cAGDiff) was calculated as: cAGDif f =
| final cAG ‐ initial cAG|. The initial cAG was defined the value
calculated from the first records of Na+, K+, Cl−, HCO3

−, and
albumin after ICUadmission.Thefinal cAGwas calculated using the
last available measurement before ICU discharge, with a minimum
time interval of 24 h from the initial record. The primary outcome
was ICU mortality, defined as death occurring before ICU discharge
for any cause. The secondary outcome was hospital mortality,
defined as death from any cause occurring before hospital discharge.

2.4 Patient selection

In this study, patient information was exclusively sourced from
the eICU-CRD. The inclusion criteria were as follows: (1) single
hospital admission; (2) first ICU admission; (3) an ICU length of stay
>24 h; (4) age ≥15 years old; (5) at least two records of Na+, K+, Cl−,
and HCO3

−. Patients meeting any of the following exclusion criteria
were excluded: (1) those with disparate timings for initial and/or
final records of Na+, K+, Cl−, or HCO3

− levels; (2) those lacking
initial and/or final records of albumin; (3) those with a time interval
less than 24 h between the initial and final recording of Na+, K+, Cl−,
HCO3

−, or albumin; (4) those withmissing or unqualified covariates
for multivariable adjustment; and (5) those without recorded ICU
discharge status. Based on the comparison between final cAG and
initial cAG, the study population was stratified into two cohorts:
cohort A (final cAG > initial cAG) and cohort B (final cAG <
initial cAG).

2.5 Statistical analysis

Continuous variables were expressed as medians with
interquartile ranges (IQRs) and compared using the Kruskal‒Wallis
H test. Categorical variables were presented as frequencies
(percentages) and analyzed through the χ2 test or Fisher’s exact test.
A Chord diagram was generated to visually illustrate the correlation

between initial cAG and final cAG for each patient. Logistic
regression models were employed to evaluate the associations
between ΔcAG or cAGDiff and ICU and hospital mortality risks.
Multivariable adjustments included demographic information, time
interval between initial and final cAG measurements, treatments,
biochemical indicators, and clinical comorbidities. For missing
data on lactate and pH values, multivariate imputation by chained
equations (MICE) was performed utilizing the MICE package in
the R project (Zhang, 2016) to ensure a more complete dataset
for analysis. To explain multicollinearity, variance inflation factors
(VIFs) were calculated to assess variables in themultivariablemodel.
A VIF < 10 indicates that multicollinearity may not affect the
estimation (Kutner et al., 2004). Restricted cubic splines (RCS)
were used to graphically portray the relationship between ΔcAG
and mortality. A two-sided P < 0.05 was considered statistically
significant.

Interaction and subgroup analyses were conducted post hoc to
explore the potential consistency of the relationship between ΔcAG
and mortality across different clinical contexts. Stratification was
based on median values of time interval (between the initial and
final cAG) or APACHE Ⅳ score, as well as the initial cAG value
of 16 mEq/L (Goldstein and Halperin, 2010; Oh, 2011). To mitigate
false discovery risks, we applied Bonferroni correction (adjusted
α = 0.05/2) to all subgroup comparisons performed. All statistical
analyses were performed using SPSS version 22.0 (SPSS, Chicago,
IL, United States).

3 Results

3.1 Individual selection and clinical
characteristics

A total of 11,216 patients entered the final cohort. Among them,
4,147 patients exhibited an elevated final cAG level compared to
the initial measurement (cohort A), while 7,069 patients showed
a decrease in final cAG level (cohort B) (Figure 1). The Chord
diagram depicts the relationship between the final cAG and initial
cAG for each patient (Supplementary Figure 1). Of the cohort A,
2,350 participants (56.7%)weremale, 3,204 (77.3%)wereCaucasian,
and 1,942 (46.8%) were aged >65 years. ICU and hospital mortality
rates were 14.6% and 20.9%, respectively. The time interval between
the final and initial cAG was 97 (50–172) hours, with an initial
cAG of 15.75 (13.55–18.45) mEq/L and an APACHE Ⅳ score of
58 (42–78). We stratified the study cohort based on quartiles of
ΔcAG ≤5.34%, 5.34% < ΔcAG ≤12.32%, 12.32% < ΔcAG ≤23.70%,
and ΔcAG >23.70% (Table 1). Among 7,069 patients in cohort B,
54.8% were male, with a predominant Caucasian ethnicity (77.1%)
and 45.2% aged >65 years. ICU and hospital mortality rates were
7.2% and 12.2%, respectively. The time interval between the final
and initial cAG was 101 (55–194) hours, with an initial cAG of
19.10 (16.65–22.15) mEq/L and an APACHEⅣ score of 62 (46–81).
The cohort was stratified into ΔcAG quartiles: ΔcAG ≤7.48%,
7.48%, < ΔcAG ≤15.05%, 15.05% < ΔcAG ≤24.70%, and ΔcAG
>24.70% (Supplementary Table 1).

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1469985
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Hou et al. 10.3389/fphys.2025.1469985

FIGURE 1
Flow diagram of participant selection. Cohort selection and criteria for exclusion: a total of 11,216 patients were included in the analysis. Among them,
4,147 patients experienced an elevation, while 7,069 patients experienced a reduction in their final cAG level compared with that at initial measurement.
eICU-CRD, eICU Collaborative Research Database; ICU, intensive care unit; cAG, corrected anion gap.

3.2 Association between ΔcAG and
mortality

We incorporated ΔcAG/10 as a continuous variable in the
multivariable analysis, adjusting for all potential confounders. The
results revealed that in cohort A, for every 10% increase in ΔcAG,
critically ill patients exhibited a 46.1% increase in ICU mortality
(odds ratio (OR), 1.461; 95%confidence interval (CI), [1.378, 1.548])
and a 55.5% increase in hospital mortality (1.555 [1.467, 1.648]).
Moreover, in cohort B, a 10% decrease in ΔcAG was associated with
a significant reduction of 31.4% (0.686 [0.619, 0.759]) and 29.4%
(0.706 [0.651, 0.764]) for ICU and hospital mortality, respectively.

When considering ΔcAG as a categorical variable in
multivariable logistic regression analysis, we observed higher
risks of ICU (Q3 vs. Q1: 1.858 [1.302, 2.653]; Q4 vs. Q1: 6.483
[4.631, 9.076]) and hospital (Q2 vs. Q1: 1.403 [1.030, 1.911]; Q3
vs. Q1: 2.349 [1.733, 3.182]; Q4 vs. Q1: 7.798 [5.785, 10.513])
mortalities in the upper quartile among cohort A. In cohort B,
the upper quartiles of ΔcAG had lower risks of ICU (Q2 vs. Q1:
0.556 [0.413, 0.749]; Q3 vs. Q1: 0.577 [0.432, 0.771]; Q4 vs. Q1:
0.344 [0.248, 0.478]) and hospital (Q2 vs. Q1: 0.777 [0.618, 0.976];
Q3 vs. Q1: 0.628 [0.499, 0.792]; Q4 vs. Q1: 0.388 [0.299, 0.503])
mortalities (Table 2). Additionally, RCS analysis revealed a positive
association between the degree of ΔcAG and mortality in cohort
A (Figures 2A,B), whereas a negative relationship was observed in
cohort B (Figures 2C,D). The association was similar between the
cAGDiff and mortality (Supplementary Table 2).

3.3 Sensitivity and subgroup analyses

We further analyzed the associations between ΔcAG (as a
continuous variable) and mortality in predefined subgroups. In
cohort A, no significant interaction was observed between the
APACHE Ⅳ score (category) and ΔcAG for ICU (Pinteraction =
0.180) or hospital mortality (Pinteraction = 0.537) (Figure 3). In the
subgroup with APACHE Ⅳ score ≤58, for every 10% increase
in ΔcAG, the risks of ICU and hospital mortalities increased by
39.0% (1.390 [1.214, 1.591]) and 56.8% (1.568 [1.400, 1.756]),
respectively. Similarly, in the APACHE Ⅳ score >58 subgroup, the
risks increased by 50.0% (1.500 [1.401, 1.607]) and 57.7% (1.577
[1.471, 1.691]), respectively. Furthermore, significant interactions
were found between the initial cAG (category) and ΔcAG for ICU
and hospital mortalities risks (Pinteraction <0.001, Pinteraction <0.001).
A 10% increase inΔcAGwas associatedwith heightened risks of ICU
and hospital mortalities by 24.1% (1.241 [1.137, 1.354]), and 22.8%
(1.228 [1.141, 1.322]), respectively, in the initial cAG ≤16 mEq/L
subgroup, as well as 58.9% (1.589 [1.465, 1.724]) and 84.5% (1.845
[1.684, 2.021]) in the initial cAG >16 mEq/L subgroup.

In cohort B, we observed no significant interactions between
ΔcAG and APACHE IV scores regarding ICU and hospital
mortality risks (Pinteraction = 0.063, Pinteraction = 0.063) (Figure 3).
In the APACHE Ⅳ score ≤62 subgroup, there was no statistically
significant association between ΔcAG and ICU mortality (P =
0.138). However, the risk of hospital mortality decreased by 25.7%
(0.743 [0.610, 0.906]) for every 10% increase in ΔcAG. In the
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TABLE 1 Baseline characteristics of Cohort A.

Characteristics Entire
population
(N = 4,147)

ΔcAG (%)

Q1: ≤5.34%
(N = 1,037)

Q2:
5.34%–12.32%
(N = 1,037)

Q4:
12.32%–23.70%
(N = 1,037)

Q4: >23.70%
(N = 1,036)

P value

Age n (%) 0.863

≤65 years 2,205 (53.2) 543 (52.4) 552 (53.2) 562 (54.2) 548 (52.9)

>65 years 1,942 (46.8) 494 (47.6) 485 (46.8) 475 (45.8) 488 (47.1)

Sex n (%) 0.403

Male 2,350 (56.7) 565 (54.5) 592 (57.1) 592 (57.1) 601 (58.0)

Female 1,797 (43.3) 472 (45.5) 445 (42.9) 445 (42.9) 435 (42.0)

Ethnicity n (%) 0.175

Caucasian 3,204 (77.3) 819 (79.0) 793 (76.5) 781 (75.3) 811 (78.3)

Others/Unknown 943 (22.7) 218 (21.0) 244 (23.5) 256 (24.7) 225 (21.7)

APACHEⅣ score 58 (42–78) 57 (40–74) 56 (40–75) 56 (41–76) 62 (46–86) <0.001

Initial cAG (mEq/L) 15.75 (13.55–18.45) 16.80 (14.65–19.15) 16.00 (14.15–18.40) 15.15 (13.38–17.70) 14.80 (12.36–12.09) <0.001

Time Interval
(hours)

97 (50–172) 90 (49–161) 96 (50–177) 94 (50–152) 109 (59–214) <0.001

pH value 7.38 (7.33–7.43) 7.38 (7.33–7.43) 7.39 (7.33–7.43) 7.38 (7.33–7.43) 7.37 (7.32–7.43) 0.084

Lactate (mmol/L) 1.50 (1.00–2.20) 1.57 (1.00–2.20) 1.40 (1.00–2.10) 1.40 (1.00–2.20) 1.50 (1.00–2.60) <0.001

Creatinine (mg/dL) 1.00 (0.73–1.64) 1.00 (0.73–1.64) 0.96 (0.70–1.58) 0.96 (0.73–1.50) 1.08 (0.77–2.82) 0.001

Treatments n (%)

Catecholamine 909 (21.9) 187 (18.0) 202 (19.5) 223 (21.5) 297 (28.7) <0.001

Dialysis 332 (8.0) 59 (5.7) 62 (6.0) 70 (6.8) 141 (13.6) <0.001

Mechanical
Ventilation

1929 (46.5) 432 (41.7) 482 (46.5) 462 (44.6) 553 (53.4) <0.001

fluid resuscitation 225 (5.4) 68 (6.6) 47 (4.5) 56 (5.4) 54 (5.2) 0.231

Diuretic 915 (22.1) 206 (19.9) 217 (20.9) 223 (21.5) 269 (26.0) 0.005

Diagnoses n (%)

Metabolic
derangements

162 (3.9) 38 (3.7) 43 (4.1) 32 (3.1) 49 (4.7) 0.256

Heart Failure 328 (7.9) 79 (7.6) 92 (8.9) 75 (7.2) 82 (7.9) 0.554

Renal Failure 488 (11.8) 118 (11.4) 116 (11.2) 120 (11.6) 134 (12.9) 0.597

Respiratory Failure 1,010 (24.4) 225 (21.7) 230 (22.2) 257 (24.8) 298 (28.8) 0.001

DIC 13 (0.30) 1 (0.1) 3 (0.3) 5 (0.5) 4 (0.4) 0.417

Diabetes 399 (9.6) 94 (9.1) 114 (11.0) 100 (9.6) 91 (8.8) 0.327

Shock 931 (22.4) 218 (21.0) 229 (22.1) 233 (22.5) 251 (24.2) 0.365

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristics of Cohort A.

Characteristics Entire
population
(N = 4,147)

ΔcAG (%)

Q1: ≤5.34%
(N = 1,037)

Q2:
5.34%–12.32%
(N = 1,037)

Q4:
12.32%–23.70%
(N = 1,037)

Q4: >23.70%
(N = 1,036)

P value

Tumor 320 (7.7) 79 (7.6) 75 (7.2) 78 (7.5) 88 (8.5) 0.731

Trauma 280 (6.8) 57 (5.5) 70 (6.8) 69 (6.7) 84 (8.1) 0.131

Sepsis 791 (19.1) 205 (19.8) 187 (18.0) 204 (19.7) 195 (18.8) 0.721

Hepatic Disease 364 (8.8) 78 (7.5) 82 (7.9) 93 (9.0) 111 (10.7) 0.048

ICU Mortality 606 (14.6) 90 (8.7) 97 (9.4) 126 (12.2) 293 (28.3) <0.001

Hospital Mortality 867 (20.9) 136 (13.1) 152 (14.7) 194 (18.7) 385 (37.2) <0.001

cAG, corrected anion gap; ΔcAG, changes in corrected anion gap, APACHEⅣ, Acute Physiology and Chronic Health EvaluationⅣ; DIC, disseminated intravascular coagulation; ICU,
intensive care unit. Time Interval, the time interval between the final and the initial cAG measurement; AG = ([Na+]mEq/L+ [K+]mEq/L) − ([Cl−]mEq/L+ [HCO−3 ]mEq/L); cAG = AG+ 2.5×
[4.4− albumin (g/dL)]; ΔcAG = | final cAG ‐ initial cAG|

initial cAG
× 100%.

TABLE 2 Multivariable analysis of the association between ΔcAG and mortality.

ΔcAGa variable ICU mortality Hospital mortality

OR (95% CI) P value OR (95% CI) P value

Cohort A

Continuous variableb 1.461 (1.378, 1.548) <0.001 1.555 (1.467, 1.648) <0.001

Categorical variable

 Q1 1 (Ref) 1 (Ref)

 Q2 1.206 (0.835, 1.742) 0.318 1.403 (1.030, 1.911) 0.032

 Q3 1.858 (1.302, 2.653) 0.001 2.349 (1.733, 3.182) <0.001

 Q4 6.483 (4.631, 9.076) <0.001 7.798 (5.785, 10.513) <0.001

Cohort B

Continuous variableb 0.686 (0.619, 0.759) <0.001 0.706 (0.651, 0.764) <0.001

Categorical variable

 Q1 1 (Ref) 1 (Ref)

 Q2 0.556 (0.413, 0.749) <0.001 0.777 (0.618, 0.976) 0.030

 Q3 0.577 (0.432, 0.771) <0.001 0.628 (0.499, 0.792) <0.001

 Q4 0.344 (0.248, 0.478) <0.001 0.388 (0.299, 0.503) <0.001

Multivariable model: Adjusted for demographic information (age [category], sex, ethnicity); APACHEⅣ score, biochemical indicators (pH, serum creatinine, lactate, and initial cAG); time
interval (the hours between the final and the initial cAG measurement); treatments (catecholamine, dialysis, mechanical ventilation, fluid resuscitation, diuretic); clinical comorbidities
(metabolic derangements, heart failure, renal failure, respiratory failure, DIC, diabetes, shock, tumor, trauma, sepsis, hepatic disease).
cAG, corrected anion gap; ΔcAG, changes in corrected anion gap; ICU, intensive care unit; OR, odds ratio; CI, confidence interval; APACHEⅣ, Acute Physiology and Chronic Health
EvaluationⅣ; DIC, disseminated intravascular coagulation.
aΔcAG = | final cAG ‐ initial cAG|

initial cAG
× 100%.

bΔcAG/10 employed to multivariable analysis as a continuous variable.
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FIGURE 2
Restricted spline curves for the association between ΔcAG and mortality. Associations between ΔcAGa and ICU (A) and hospital (B) mortalities in cohort
A; associations between ΔcAGa and ICU (C) and hospital (D) mortalities in cohort (B) All multivariable models were adjusted for demographic
information (age [category], sex, ethnicity); APACHEⅣ score, biochemical indicators (pH, serum creatinine, lactate, and initial cAG); time interval (the
hours between the final and the initial cAG measurement); treatments (catecholamine, dialysis, mechanical ventilation, fluid resuscitation, diuretic);
clinical comorbidities (metabolic derangements, heart failure, renal failure, respiratory failure, DIC, Diabetes, shock, tumor, trauma, sepsis, hepatic
disease). cAG, corrected anion gap; ΔcAG, changes in corrected anion gap, ICU, intensive care unit; APACHEⅣ, Acute Physiology and Chronic Health
EvaluationⅣ; DIC, disseminated intravascular coagulation. a: ΔcAG = | finalcAG ‐ initialcAG|

initialcAG
× 100%

APACHE Ⅳ score >62 subgroup, a reduction was observed in
the risks of ICU and hospital mortalities by 33.4% (0.666 [0.599,
0.741]) and 30.1% (0.691 [0.635, 0.752]), respectively. Moreover,
significant interactions were found between the initial cAG and
ΔcAG for risks of mortalities (Pinteraction = 0.009, Pinteraction = 0.015).
No statistically significant association was found between ΔcAG and
ICU or hospital mortality (P = 0.135, P = 0.590) in the initial cAG
≤16 mEq/L subgroup. Conversely, in the initial cAG >16 mEq/L
subgroup, a 10% increase in ΔcAG was associated with decreased
risks of ICU and hospital mortalities by 26.1% (0.739 [0.672, 0.814])
and 22.0% (0.780 [0.724, 0.841]), respectively.

No significant interaction was observed between ΔcAG and
the time interval (between the initial and final cAG) for ICU
and hospital mortalities risks in either cohort A (Pinteraction
= 0.490 and Pinteraction = 0.118, respectively) or cohort B

(Pinteraction = 0.054 and Pinteraction = 0.249, respectively). The
relationship between ΔcAG and mortality remained consistent
in subgroup analyses (Supplementary Table 3). After applying
Bonferroni correction for multiple comparisons, the associations
between ΔcAG and mortality remained robust across all predefined
subgroups.

4 Discussion

In this study, we performed a large-scale multicenter
retrospective cohort study among critically ill patients to explore
the association between mortality and changes in cAG during ICU
hospitalization. For patients with an elevated final cAG, we observed
that each 10% increase in ΔcAG was associated with 46.1% and
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FIGURE 3
Sensitivity analyses for the association between the ΔcAGa and ICU (A) and hospital (B) mortalities. All multivariable models were adjusted for
demographic information (age [category], sex, ethnicity); APACHEⅣ score (except for the APACHE IV score subgroup), biochemical indicators (pH,
serum creatinine, lactate, and initial cAG [except for the initial cAG subgroup]); time interval (the hours between the final and the initial cAG
measurement); treatments (catecholamine, dialysis, mechanical ventilation, fluid resuscitation, diuretic); clinical comorbidities (metabolic
derangements, heart failure, renal failure, respiratory failure, DIC, Diabetes, shock, tumor, trauma, sepsis, hepatic disease). cAG, corrected anion gap;
ΔcAG, changes in corrected anion gap, ICU, intensive care unit; OR, odds ratio; CI, confidence interval; APACHEⅣ, Acute Physiology and Chronic
Health EvaluationⅣ; DIC, disseminated intravascular coagulation. a: ΔcAG = | finalcAG ‐ initialcAG|

initialcAG
× 100%, ΔcAG/10 employed to multivariable analysis as a

continuous variable.

55.5% increased risks of ICU and hospital mortalities, respectively.
Notably, this association remained robust across patients with
different APACHE IV scores, time interval and initial cAG levels.
Remarkably, a reduction in final cAG compared to the initial
value exhibited a beneficial effect on ICU and hospital mortalities,
particularly among patients with severe illness (APACHE IV score
>62) and higher initial cAG level (>16 mEq/L).

The AG is estimated by assessing the differences between serum
cations (Na+ and K+) and anions (Cl− and HCO3

−) (Seifter, 2014).
Typically, albumin and phosphate are the primary contributors to
this “gap”, with minor contributions from sulfate and lactate, usually
less than 2 mEq/L (Al-Jaghbeer and Kellum, 2015). In this study,
we excluded patients whose albumin values were not recorded
within 24 h of the AG to ensure the accuracy of the cAG value.
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Previous studies have demonstrated a correlation between elevated
AG (Chen et al., 2022; Cheng et al., 2020; Gao et al., 2021; Zhu et al.,
2023)/cAG (Giri, et al., 2025; Hu et al., 2023; Hu, et al., 2021;
Lee, et al., 2019; Zhao, et al., 2023) values at ICU admission and
increased mortality across various clinical scenarios. However, a
retrospective study of 1,470 critically ill surgical patients found that
AG values at admission were not predictive of mortality (0.940
[0.009, 95.900]) (Martin et al., 2013). Similarly, another retrospective
study involving 300 critically ill adult patients admitted to the ICU
reported modest AUROC curves for cAG and AG in predicting
mortality: 0.67 (0.60, 0.74) and 0.66 (0.59, 0.73), respectively
(Rocktaeschel, et al., 2003). Furthermore, several studies have found
no significant difference in AG (Attanà et al., 2013; Boniatti et al.,
2011) or cAG (Boniatti, et al., 2011) between survivors and non-
survivors at ICU admission. Notably, in critically ill COVID-19
patients, AG values showed no intergroup difference (survivors
vs. non-survivors), yet non-survivors exhibited a significant AG
variability (Pulgar-Sánchez et al., 2024). Our results showed an
inconsistency between the initial and final cAG levels. Interventions
such as renal replacement therapy (RRT) (Cerdá, et al., 2012) and
mechanical ventilation (Carrillo Alvarez, 2003) can alter cAG levels
during ICU hospitalization. Additionally, critical illnesses like septic
shock can induce tissue hypoxia and elevate lactate levels (Kraut
andMadias, 2014), thereby increasing cAGvalues.Therefore, relying
on a single cAG measurement fails to reflect the dynamic clinical
status of ICU patients. Considering changes in cAG over time could
enhance its predictive capability for patient prognosis.

Several studies have focused on the correlation betweendynamic
AG value and critically ill patient outcomes. A meta-analysis of nine
studies involving 12,497 patients indicated that dynamic AG could
strongly predict mortality by considering the extent and trends of
acid-base disturbance (Glasmacher and Stones, 2016). Lipnick, et al.
(2013) revealed a relationship between an increased ΔAG, calculated
as the difference between ICU admission AG and prehospital value,
and all-causemortality. Xie, et al. (2022) investigated the association
between hospitalmortality andΔAG (ΔAG=AGmax -AGmin) within
the initial 3 days post-admission to cardiothoracic surgery recovery
unit, revealing ΔAG as a potential prognostic indicator for hospital
mortality and 90-day survival. These studies highlight the predictive
ability of ΔAG for mortality in critically ill patients, with primary
focus on short-term ICU admission. This study introduces ΔcAG,
which is defined as the percentage difference between the final cAG
and initial value measured at ICU admission, encompassing the
entire duration of ICU stay. It provides amore interpretablemeasure
of metabolic progression across patients with varying initial cAG
levels. The median time intervals for ΔcAG were 97 and 101 h in
cohorts A and B, respectively. In cohort A, each 10% increase in
ΔcAG was associated with increasing ICU and hospital mortalities
by 46.1% and 55.5%, respectively. Furthermore, among patients in
cohort B, the ICU and hospital mortality decreased by 31.4% and
29.4%, respectively, for each 10% increase in ΔcAG. These findings
underscore the importance of monitoring cAG trends level during
the ICU stay, as an elevation in cAG may signal an increased risk of
mortality risk, warranting heightened clinical vigilance.

The APACHE Ⅳ score is a crucial tool for assessing disease
severity in ICU patients, with higher scores indicating poorer
clinical condition (Ko et al., 2018; Zimmerman et al., 2006). The
accumulation of acid could significantly affect cellular function and

increasemorbidity andmortality (Gunnerson et al., 2006; Kraut and
Kurtz, 2005). To account for the influence of disease severity and
initial cAG levels, this study divided patients into two subgroups
for further investigation. Among different subgroups based on
APACHE Ⅳ scores (≤58 vs. >58) or initial cAG levels (≤16
mEq/L vs. >16 mEq/L), ΔcAG consistently demonstrated a strong
association with an increasedmortality risk in cohort A. In addition,
in cohort B, patients with higher APACHE Ⅳ scores (>62) and
elevated initial cAG levels (>16 mEq/L) exhibited a significant
survival advantage in the ICU.These findings suggest that, regardless
of the severity of the illness, elevating cAG is hazardous, while a
reduction of cAGmight prove benefits, particularly for ICU patients
with a more serious illness.

The mechanisms underlying the correlation between ΔcAG
and mortality in critically ill patients are not yet well understood.
Firstly, an elevated cAG signifies the buffering of H+ derived from
nonvolatile acids by HCO3

−, leading to HCO3
− depletion and H+

accumulation. This adversely affects cardiac Ca2+ signaling and
myofilament sensitivity, thereby reducing contractility (Orchard
and Kentish, 1990). Intracellular H+ buffering promotes K+ efflux,
increasing arrhythmia risk (Orchard and Cingolani, 1994). In shock,
H+ weakens catecholamine response, and lactic acidosis induces
vascular smooth muscle relaxation via the opening of ATP-sensitive
potassium channels (Kimmoun et al., 2015). H+ also enhances
γ-aminobutyric acid neurotransmission, leading to consciousness
depression and blunted respiratory drive, and triggers the release of
proinflammatory cytokine, which amplifies systemic inflammation
(Coppola et al., 2021). Attenuation of elevated cAG may offer
survival benefits in critically ill patients. Clinicians have employed
targeted interventions to reduce cAG levels. For instance, they used
RRT to normalize AG imbalance in the ICU(Cerdá, et al., 2012;
Yagi and Fujii, 2021), administrated of sodiumbicarbonate to reduce
cAG value (Fujii et al., 2019) in patients with cardiopulmonary
resuscitation (Bar-Joseph et al., 2005), gastrointestinal disorders
(Jung et al., 2019), and acute kidney injure (Jaber et al., 2018;
Zhang et al., 2018), and carried out fluid resuscitation to promote
lactate clearance, thereby enhancing the outcomes in sepsis shock
(Evans et al., 2021). Secondly, a potential reverse causality between
an elevated final cAG and progression of critical illness, such as acute
kidney injury, diabetic ketoacidosis, and lactic acidosis (Kraut and
Madias, 2010). These pathophysiological processes may establish a
feedback loop, where metabolic disturbances could both contribute
to and result from disease progression.The interplaymay precipitate
organ failure and life-threatening circumstances.

This study has several limitations that should be acknowledged.
Firstly, as a retrospective observational cohort study based on
real-world data, inherent bias such as selection bias, measurement
bias, and confounding are inevitable (Hong, 2021). Although
we attempted to mitigates these biased by incorporating know
confounding factors into the logistic regression model, residual
or unmeasured confounders might still influence the observed
association between ΔcAG and mortality. Secondly, although this
study revealed a significant association betweenΔcAGandmortality
in critically ill patients, the retrospective nature restricts our
ability to establish causality or infer definitive clinical thresholds.
Thirdly, the reliance on albuminmeasurement introduces a potential
selection bias, as patients included in our study may represent
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a subgroup receiving more intensive metabolic monitoring. This
could limit the generalizability of our findings to broader critically
ill populations. Therefore, given these limitations, future extensive
multicenter prospective studies should be conducted to further
validate the role of ΔcAG as a prognostic factor for predicting
clinical outcomes.

5 Conclusion

In this study, we provide evidence that an increase in the
cAG relative to the initial measurement after ICU admission is
strongly associated with an elevated mortality risk in critically
ill patients. These findings suggest the importance of monitoring
dynamic changes in cAG over time, rather than relying solely
on the initial cAG value. Nonetheless, further research, especially
rigorously designed prospective studies, is needed to evaluate and
verify these findings.
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