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Objective: This study investigates the potential of using voice as a sensitive
omics marker to predict exercise intensity.

Methods: Ninety-two healthy university students aged 18–25 participated in
this cross-sectional study, engaging in physical activities of varying intensities,
including the Canadian Agility and Movement Skill Assessment (CAMSA), the
Plank test, and the Progressive Aerobic Cardiovascular Endurance Run (PACER).
Speech data were collected before, during, and after these activities using
professional recording equipment. Acoustic features were extracted using the
openSMILE toolkit, focusing on the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) and the Computational Paralinguistics Challenge (ComParE) feature
sets. These features were analyzed using statistical models, including support
vector machine (SVM), to classify exercise intensity.

Results: Significant variations in speech characteristics, such as speech duration,
fundamental frequency (F0), and pause times, were observed across different
exercise intensities, with the models achieving high accuracy in distinguishing
between exercise states.

Conclusion: These findings suggest that speech analysis can provide a non-
invasive, real-time method for monitoring exercise intensity. The study’s
implications extend to personalized exercise prescriptions, chronic disease
management, and the integration of speech analysis into routine health
assessments. This approach promotes better exercise adherence and overall
health outcomes, highlighting the potential for innovative health monitoring
techniques.
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1 Introduction

Speech is a fundamental aspect of human communication, conveying not only linguistic
information but also paralinguistic cues such as gender, age, emotional state, and health
conditions (Docio-Fernandez et al., 2015; Lima et al., 2013; Zaman et al, 2021). The
interaction between speech production and physiological states, including exercise, has been
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a subject of increasing interest. During physical activity,
changes in respiratory patterns and subglottal pressure affect
voice characteristics, making it feasible to monitor exercise
intensity through speech analysis (Conrad and Nle, 1979;
Rochet-Capellan and Fuchs, 2013; Trouvain and Truong, 2015;
Dehak et al., 2011; Mohammadi et al., 2010). Despite the potential
applications, there is a significant gap in knowledge regarding the
use of speech as a biomarker for exercise intensity, particularly in
non-English languages such as Mandarin.

The pursuit of voice biomarkers for exercise intensity is
critical for several reasons. Traditional methods of assessing
exercise intensity, such as heart rate monitoring and perceived
exertion scales, have limitations. Heart rate monitors require
physical contact and may not always be practical, while
perceived exertion is subjective and can vary between individuals
(Docio-Fernandez et al., 2015; Lima et al., 2013). A non-
invasive, real-time monitoring method using voice analysis
could provide a more practical and accessible alternative.
Voice biomarkers could be especially valuable in settings
where traditional monitoring equipment is unavailable
or impractical.

Research has demonstrated that physical activity influences
speech production. Physical activity refers to any physicalmovement
produced by skeletal muscles that requires energy expenditure
(World Health Organization, 2024). Variations in fundamental
frequency (F0), speech duration, and pause times have been
observed during different physical activities (Trouvain and Truong,
2015; Dehak et al., 2011; Mohammadi et al., 2010). These changes
are attributed to physiological factors such as increased respiratory
rate and subglottal pressure during exercise (Truong et al., 2015).
For example, during high-intensity exercise, the vocal cords
experience greater tension, resulting in higher F0. Similarly,
increased physical exertion can lead to longer pauses in speech
as the body demands more oxygen (Truong et al., 2015; Godin
and Hansen, 2008; Godin and Hansen, 2011; Johannes et al.,
2007). However, most existing research focuses on English
speakers, and there is limited understanding of how these
findings apply to Mandarin, the world’s most widely spoken
language.

This study builds on the premise that speech production
is closely linked to respiratory function (Schuller et al., 2014),
which is directly affected by physical activity (Godin and
Hansen, 2011). Understanding how exercise-induced changes
in respiratory physiology, such as increased breathing rate and
altered subglottal pressure, manifest in speech production forms
the theoretical foundation of this research (Longmuir et al.,
2018; Karvonen and Vuorimaa, 1988; Eyben et al., 2010; Zee,
1991). By analyzing speech features before, during, and after
physical activities of varying intensities, the study aims to establish
the feasibility of using voice as a non-invasive biomarker for
exercise monitoring (Law et al., 2012). On top of this, the
objective of this study is to determine whether speech analysis
can reliably indicate exercise intensity. Specific objectives include
identifying key speech features that change with exercise intensity,
comparing these features across different exercise intensities
(Longmuir et al., 2017; Schellenberg et al., 2007; Scott et al., 2013),
and establishing statistical models to predict exercise intensity
based on speech characteristics. The potential applications of

this research are vast. For instance, speech analysis could be
integrated into wearable health devices, providing continuous,
non-invasive monitoring of exercise intensity. This could enhance
personalized exercise prescriptions, improve chronic disease
management, and support routine health assessments. By offering
a practical and accessible monitoring method, this approach
could promote better exercise adherence and overall health
outcomes.

2 Materials and methods

2.1 Study design

This study adhered to the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) guidelines (Supplementary Materia1 1-
TRIPOD checklist). It was a modelling study conducted using the
speech data from a cross-sectional study. The study took place at
the outdoor sports field of Jinan University from November 2023 to
April 2024 and received approval from the Institutional Review
Board (IRB) of Jinan University (Approval No. JNUKY-2023-
0154). All student assistants involved in this study were thoroughly
trained in advance to conduct the tests and operate the equipment
proficiently.

In this study, we intended to figure out the relationship
between exercise intensity and speech characteristics in a
university population. Demographic and physical activity data
were collected for all participants. Each participant wore a
heart rate monitor throughout the testing period. Initially,
participants recorded their speech and resting heart rate before
beginning the Canadian Assessment of Physical Literacy-2
(CAPL2) physical competence test. Participants also performed
a speech at the end of each exercise session, during which
trained student assistants recorded their current heart rate and
speech data. The average heart rate during speaking was used
as an objective indicator of exercise intensity (Karvonen and
Vuorimaa, 1988).

2.2 Participants

Ninety-Two healthy university students (48 males and 44
females) aged between 18 and 25 were recruited for this study.
To maintain homogeneity of the sample, strict inclusion and
exclusion criteria were implemented. All participants were fluent in
Mandarin and had no history of speech disorders, cardiopulmonary
diseases, or any other medical conditions that could affect their
performance during the exercise tests. Prior to participation, each
subject provided informed consent and underwent a comprehensive
physical examination to ensure their suitability for the study. The
inclusion criteria were standardized to mitigate potential biases,
requiring all participants to have at least 6 months of regular
physical activity experience. Exclusion criteria included a history of
voice impairment, neuromuscular disorders affecting speech and/or
breathing for speech, and any other health conditions that could
confound the voice outcome measures. These criteria ensure the
homogeneity of the sample and the reliability of the study results.
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2.3 Language and reading material

Mandarin, also known as Putonghua, is the most widely spoken
language globally, with over a billion native speakers. It serves as
the official language of China and one of the official languages
of Singapore, facilitating communication across diverse linguistic
groups within these regions. However, Mandarin is understudied in
the context of exercise speech analysis. Therefore, this study focuses
on Mandarin to fill this research gap. By examining how Mandarin
speech features change with varying exercise intensities, we aim to
contribute to the broader understanding of exercise physiology and
linguistics in a language that has not been extensively researched
in this domain. This focus on Mandarin not only broadens the
scope of existing research but also provides valuable insights that
are culturally and linguistically relevant to a significant portion of
the global population.

Participants were asked to read a short text aloud
in Mandarin (Supplementary eFigure 1). The text comprised
two parts: the first part was the well-known speech study text
“The North Wind and the Sun” (Mandarin version). The second
part consisted of five long vowel characters, each of which
participants were asked to pronounce for approximately 3 s and
then repeat.

2.4 Research data

In this study, we used openSMILE 3.0, an open-source toolkit
for speech signal processing, to extract speech features (Eyben et al.,
2010). This toolkit extracts acoustic parameters that describe
paralinguistic characteristics of speech. Speech data were collected
before, during, and after the physical activities, recorded by trained
assistants. These recordings were segmented and analyzed to
extract relevant features, which were subsequently used to train
classification models to predict exercise intensity. The dataset was
split into training, validation, and test sets. The training set was used
to train the models, the validation set was used to tune the model
parameters, and the test set was used to evaluate the final model
performance.

The speech data was recorded using a professional recorder (DR-
44WL, TASCAM Ltd., CHINA), which allowed for amplification
of the input signal and simultaneous recording of separate audio
channels. The recorder was positioned approximately 30 cm in front
of the speaker’s mouth. Inevitably, light ambient noises such as
walking and talking sounds were included. The gain of the recorder
was maximized to keep the noise level below −30dB, and the
sampling rate was set at 44.1 kHz. The assistant responsible for
collecting speech data underwent professional training to become
proficient in using the equipment.

2.5 Features of voice to analysis

To analyze the speech data, we used two well-known sets
of features: the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) and the Computational Paralinguistics Challenge
(ComParE) (Schuller et al., 2016; Eyben et al., 2016). These feature
sets help us understand different aspects of speech and have

been used successfully in various studies to assess personality,
detect speech-related diseases (Xue et al., 2019), and identify
gender and age (Schuller et al., 2013).

GeMAPS includes 88 specific measurements that describe
various characteristics of speech sounds. These features cover
frequency-related aspects such as the fundamental frequency (F0)
and formant frequencies, energy-related aspects including shimmer
and loudness, and temporal aspects like the rate of loudness
peaks. These features are known to reflect emotional properties
in speech (Eyben et al., 2016).

ComParE is a much larger set of features, including
6,373 different measurements. These features are derived from
energy-related low-level descriptors (LLDs), spectral LLDs,
sound-related LLDs, and various functionals applied to these
descriptors. ComParE has been used to analyze cognitive load,
physical load, emotion, and speech-related diseases. It provides
a detailed and comprehensive description of speech sounds
(Schuller et al., 2016; Eyben et al., 2016).

2.6 Outcomes

The primary outcome of this study was to assess exercise
intensity and its impact on speech features. We utilized three
primary physical activities from CAPL-2 protocol to evaluate
exercise intensity: the PACER test, the CAMSA, and the Plank test.
Additionally, we collected speech data during rest as a baseline.

Participants performed the PACER (Progressive Aerobic
Cardiovascular Endurance Run), a high-intensity activity where
they ran back and forth across a 20-m space at increasing speeds,
following audio cues (Leger et al., 1988). The test continued until
the participant could no longer keep up with the pace. This exercise
significantly elevated heart rate and measured cardiovascular
endurance, providing valuable data on how intense physical exertion
affects speech features. These insights can aid in developing exercise
prescriptions aimed at improving cardiovascular health.

The Canadian Agility and Movement Skill Assessment
(CAMSA) involved moderate-intensity tasks such as running,
jumping, and balancing (Longmuir et al., 2017). Participants
completed a timed obstacle course that tested their motor skills
and coordination. This activity enhanced overall fitness and agility,
offering a balanced exercise regimen that supports cardiovascular
health and functional fitness, which are crucial for various
populations, including those recovering from illnesses.

The Plank test required participants to hold a plank position,
maintaining a straight line from head to heels, for as long
as possible (Bohannon et al., 2018).Thismoderate-intensity exercise
assessed core muscle strength and endurance. The data collected
from this test helped design exercise programs that focus on core
stability and muscular endurance, essential for maintaining overall
physical fitness.

Heart rate measurements were continuously monitored during
each of these exercises using Fitbit wristband, which served as
a benchmark for validating the speech features as indicators of
exercise intensity. Speech data were also collected during periods
of rest to serve as a baseline for comparison with the speech data
collected during physical activities. This baseline was crucial for
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understanding the impact of different exercise intensities on speech
characteristics.

2.7 Statistical analysis

In this study, we utilized the scikit-learn 1.0.1 package, a widely-
used library in Python for machine learning (Pedregosa et al., 2011).
Scikit-learn provides a range of efficient tools for data analysis
and modeling, including classification, regression, clustering, and
dimensionality reduction. Specifically, we employed scikit-learn’s
support vector machine (SVM) implementation to classify exercise
intensity based on speech features. The SVM algorithm was chosen
for its robustness in handling high-dimensional data, making it
well-suited for the complex and varied speech features analyzed in
this study.

Descriptive statistics were employed to describe the participants’
characteristics. Before conducting the main analyses, the
assumptions of normality, homoscedasticity, and linearity were
examined and confirmed. A one-way Repeated Measures Analysis
of Variance (RM-ANOVA) was used to investigate differences
in speech features across the different exercise states. Pearson’s
product-moment correlation and simple linear regression
were performed to examine the relationships among each
speech feature.

Following this exploratory analysis, we implemented SVM to
automatically classify each exercise intensity. To enable short-time
processing, we split the speech data into segments. The audio data
were segmented from 0 to 10 s, then the next 10-s segment was
extracted with no overlap, and so forth. The final part, which was
shorter than 10 s, was discarded. All speech data were randomly
divided into training, development, and test datasets in a ratio of
6:2:2.The training dataset was used to fit themodel, the development
dataset provided an unbiased evaluation of the model fit while
tuning hyperparameters, and the test dataset was used for the final
model evaluation. By combining exploratory statistical analysis with
automated classification, we aimed to robustly assess the differences
in speech features across exercise states and to classify physical load
based on speech features.

The second experiment involved a two-stage approach: first,
a three-class SVM model classified rest, moderate-intensity, and
high-intensity exercises; second, a two-class SVM model classified
CAMSA and plank test. To ensure reliable results, five-fold cross-
validation was used for the three-class SVM. In each fold, the data
were balanced to ensure an even distribution of male and female
participants. This cross-validation method helped mitigate any
potential bias introduced by gender imbalance in the sample. After
training with all mixed audio samples, the effects of training with
separate corpora were examined. Unweighted average recall (UAR),
precision, and F1-scores assessed classification accuracy. Figure 1
summarizes the entire research process.

3 Results

A total of 92 native speakers (48 males and 44 females)
participated in the study, with ages ranging from 18 to 22 years
(Overall: M = 19.01, SD = 0.93; Males: M = 19.11, SD = 0.95;

Females: M = 18.83, SD = 0.85). Prior to using RM-ANOVA,
skewness and kurtosis for all variables, including gender categories,
were tested and found within ±1.96. Shapiro-Wilk tests were non-
significant for all scores, confirming normality.The Fmax coefficient
for speech duration was less than ten (Fmax = 1.92), meeting the
assumption of homogeneity of variance. Mauchly’sW was 0.402 and
significant (p < 0.001), indicating a violation of sphericity, so the
Greenhouse-Geisser correction was applied.

3.1 Analysis of speech duration and
fundamental frequency (F0)

Before the experiments, we first selected five speech
variables—(a): Mean speech duration, (b): Mean F0, (c): F0 range,
(d): Pause times, (e): Pause duration—as indicators of exercise
intensity. We conducted a preliminary analysis of these variables
to explore the potential impact of exercise intensity on speech
characteristics.

RM-ANOVA revealed statistically significant differences in
speech duration means (F = 7.89, p = 0.001, η2 = 0.21). Pairwise
comparisons with Bonferroni adjustments showed that speech
duration in the rest state (M = 19.82, SD = 3.21) was significantly
longer than in the pacer state (M = 17.35, SD = 2.32), p = 0.003, 95%
CI [0.68, 4.26], d = 0.70. Pacer speech duration was also significantly
shorter than in the CAMSA state (M = 18.56, SD = 3.13), p = 0.014,
95% CI [−2.26, −0.18], d = 0.60, and the plank state (M = 18.23,
SD = 2.74), p = 0.049, 95%CI [−1.76, −0.01], d = 0.51. No significant
differences in speech duration were found among the other three
movement states (Figure 2A).

The mean F0 in each state was examined using RM-ANOVA,
with no violation of the homogeneity of variance assumption (Fmax
= 1.14). Mauchly’s W was 0.52 and significant (p = 0.002), so
the Greenhouse-Geisser correction was applied. The RM-ANOVA
indicated significant differences in mean F0 (F = 34.32, p < 0.001, η2

= 0.53). Pairwise comparisons showed that the mean F0 in the pacer
state (M = 158.11, SD = 39.89) was significantly higher than in the
rest state (M = 143.55, SD = 37.36), p < 0.001, 95% CI [8.58, 20.53],
d = 1.24; CAMSA state (M = 146.74, SD = 39.85), p < 0.001, 95% CI
[6.26, 16.48], d = 1.13; and plank state (M = 144.53, SD = 39.02), p <
0.001, 95% CI [9.02, 18.13], d = 1.51. No significant differences were
found among the other three states (Figure 2B).

The 75% and 25% intervals of F0 were used to assess the range
of speech fluctuations in each state. Homogeneity of variance (Fmax
= 1.58) and sphericity (p = 0.11) were supported. RM-ANOVA
showed significant differences in F0 ranges across states [F (3, 90) =
10.68, p < 0.001, η2 = 0.26]. Pairwise comparisons with Bonferroni
adjustments revealed that the F0 range in the pacer state (M = 33.47,
SD = 9.45) was significantly larger than in the rest state (M = 28.48,
SD = 8.49), p < 0.001, 95% CI [1.99, 7.99], d = 0.84, and the plank
state (M = 28.93, SD = 10.68), p < 0.001, 95% CI [1.33, 7.75], d =
0.72, but not the CAMSA state. The F0 range in the CAMSA state
(M = 30.74, SD = 9.97) was also significantly larger than in the rest
state, p = 0.02, 95% CI [0.22, 4.31], d = 0.56 (Figure 2C).

Pause times were examined using one-way RM-ANOVA.
Homogeneity of variance (Fmax = 4.11) and sphericity (p = 0.09)
were supported. Results showed significant differences in pause
times across states (F (3, 90) = 60.21, p < 0.001, η2 = 0.67). Pairwise
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FIGURE 1
Flowchart of research process.

FIGURE 2
Comparison of speech features under different exercise intensities.

comparisons with Bonferroni adjustments revealed that pause times
in the pacer state (M = 12.55, SD = 2.92) were significantly greater
than in the rest state (M = 7.16, SD = 1.44), p < 0.001, 95% CI [3.86,
9.92], d = 1.78; CAMSA state (M = 8.39, SD = 2.16), p < 0.001, 95%
CI [2.87, 5.45], d = 1.64; and plank state (M = 8.65, SD = 1.99), p
< 0.001, 95% CI [2.71, 5.10], d = 1.66. Pause times in the rest state
were also significantly less than in the CAMSA state, p = 0.02, 95%
CI [−2.29, −0.16], d = 0.59, and plank state, p = 0.01, 95% CI [−2.60,

−0.37], d = 0.67. No significant differences were found between the
CAMSA and plank states (Figure 2D).

Pause durationwas also examined.Homogeneity of variancewas
not met (Fmax = 14.72), and sphericity was violated (p < 0.001). The
Greenhouse-Geisser correction indicated significant differences in
pause duration [F (3, 90) = 63.27, p < 0.001, η2 = 0.68]. Pairwise
comparisons showed that pause duration in the pacer state (M =
9.01, SD = 3.13) was longer than in the rest state (M = 3.63, SD =
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TABLE 1 Correlations between heart rate and speech features.

Speech duration F0 mean Range Pause times Pause duration

Heart rate (All) −0.22∗ 0.27∗∗ 0.30∗∗ 0.47∗∗ 0.45∗∗

Heart rate (Male) −0.24∗ 0.39∗∗ 0.24∗ 0.47∗∗ 0.46∗∗

Heart rate (Female) −0.26 0.66∗∗ 0.54∗∗ 0.51∗∗ 0.56∗∗

Note: ∗∗Correlation is significant at the .01 level (2-tailed); ∗Correlation is significant at the .05 level (2-tailed).

0.81), p < 0.001, 95% CI [3.78, 6.96], d = 1.71; CAMSA state (M
= 5.08, SD = 1.84), p < 0.001, 95% CI [2.54, 5.32], d = 1.44; and
plank state (M = 5.01, SD = 1.60), p < 0.001, 95% CI [2.69, 5.31],
d = 1.54. Pause duration in the rest state was significantly shorter
than in the CAMSA state, p < 0.001, 95% CI [−2.31, −0.58], d =
0.85, and the plank state, p < 0.001, 95% CI [−2.20, −0.54], d =
0.84. No significant differenceswere found between theCAMSAand
plank states (Figure 2E).

3.2 Correlation analysis and regression
modeling

The Pearson’s product-moment correlation coefficient (r) was
computed to determine the magnitude and direction of the
linear relationship between heart rate and various speech features
(Table 1). Subsequently, standard linear regression was conducted
to evaluate if heart rate significantly predicted speech features
(Table 2). Given the significant differences in F0 values betweenmale
and female pronunciations (Eyben et al., 2016), separate regression
analyses were performed for each gender. Significant correlations
were found formost groups, and themajority of regression equations
had an R2 above 20%, indicating that at least 20% of the variance in
our speech data could be explained by heart rate. For males, heart
rate predicted three features: 1) F0 mean = 110.90 + 0.16∗heart rate;
2) Pause times = 4.25 + 0.05∗heart rate; 3) Pause duration = 1.26 +
0.04∗heart rate. For females, heart rate predicted four features: 1) F0
mean = 164.13 + 0.42∗heart rate; 2) Range = 26.77 + 0.12∗heart rate;
3) Pause times = 4.43 + 0.04∗heart rate; 4) Pause duration = 0.57 +
0.04∗heart rate.

3.3 Classification model performance

TheUnweighted Average Recalls (UARs) of the best-performing
classifiers using SVM are presented in Tables 3–5. We compared
the classification performance of two feature sets: eGeMAPS
and ComParE. Overall, the ComParE feature set outperformed
eGeMAPS. The two-stage modeling approach (UARComParE =
0.64) yielded better results than the one-stage modeling approach
(UARComParE = 0.58). A significant challenge was distinguishing
between the two moderate-intensity exercises (CAMSA and plank
test), as they exhibited highly similar speech features even in binary
classification models.

To ensure the robustness of our findings, a five-fold cross-
validation was employed, which involves dividing the data into

TABLE 2 Results of the standard linear regression analysis between
heart rate and speech features.

β (SE) F (df) R2 △R2

Males

 Speech duration −0.02 (0.01) 5.71 (1.94) 0.06 0.05

 F0 mean 0.16 (0.04) 17.11 (1.94) 0.15 0.15

 Range 0.06 (0.02) 5.78 (1.94) 0.06 0.05

 Pause times 0.05 (0.01) 26.90 (1.94) 0.22 0.21

 Pause duration 0.04 (0.01) 25.18 (1.94) 0.21 0.20

Females

 Speech duration −0.02 (0.01) 1.91 (1.26) 0.07 0.03

 F0 mean 0.42 (0.09) 20.49 (1.26) 0.44 0.42

 Range 0.12 (0.04) 10.60 (1.26) 0.29 0.26

 Pause times 0.04 (0.01) 9.03 (1.26) 0.26 0.23

 Pause duration 0.04 (0.01) 11.60 (1.26) 0.31 0.28

Note: β (SE), Regression Coefficient (Standard Error); F (df), F-test value (Degrees of
Freedom); R2, coefficient of determination;△R2, Change in R2 (Incremental R2).

five subsets, training the model on four subsets, and testing it
on the remaining subset. This process is repeated five times,
with each subset used exactly once as a test set (Table 6). With
additional training and testing data, both feature sets showed strong
performance (UAReGeMAPS = 0.72, UARComParE = 0.72). All models
performed well in binary classification. The two-class model using
the ComParE feature set achieved a UAR of 0.96 for distinguishing
between rest and high-intensity exercise states, and aUARof 0.79 for
distinguishing between rest and moderate-intensity exercise states.

3.4 Validation of classification models
across different corpora

Based on the results, the eGeMAPS framework was utilized
to assess classification performance across various corpora with
3-s segments. Tables 7, 8 present the classification outcomes
using corpora A and B, respectively. In the model based on
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TABLE 3 Results of four-class SVM using the eGeMAPS feature set.

Rest CAMSA Plank PACER Precision Recall F1-score

Rest 95 24 36 6 0.62 0.60 0.61

CAMSA 24 62 9 33 0.50 0.44 0.47

Plank 36 9 24 3 0.33 0.32 0.32

PACER 6 0 3 83 0.68 0.93 0.79

Total 0.53 0.57 0.55

Note: CAMSA, canadian agility and movement skill assessment; PACER, progressive aerobic cardiovascular endurance run. Bold values indicate the number of correctly classified instances.

TABLE 4 Results of four-class SVM using the ComParE feature set.

Rest CAMSA Plank PACER Precision Recall F1-score

Rest 125 21 12 3 0.64 0.77 0.70

CAMSA 39 50 21 33 0.38 0.38 0.38

Plank 51 39 44 3 0.50 0.34 0.41

PACER 3 24 3 74 0.66 0.71 0.68

Total 0.55 0.55 0.54

Note: CAMSA, canadian agility and movement skill assessment; PACER, progressive aerobic cardiovascular endurance run. Bold values indicate the number of correctly classified instances.

TABLE 5 Results of two-stage SVM.

eGeMAPS (three-class SVM) Recall ComParE (three-class SVM) Recall

Rest Moderate High Rest Moderate High

Rest 83 71 6 0.51 110 47 3 0.67

Moderate 89 151 6 0.62 74 155 18 0.63

High 3 36 86 0.69 0 50 74 0.60

0.61 0.63

eGeMAPS (two-class SVM) Recall ComParE (two-class SVM) Recall

CAMSA Plank CAMSA Plank

CAMSA 83 45 0.65 80 47 0.63

Plank 65 53 0.45 39 80 0.68

0.55 0.65

Total 0.58 0.64

Note: ComParE, computational paralinguistics challenge; CAMSA, canadian agility and movement skill assessment. Bold values indicate the number of correctly classified instances.

Corpus A, classification accuracy significantly improved, effectively
distinguishing between rest and PACER test exercise states.
However, moderate-intensity exercise states, such as CAMSA and
plank test states, remained challenging to differentiate. In contrast,
corpora B, which consist of vowel, showed lower accuracy due to
their smaller sample sizes.

4 Discussion

Consistent with previous studies on speech during exercise
(Godin and Hansen, 2008), this study found that certain manually
extracted features can reflect the intensity of exercise. The
duration of pronunciation is affected by physical stress. Similar
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TABLE 6 Results of cross-validation.

eGeMAPS (three-class SVM) Recall ComParE (three-class SVM) Recall

Rest Moderate High Rest Moderate High

Rest 389 336 27 0.65 490 244 18 0.66

Moderate 199 942 101 0.69 214 920 110 0.70

High 9 202 525 0.81 21 199 517 0.80

Total 0.72 0.72

Note: ComParE, computational paralinguistics challenge. Bold values indicate the number of correctly classified instances.

TABLE 7 Results of four-class SVM using the eGeMAPS with Corpus A.

Rest CAMSA Plank PACER Precision Recall F1-score

Rest 92 45 42 5 0.65 0.70 0.67

CAMSA 25 100 22 20 0.41 0.43 0.42

Plank 12 60 85 10 0.48 0.53 0.50

PACER 2 30 10 146 0.77 0.81 0.79

Total 0.58 0.61 0.64

Note: CAMSA, canadian agility and movement skill assessment; PACER, progressive aerobic cardiovascular endurance run. Bold values indicate the number of correctly classified instances.

TABLE 8 Results of four-class SVM using the eGeMAPS with Corpus B.

Rest CAMSA Plank PACER Precision Recall F1-score

Rest 28 18 8 2 0.75 0.50 0.60

CAMSA 5 38 5 5 0.43 0.71 0.54

Plank 3 24 26 19 0.57 0.36 0.44

PACER 1 7 6 38 0.59 0.73 0.65

Total 0.58 0.57 0.55

Note: CAMSA, canadian agility and movement skill assessment; PACER, progressive aerobic cardiovascular endurance run. Bold values indicate the number of correctly classified instances.

to prior studies (Godin and Hansen, 2008), this study found
statistically significant differences in speech duration across
different exercise intensities, with vigorous exercise having a
more pronounced effect. The findings highlight the significance
of analyzing speech characteristics in assessing physical fitness and
tailoring exercise prescriptions. Further research is needed to refine
these models and explore their applications in different populations
and settings.

4.1 The exploration analysis of voice and
exercise

F0, a widely studied parameter, varies with different conditions.
This study analyzes its variation under various motion intensities

and finds that F0 significantly increases under physical stress.
Controlling vocal cords becomes challenging when fatigued,
leading to increased F0 due to stronger vocal cord vibrations
(Van Puyvelde et al., 2018; Godin and Hansen, 2015). Notably,
F0 during vigorous exercise is higher than at moderate intensity
or rest, but moderate intensity shows no significant change from
the resting state, indicating maintained control over vocal cords.
Both men and women show similar trends despite natural pitch
differences.

The relationship between heart rate and speech features is critical
in this context. As exercise intensity increases, the body undergoes
physiological changes, most notably an increase in heart rate. These
changes are mirrored in speech production, where factors such
as subglottal pressure and respiratory patterns are influenced by
the body’s need to meet the oxygen demands of physical exertion.
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For instance, the study observed that as heart rate increased, so
did the pause times and pause durations in speech, reflecting the
increased respiratory demand during more intense physical activity.
These correlations suggest that heart rate can serve as a supportive
measure alongside speech features tomore accurately gauge exercise
intensity.

The study also analyzes the range of F0 during exercise,
showing that higher intensity exercises lead to unstable high and
low intervals due to rapid, fast-paced breathing (Migliaccio et al.,
2023). This instability results from overexertion or underexertion
of articulation, causing pitch drops and sentence-breaking pauses
(Niebuhr et al., 2020). Increased exercise intensity results in
more frequent pauses, often occurring at punctuation or arbitrary
points within sentences, due to the body’s need for more oxygen.
The number of pauses is a significant parameter, effectively
distinguishing between different exercise intensities but not between
different types of exercises at the same intensity (Mahmod et al.,
2022). Similarly, pause duration increases with exercise intensity,
complementing the number of pauses as a useful parameter. While
pause duration varies individually, it consistently differentiates
exercise intensities (Hofmann and Tschakert, 2017). The study also
explores using heart rate to predict speech features, finding a good
linear correlation for the number and duration of pauses, although
not for F0 or speech duration. This linear relationship between
pauses and exercise intensity could enhance future research and
machine learning models in this area.

4.2 Performance of classification models

While the four-classification results show only average results,
the evaluation of two-stage model shows a satisfied result. The
two feature sets, ComParE and eGeMAPS, yielded similar results
overall. Both feature sets demonstrated strong performance, with the
ComParE feature set achieving a slightly higherUnweightedAverage
Recall (UAR) in distinguishing rest from high-intensity exercise
states. Specifically, ComParE had a UAR of 0.98, while eGeMAPS
had a UAR of 0.94. These results underscore the effectiveness
of both feature sets in capturing the distinct differences between
resting and high-intensity exercise conditions. The high UAR values
indicate that both feature sets are highly reliable for this classification
task. In addition, the ComParE and eGeMAPS feature sets both
showed commendable performance in distinguishing rest from
moderate-intensity exercise states, though the results were not as
high as those for high-intensity states. Specifically, the eGeMAPS
feature set achieved a UAR of 0.64, while ComParE achieved a
slightly higher UAR of 0.69. These results indicate that both feature
sets are capable of differentiating between rest and moderate-
intensity exercise conditions, with ComParE having a slight
edge. The lower UARs compared to high-intensity differentiation
suggest that distinguishing between rest and moderate-intensity
exercise may be more challenging due to subtler differences in
speech features at these intensity levels. Nevertheless, both feature
sets provide reliable performance for exercise state classification,
highlighting their utility in exercise monitoring applications.
The models struggled to differentiate between moderate-intensity
exercises like CAMSA and plank tests due to their similar speech
features. Moderate-intensity exercises often have similar movement

patterns and exertion levels, leading to comparable respiratory and
vocal characteristics. The two-stage modeling approach showed
better performance (UARComParE = 0.64) than the one-stage
approach (UARComParE = 0.58), indicating that breaking down
the classification task into sub-tasks enhances accuracy (Silla and
Freitas, 2011). Validation with different corpora revealed varying
levels of accuracy. The higher accuracy with Corpus A compared
to Corpus B can be attributed to larger sample sizes and more
varied data in Corpus A. Corpus B’s lower accuracy underscores
the challenges posed by limited data and the importance of robust
training datasets (Khoshgoftaar et al., 2013).

4.3 Implication of healthcare

This study’s findings hold significant implications for healthcare,
particularly in the domains of exercise prescription and the
management of chronic diseases. The ability to accurately classify
exercise intensity using speech features introduces a novel, non-
invasive method for monitoring physical activity. This can greatly
benefit patients with cardiovascular diseases, as precise exercise
intensity monitoring is crucial for tailored exercise prescriptions,
reducing the risk of adverse events and enhancing cardiovascular
health outcomes (Garber et al., 2011). Moreover, for patients with
conditions like breast cancer, where fatigue and physical activity
levels must be closely monitored, speech analysis offers a practical
solution. Studies have demonstrated the benefits of personalized
exercise regimens in improving patient quality of life and reducing
cancer-related fatigue (Schmitz et al., 2010). The use of speech
features to assess physical activity can thus support healthcare
providers in delivering personalized and adaptive exercise plans,
improving overall treatment efficacy. Additionally, incorporating
speech analysis into routine health assessments can facilitate early
detection of changes in physical fitness and health status. This aligns
with the growing emphasis on preventive healthcare and the need for
innovative tools to support healthmonitoring (Piwek et al., 2016). By
providing a real-time, accessible measure of exercise intensity, this
approach can promote more active lifestyles and better adherence
to exercise recommendations, ultimately contributing to improved
population health outcomes.

5 Limitations

Although the samples in this study were all tested for normality,
the female sample was relatively short. Future studies could include
more female data to ensure the reliability of the study findings. In
addition, themodelling of this study used its own sample, whichmay
affect the prediction model to some extent. With more data, some
dependent variables with less predictive effects might have obtained
better results. Third, the bad performance on Plank may be caused
by the similar speech features under the same exercise intensity.
Lastly, the openSMILE suite of programs was trained on Caucasian
speakers, and therefore the constants used by openSMILE may
not fully capture the speech patterns of Mandarin speakers. Future
studies could explore using Mandarin-specific speech analysis tools
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or adjust openSMILE’s parameters to better suit the characteristics
of Mandarin speech.

6 Conclusion

The results of this study suggest that speech analysis can provide
a non-invasive, real-time method for monitoring exercise intensity.
This approach promotes better exercise adherence and overall
health outcomes, highlighting the potential for innovative health
monitoring techniques. Additionally, by focusing on Mandarin,
this research addresses a significant gap in the current literature.
Future studies could expand on these findings by exploring
other non-English languages to determine whether the speech
markers identified here are universally applicable or if language-
specific variations exist. Such research would contribute to a
more comprehensive understanding of the intersection between
language, speech, and physical exertion, ultimately leading to more
personalized and effective health monitoring solutions.
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