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multi-gene panels of alopecia
areata susceptibility and
drug-binding targets
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Xiaoqing Lang1 and Shuping Guo1*
1Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,
2Department of Dermatology, Qingdao Municipal Hospital, Qingdao, Shandong, China

Objective: This study aims to identify potential target genes and therapeutic
drugs for alopecia areata (AA).

Methods: Utilizing training and testing data, we evaluated multi-gene panels
derived from commonly upregulated genes in publicly available AA patient
datasets. The functions of these genes in biological processes were analyzed to
identify special multi-gene panels thatmay play crucial roles in AA. Differences in
immune cell infiltration between AA patients and healthy controls were assessed
using gene set variation analysis (GSVA) and the Wald test. Signature genes
were further validated in specific subsets using single-cell RNA sequence data.
Finally, molecular docking and molecular dynamics simulation were conducted
to evaluate interactions between protein structures encoded by signature genes
and the potential new drug candidates.

Results: When the cut-off value of log2FoldChage was greater than
1.0, 51 common upregulated genes were identified in the datasets
GSE68801 and GSE45512, and the enrichment analysis of biological
process indicated the significant involvement of immune cells in AA. The
predictive performance of multi-gene panels demonstrated excellent accuracy
in pathways related to “regulation of T cell-mediated cytotoxicity” and
“cell killing.” GSVA and the Wald test demonstrated that the infiltration
of T cells and NK cells in AA patients was significantly higher than in
healthy controls. Based on single-cell immune cell subsets, we found
that within the macrophage migration inhibitory factor signaling pathway,
the interactions between NK T cells, CD8 T cells, and melanocytes were
observed exclusively in AA patients but not in healthy controls. This indicates
that NK T and CD8 T cells may play an important role in the attack on
hair follicles via melanocytes. Additionally, we selected several important
biomarkers for molecular docking with interacting chemicals, evaluated
the stability of drug–protein binding patterns through molecular dynamics
simulation, and identified several potential targeted therapeutic agents.
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Conclusion: In this study, we screened several key genes associated with
immune cells and potential drug-like chemicals that could serve as targeted
therapies for AA.

KEYWORDS

immune cell infiltration, multi-gene panel, alopecia areata, machine learning, module
eigen genes, molecular docking, molecular dynamics simulation

1 Introduction

Alopecia areata (AA) is a common autoimmune, non-cicatricial
form of alopecia and is the second most prevalent type of
alopecia in clinic (McMichael and Roberson, 2023; Anzai et al.,
2019). Current evidence suggests that AA is primarily a T cell-
mediated disease (Anzai et al., 2019; Xing et al., 2014); notably,
in vivo experiments demonstrated that CD8+ T-cell depletion can
reverse established AA, whereas CD4+ T-cell depletion does not
exhibit the same effect (Xing et al., 2014; Lee et al., 2023a).
However, the extent of hair loss and the patient’s age are the most
significant factors affecting treatment outcomes. Currently, there is
no effective treatment for patients with AA, and relapse is quite
common following the withdrawal of medication (Xie et al., 2022;
Strazzulla et al., 2018).

Corticosteroids, such as triamcinolone acetonide, are commonly
used to treat patients with limited AA. In a study involving
219 Asian patients with AA, more than 50% experienced scalp
improvement after 12 weeks of treatment (Tan et al., 2002).
Another monotherapy with 3%–5% minoxidil was insufficient
to promote complete hair regrowth, but it stimulated hair
growth in AA patients (Price, 1987). Methotrexate may be
an effective treatment for patients with AA who have not
responded to standard therapies, and it has shown success in
both adults (Chartaux and Joly, 2010) and children (Royer et al.,
2011). In a recent double-blind randomized clinical trial
(NCT02037191) (Joly et al., 2023), 45 out of 89 AA patients
received methotrexate therapy, and hair regrowth was partially
restored in patients treated with methotrexate alone, while complete
regrowth was achieved in up to 31% of patients who received
a low-dose combination with prednisone. Furthermore, Janus
kinase (JAK) inhibitors, such as tofacitinib, ruxolitinib, and
baricitinib, have demonstrated efficacy in treating AA patients.
However, the durability of the response to these medications
is erratic, and most patients experience hair loss again after
discontinuation (Mackay-Wiggan et al., 2016a). Therefore, it
is essential to accelerate the development of new therapeutic
targets and drugs to help AA patients regain full hair and
restore their confidence.

In this study, we first screened significant genes associated
with immune cell function and developed training and testing
models to validate their role in identifying AA samples.
Subsequently, we simulated the drug-binding scores for pockets
in the crystal structure and evaluated the affinity scores of
target gene-interacting chemicals to identify potential drugs
for AA patients.

2 Methods and materials

2.1 Collection of AA data and candidate
genes

AA-associated bulk-RNA sequence datasets [GSE68801
(Jabbari et al., 2016), GSE45512 (Xing et al., 2014), and
GSE80342 (Mackay-Wiggan et al., 2016b)] and single-cell RNA
sequence dataset (GSE233906) were manually downloaded from
Gene Expression Omnibus (GEO). Detailed characteristics of
the patients and samples used in this study are provided in
Supplementary Table S1. The differentially expressed genes (DEGs)
between AA patients and healthy controls in the GSE68801 and
GSE45512 datasets were identified using Wald significance tests
from the DESeq2 package (version 1.42.0) in R language, based
on a negative binomial distribution (Love et al., 2014). Potential
candidate genes were screened from the shared upregulated DEGs
with log2FoldChange greater than 1.00 and P value less than 0.05.

2.2 Evaluation of multi-gene panel
performance

First, an enrichment analysis of biological processes was
performed for shared upregulated DEGs to identify relevant multi-
gene panels, each containing a maximum of four genes. Then,
a generalized linear model was applied to the training dataset
GSE68801, and the performance of the corresponding gene panel
was tested in other datasets GSE45512 and GSE80342. Finally, to
systematically train and test the performance ofmulti-gene panels in
predicting AA patients, 97 machine learning models were deployed
to find optimal multi-gene panels. Detailedmethods andmodels are
provided in the reproducible code.

2.3 Comparison of immune cell infiltration

To explore the different roles of immune cells played in AA
patients, the GSVA (Hänzelmann et al., 2013) was conducted to
compare immune cell infiltration in individual samples based on the
CIBERSORT and TCIA signature genes identified by Newman et al.
(2015) and Charoentong et al. (2017), which include 22 and 28
gene sets representing different immune cell types and/or functions,
respectively. Then, the Wald test of individual scores was applied
between AA patients and healthy controls, determining statistical
significance and fold-change differences.
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2.4 Correlation analysis between eigen
genes and immune cell infiltration

Theweighted gene co-expression network analysis (WGCNA) of
the top 10,000 upregulated or downregulated DEGs was conducted
to find potential module eigen genes (Langfelder and Horvath,
2008). In the training data of this study, a soft thresholding power
value of 10 was selected for fitting the unsigned scale-free topology
network. The adaptive pruning algorithm based on hierarchical
clustering with a minimum size of 100 genes was used to calculate
the topological overlap matrix and corresponding dissimilarity.
Then, the consensus measure in the gene expression network,
defined by the correlation of the eigen genes, was used to merge
moduleswith a correlation greater than 0.80 into a newgenemodule.
Finally, the Pearson correlation matrix of module eigen genes and
immune cell infiltration was generated and visualized on a heatmap.

2.5 Identification of signature genes

To verify the differences in signature genes among subtypes of
immune cells, we compared the target gene expression in a publicly
available single-cell RNA sequence dataset (GSE233906), including
sixAApatients and twohealthy controls.The initial cell clusterswere
recognized using Seurat V5 (Hao et al., 2024), and cell types were
annotated using the reference Human Primary Cell Atlas Data in
the R package SingleR (Version 2.4.1) (Aran et al., 2019).TheWilcox
test was then used to compare the differences in signature genes in
subset cells between AA patients and healthy controls.

2.6 Evaluation of drug-binding
performance

To evaluate the potential targeted therapeutic properties of these
signature genes, crystal structures of target genes were acquired
from the Worldwide Protein Data Bank (PDBe-KB, 2022). The
identification of drug-binding pockets followed a Voronoi mosaic-
based protein pocket detection algorithm (Le Guilloux et al., 2009).
Only pockets with drug score greater than 0.1 were used for
molecular docking evaluation. The docking program smina, based
on the AutoDock Vina tool, was used to predict receptor–ligand
binding affinity (Koes et al., 2013). The potential binding chemicals
were queried from the Comparative Toxicogenomics Database
(CTDdb) (Davis et al., 2023).

2.7 Molecular dynamics simulation

To further understand the stability and flexibility of drug
binding to target chemicals, we performed molecular dynamics
simulations using GROMACS (2024) (Pronk et al., 2013).
Coordinate and topological files were compiled in GROMACS
using the AMBER94 force field (Sorin and Pande, 2005) and the
recommended water model TIP3P (transferable intermolecular
potential with 3 points). Physiological conditions were simulated by
adding 0.15 M of salt (NaCl) in a 1 cubic nanometer solvent box.
During all simulations, each protein–ligand complex was simulated

for 300 ns at 300 K and 1 atm pressure. Free energy landscape (FEL),
root mean square deviation (RMSD), root mean square fluctuation
(RMSF), and solvent-accessible surface area (SASA) were used to
evaluate the thermal and pressure stability and flexibility of the
binding chemicals.

2.8 Statistics and reproducibility

All statistical analyses were conducted on platforms R-
4.3.2 and Python-3.9.10. The functional enrichment analysis
for biological processes of gene sets was calculated using the
R package clusterProfiler (Version 4.10.1) (Wu et al., 2021).
WGCNA (Version 1.72-5) (Langfelder and Horvath, 2008)
was used to calculate the correlation between eigen genes
of DEGs and scores of immune cell infiltration. The crystal
structures of drug-binding pockets and molecular docking were
visualized using the Python packages py3Dmol (Version 2.0.4) and
pymol (Version 2.5.7).

3 Results

3.1 Common DEGs revealed the important
role of immune cells in AA

As shown in Figure 1A, at a cut-off value of 0.5 for
log2FoldChange, 1,774 genes were upregulated and 944 genes were
downregulated in theGSE68801 dataset, 785 geneswere upregulated
and 689 genes were downregulated in the GSE45512 dataset. When
the cut-off value of log2FoldChange was 1.00, 364 and 106 genes
were upregulated in GSE68801 and GSE45512, respectively, of
which 51 were common genes (Figure 1B; Supplementary Table S2).
Figure 1C shows the relative expression values of these common
genes in the individual samples. Interestingly, the enrichment
of biological process for these 51 genes was mainly associated
with immune cell regulation, differentiation, and activation
(Figure 1D; Supplementary Table S3). For example, processes such
as T-cell activation regulation and lymphocyte differentiation were
significantly enriched.

3.2 Predictive performance of multi-gene
panels

To assess the predictive performance of multi-gene panels,
candidate genes associated with “regulation of T cell-mediated
cytotoxicity” and “cell killing” were chose to fit generalized linear
models on individuals from the GSE68801 dataset. As shown in
Figure 2A, the multi-gene panel consisted of CD1C, MICB, CD1B,
FCGR2B, and HLA-DRA genes, and the predicted results included
four (4/23) false-positive individuals and three (3/36) false-negative
individuals. The AUC values of the top four combination of multi-
gene panels were all greater than 0.95. In another multi-gene panel
consisting of GZMA, CD2, CD1C, MIC, CCL13, CD1B, HLA-DRA,
GZMB, and FCGR2B genes (Figure 2B), none of the individuals were
predicted to be false-positive or false-negative. The AUC values of
the top four combination ofmulti-gene panels were also greater than
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FIGURE 1
Gene expression and biological function of signature genes. (A) Volcano plots of differentially expressed genes of datasets GSE68801 and GSE45512.
(B) Venn plot of common upregulated genes of datasets GSE68801 and GSE45512. (C) Relative expression heatmap of 51 common genes (AA, alopecia
areata; NC, normal control). (D) Top 20 terms in enrichment results of biological function for the 51 common genes. The dot size and color represent
the gene count and P value of each term, respectively.
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0.95. Furthermore, the same multi-gene panels were tested in other
datasets GSE45512 and GSE80342 (Supplementary Figure S1A, B),
and the predictive performance was even better than that of the
current training dataset.

In addition, to avoid over-fitting within the multi-gene panels,
a series of machine learning algorithms, including 97 different
combinations, were used for training and testing in different
datasets to screen the optimal fitting models. As shown in
Figure 2C, based on the aforementioned 51 common genes, most
of the fitted models demonstrated strong predictive performance
in both the training or testing cohorts, although some models
exhibited false-negative or false-positive scores in certain samples
(Supplementary Figure S2).

3.3 Infiltration of immune cells in AA

We further performed GSVA on all included samples to evaluate
the degree of infiltration of different types of immune cells. As
shown in Figure 3A, in the three cohorts of CIBERSORT immune
cell infiltration results, the infiltration scores of “T cell gamma delta,”
“T cell CD8,” “NK cells activated,” and “NK cells resting” in AA
individuals were significantly increased. On the other hand, the
infiltration scores of “eosinophils”, “plasma cells,” and “mast cells
activated” were significantly lower than those in healthy controls.
As shown in Figure 3B, the infiltration score changes between AA
patients and healthy controls in TCIA immune cell subtypes suggest
the important role of CD8 T cells, such as “activated CD8 T cell”
and “effector memory CD8 T cell.” Consistent with a previous study,
the depletion of CD8 T cells reversed the AA disease in an in vivo
experiment in mice (Lee et al., 2023a). All immune cell infiltration
scores were used as phenotypic traits to calculate associations with
module eigen genes.

3.4 Correlation of eigen genes and immune
cell infiltration

In the final results of merged WGCNA, 15 gene modules
were found within the selected DEGs in the training cohort.
Interestingly, the biological process enrichment analysis of each gene
module revealed that the brown module was significantly enriched
in “epidermis development,” “epidermal cell differentiation,”
“keratinocyte differentiation,” and “hair cycle” and that the saddle
brown module was significantly enriched in “leukocyte cell–cell
adhesion,” “mononuclear cell differentiation,” “regulation of
T-cell activation,” and “T-cell differentiation” (Figure 3C).Moreover,
the significant correlation results between module eigen genes
and CIBERSORT immune cell infiltration indicate that they play
important roles in these biological processes. As shown in Figure 4A,
a few gene modules were significantly associated with all immune
cell infiltration scores, such as positively correlated modules
gray, dark-gray, and saddle brown, and negatively correlated
modules blue, brown, and dark olive-green. In addition, the
correlation results of module eigen genes are generally consistent
with the TCIA immune cell atlas compared with similar cell
subtypes (Figure 4B).

3.5 Immune cell subsets and signature
genes

Figure 5A shows the single-cell UMAP plot of the different cell
subsets and the relative proportions of cell subtypes in six AA
patients and two healthy controls. Then, we screened 16 genes that
were highly expressed in immune cell subtypes such as CD4 T,
CD8 T, and NK T (Supplementary Figure S3A). The Wilcox test of
signature genes was conducted between AA patients and healthy
controls in different cell subtypes (Supplementary Figure S3B), and
GSVA scores of samples based on the top 50 biomarkers in each
cell cluster were compared (Figure 5B; Supplementary Table S4).
Consistent with the aforementioned result, the immune cell
infiltration scores of subtypes CD4 T, CD8 T and NK T were
significantly increased in AA patients. In addition, a generalized
linear model of the 16 genes was fitted in cohorts GSE68801,
GSE45512 and GSE80342, and there were no false-positive or false-
negative predictions in the results (Figure 5C).

There is evidence that melanocyte peptide epitopes can function
as autoantigens to induce NK cells and T lymphocytes accumulated
around hair follicles in the lesional skin of AA patients but rarely
in the normal skin due to the immune privilege (Ito et al.,
2008; Gilhar et al., 2001). Therefore, we constructed a network of
cell–cell chat (including CD4 T, CD8 T, NK T, Mac/Mono/DCs,
and melanocyte) signaling pathways for macrophage migration
inhibitory factors (Figure 5D). As a result, signaling from NK T and
CD8 T cells to melanocytes was observed in AA patients but not
in healthy controls, suggesting that NK T and CD8 T may play an
important role in attacking hair follicles via melanocytes.

3.6 Drug-binding properties of proteins
encoded by signature genes

The evaluation of target therapeutic properties was based on the
drug-binding score of the pocket and molecular docking affinity. As
shown in Figures 6, 7A, the molecular structure of eight proteins,
namely, CCL5, CD2, IL2RB, IL2RG, PDE4B, GZMA, CD8A, and
HLA-DRA, and the details of ligand–residue interactions in the
drug-binding pocket only presented the optimal molecular docking
pose in each binding pocket. The four other genes, namely,
CD48, LCP1, LCP2, and GZMK, in Figure 7B, only presented the
available pockets in their protein structures with drug-binding
score greater than 0.1 (Supplementary Table S5).The remaining four
genes, namely, EOMES, GPR171, EVI2A, and EVI2B, do not have
corresponding 3D crystal structures of proteins in the database.

In addition, we searched the CTDdb to look for therapeutic
chemicals associated with target genes (Supplementary Table S6).
Molecular docking was performed between available molecular
binding pockets and interacting chemicals, as shown in Figure 7C,
targeting the top three chemicals with the highest affinity score for
each gene. In general, the higher the energy score, the stronger
the binding ability between the two molecules and the greater
the complexity of the interaction. For example, the chemicals
methotrexate, resveratrol, and curcumin are themost optimal target-
binding drugs for the LCP2 gene. Details of the molecular docking
results are provided in Supplementary Table S7.
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FIGURE 2
Model training and testing results. (A) Prediction model and relative expression heatmap for genes in the enriched term “regulation of T cell-mediated
cytotoxicity.” Performance of top four multi-gene panel receiver operative curves. (B) Prediction model and relative expression heatmap for genes in
the enriched term “cell killing.” Performance of top four multi-gene panel receiver operative curves. (C) Performance of training and testing cohorts for
97 machine learning models.
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FIGURE 3
Differences in immune cell infiltration and biological function of gene modules of interest. (A, B) Significance tests and fold changes for immune cell
infiltration [(A) CIBERSORT and (B) TCIA] scores of gene expression sets from the scalp of AA patients and healthy controls in datasets GSE68801,
GSE45512, and GSE80342. (C) Biological functions of two gene modules (negatively correlated brown module and positively correlated saddle brown
module), which focused on skin cell development and immune cell activation, respectively.

3.7 Stability of bonded composites

An example of molecular dynamics simulation of the binding
mode ofmethotrexate to theHLA-DRAprotein is shown in Figure 8.
The variation in RMSD in stable ranges reflects the stability of

the simulation system (Figure 8A). The cumulative distribution of
FEL over RMSD in 300 nanoseconds simulation time is visualized
using 100 grid matrices (Figure 8B), where the aggregated peaks
correspond to the stability pattern of the composite. The overall
RMSF of all amino acid residues is shown in Figure 8C, which
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FIGURE 4
Pearson correlation results of module eigen genes and immune cell infiltration scores. (A, B) Heatmap of Pearson correlation results of module eigen
genes and immune cell infiltration scores. [(A) CIBERSORT and (B) TCIA;

∗
P < 0.05,

∗∗
P < 0.01,

∗∗∗
P < 0.001].

characterizes the flexibility and motion intensity of protein amino
acids during the whole simulation process. Figure 8D shows the
changes in SASA of the two drug–protein binding patterns over

the simulation time. Detailed simulation results of RMSD, FEL,
RMSF, and SASA in other potential drug–protein binding modes
are shown in Supplementary Figures S4–7, respectively.
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FIGURE 5
Immune cell interactions in single cell RNA-seq cell subtypes. (A) Cell type atlas of six alopecia areata patients and two healthy controls in the
single-cell RNA sequence dataset GSE233906. (B) Difference in cell type infiltration on the basis of top 50 biomarkers in each cell cluster. (C) Predictive
performance of gene-panel with 16 genes in pooled datasets GSE68801, GSE45512, and GSE80342. (D) Comparative network of cell–cell chat
(including CD4 T, CD8 T, NK T, mac/mono/DCs, and melanocyte) signaling pathways for macrophage migration inhibitory factors.
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FIGURE 6
Details of ligand–residue interactions in drug-binding pockets.

The binding conformation of the methotrexate and HLA-
DRA protein complex is shown in Figure 8E. The free energy
diagram of solvent stability and contribution of solvation was

visualized at a distance of 5 Å from the ligand (Figure 8F), and
the large coverage area of the receptor and ligand indicates high
solvent stability and accessibility. The total binding energy of the
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FIGURE 7
Evaluation of molecular docking and drug-binding pocket. (A) Details of ligand–residue interactions in drug-binding pockets. (B) Crystal structure of
the optimal molecular docking position in each available pocket. (C) Top three chemicals with the highest affinity score for protein molecular encode
by each signature gene.
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FIGURE 8
Stability evaluation of molecular dynamics simulation for the binding mode of methotrexate and HLA-DRA protein. (A) RMSD changes in the two
binding pocket modes. (B) Three-dimensional heatmap of the cumulative distribution of free energy landscapes (FELs) over RMSD variations in a
300-nanosecond molecular dynamics simulation. (C) RMSF of all amino acid residues in each binding pocket mode. (D) SASA changes in the two
binding pocket modes. (E) Binding conformation of methotrexate and HLA-DRA protein complex. (F) Free energy diagram of solvent stability and
contribution of solvation to binding free energy. The dark-green area and violet grid represent free energies less than −0.2 kcal/mol/Å3 and greater
than 0.2 kcal/mol/Å3, respectively, at a distance of 5Å from the ligand. (G, H) Interactions of methotrexate with binding residues in the crystal structure
(G) and schematic diagram (H) of the HLA-DRA protein.
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methotrexatemoleculewith theHLA-DRAprotein is−10.49 kcal/mol
(Supplementary Table S6). Details of the interaction between amino
acid residues and methotrexate atoms were displayed in the crystal
structure (Figure 8G) and schematic diagram(Figure 8H)of theHLA-
DRA protein, respectively. It was observed that the methotrexate
molecule andHLA-DRAprotein formed fourH-bonds at distances of
3.18 Å, 3.00 Å, 3.12 Å, and 3.13 Å. Three amino acid residues (Val6,
Glu141, and Ile8) were involved in the hydrophobic interactions at
distances of 4.18 Å, 4.12 Å, and 4.16 Å, respectively.

4 Discussion

In this study, we screened 51 upregulated DEGs from the
two datasets of AA patients and healthy controls based on
log2FoldChange greater than 1.0. The predictive performance of
the generalized linear binomial model with different multi-gene
panels was applied to training and testing datasets. A series of
machine learning algorithms, including 97 different combinations,
were tested to avoid model over-fitting. The important role of
immune cells, especially CD8 T cells and CD4 T cells, in AA
patients was confirmed by the infiltration analysis of featured
gene sets and the correlation test with the modular eigen genes.
In addition, we validated the important role of immune cell
subsets in single-cell RNA sequence data and used 16 highly
expressed genes in immune cells for further analysis to develop
novel target drugs. Finally, evaluations of molecular docking and
molecular dynamics simulations were performed between the
protein structures encoded by target genes and the interacting
chemicals to discover potential new drugs.

Consistent with the known evidence, our study found that
CD4+/8+ T cells play an important role in the formation of AA. As
described in single-cell RNA sequence data by Lee et al. (2023a),
CD8+ T cells are the primary disease-driving cell type in AA but
not CD4+ T cells or NK cells. In a rat model with CD4+ T cell
deletion, significant hair growth was observed within 23 days of the
start of treatment; however, with the re-emergence of CD4+ T cells,
the newly generated hair was eventually lost (McElwee et al., 1999).
Interestingly, in another study of peripheral blood from patients
with active AA, the circulating CD4/CD8 T cells and NK cells were
significantly reduced compared to healthy controls (Younes et al.,
2022). Therefore, whether CD4+ T cells act directly on hair follicles
or are driven by cytotoxic T lymphocytes via T helper cells requires
further investigation. Additionally, there is evidence that cytotoxic
CD8+NKG2D+effectorTcells play an important role in the induction
of AA inmice (Xing et al., 2014). According to the released cytokines,
the CD8+NKG2D+ effector T cells are classified into several subsets,
including iNKT1, iNKT2, iNKT10, and iNKT17 (Xu et al., 2023).
In an in vivo study using a humanized model, Ghraieb et al. (2018)
suggested that iNKT10 cells are key disease-protective lymphocytes
in AA lesions. However, the function of other subtypes of iNKT in
experimental models of AA has not been studied and confirmed.

Aside from immune cells, current evidence suggests that
melanocytes are the trigger point for immune system attacks that
cause hair follicle destruction (Xie et al., 2022; Gilhar et al.,
2001; Przybyla et al., 2021). In a mouse model of lesional scalp
grafts on SCID mice by Gilhar et al. (2001), melanocyte-peptide-
activated T cells significantly reduced hair regrowth, suggesting

that melanocyte-peptide epitopes can function as autoantigens in
alopecia areata. In the macrophage migration inhibitor signaling
pathway (Figure 5D), cell–cell interactions of melanocytes from
other cell types, such as CD8+ T and NKT, were only present in AA
samples, suggesting that melanocytes may play an important role
in AA induction. One possible mechanism is that the autoantigens
released during the apoptosis ofmelanocytes that cannot be repaired
in time induce CD8+ T-cell attack (Xie et al., 2022).

As for existing treatments for AA patients, both local and
systemic, none are effective in the long term, both may have
side effects, and relapse often occurs (Zhou et al., 2021). In
recent years, with a further understanding of the pathogenesis of
AA, some new therapeutic strategies have emerged, such as JAK
inhibitors (Mackay-Wiggan et al., 2016a) and some small molecule
drugs (Price, 1987; Chartaux and Joly, 2010; Royer et al., 2011;
Joly et al., 2023). However, because of the efficacy, side effects,
and limited persistence of these drugs, treatment outcomes in
patients with AA are often unsatisfactory. Therefore, based on our
findings of important target genes and interacting chemicals, we
performed molecular docking procedures to search for potential
novel therapeutic agents. As a result, molecular methotrexate
showed a high affinity for protein structures of LCP2, CD2, CD48,
IL2RB, and GZMA; resveratrol showed a high affinity for protein
structures of LCP2 and IL2RG; and curcumin showed a high affinity
for protein structures of LCP2 (Figure 6C).

Consistent with recent evidence from a randomized controlled
trial (NCT02037191) (Joly et al., 2023), the combination of
methotrexate and low-dose prednisone resulted in full hair regrowth
in up to 31% of patients, with nearly the same effect as the
JAK inhibitors. Results from another single-center retrospective
case series suggest that methotrexate monotherapy is a viable
option for patients with severe AA who do not respond to other
standard therapies or have systemic corticosteroid contraindications
(Kinoshita-Ise et al., 2021). The same conclusion has been found
in systematic reviews and meta-analyses of AA patients receiving
methotrexate treatment, and adults appear to be more sensitive to
methotrexate treatment than pediatric patients (Phan et al., 2019).
However, in another systematic review and meta-analysis of AA
patients using JAK inhibitors, there was no difference in response
rates between children and adult cases (Phan and Sebaratnam,
2019). In a randomized controlled trial using a mixture of curcumin
in the treatment of alopecia areata, curcumin had a 63.33% response
rate butwas not better thanminoxidil (70%) in short-term treatment
(12 weeks) (Mao et al., 2022).

Another new highlight in this study is the application of
molecular docking and molecular dynamics simulation in the
exploration of potential therapeutic drugs to treat AA. For decades,
computer-aided screening of novel drugs has played an important
role in the treatment of many diseases (Sliwoski et al., 2014;
Pinzi and Rastelli, 2019). For example, in the research of a
new compound that could reduce the appearance of age spots,
Mann et al. (2018) performed molecular docking, screening 50,000
compounds for comparison with known whitening ingredients. In
clinical randomized controlled trials, they found that Thiamidol
was successful in reducing human skin pigmentation. Ghosh et al.
(2018) found that by applying molecular docking to find new
treatments for acne, the molecule VCD-004 showed optimal skin
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penetration and a powerful anti-inflammatory effect by reducing
pro-inflammatory cytokines (IL-6), independent of its antibacterial
effect (Ghosh et al., 2018). Aside from the molecular docking
process,molecular dynamics simulation is an important approach to
evaluate the effect of simulated physiological conditions on docked
drug–protein complexes (Liu et al., 2018; Parise et al., 2024). In
this study, the stability and flexibility evaluation results of RMSD,
FEL, RMSF, and SASA advance our understanding of the available
drug-like chemicals to target proteins, thereby accelerating the
development of new therapeutic agents.

The exact pathological mechanism of AA is not clear, but the
widely described theory is a collapse of the immune privilege
system, making the functional changes within immune cells in AA
pathology highly complex.Therefore, there are certain limitations in
discussing the role of immune subsets of cells in AA in this study.
For example, the absence or aberrant function of T-reg cells will
lead to autoimmune diseases as T-reg cells can suppress the immune
responses of other cells and act as master regulators of self-tolerance
(Lucca and Dominguez-Villar, 2020). There is evidence that T-
reg cells are significantly reduced in patients with AA compared
to other dermatoses (Speiser et al., 2019). Uchida et al. (2020)
revealed that the number of γδT cells in the scalp of patients with
AA was significantly higher than that of healthy controls. IFN-
α-producing plasmacytoid dendritic cells initiate the occurrence
of AA in mice by inducing cell apoptosis (Ito et al., 2020). In
addition, most potential target gene chemicals need to be evaluated
and validated in future in vitro or in vivo experiments before
clinical approval.

5 Conclusion

As far as we know, AA is a complex autoimmune disease,
and further evidence and validation are needed to support a
precise theory of its pathogenesis. In any case, this study confirmed
the important roles of CD4+ T and CD8+ T cells in bulk RNA
and single-cell RNA sequence datasets; using robust methods to
train and test models of key genes, as well as molecular docking
and evaluation of protein-chemical evaluations, we screened
several important target proteins and drug-like compounds. The
findings of this study, in whole or in part, contribute to a
better understanding of the characterization of immune cell
subsets in AA and provide new insights for future research on
targeted therapies.
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