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Introduction:Metabolic dysfunction-associated steatotic liver disease (MASLD)
is themost prevalent chronic liver disease worldwide. However, the role of folate
in MASLD remains controversial. This study aimed to investigate the association
between two folate indicators [serum folate and red blood cell (RBC) folate]
and MASLD prevalence using data from the 2017–2020 National Health and
Nutrition Examination Survey (NHANES).

Methods: A total of 3,879 participants without liver disease or significant alcohol
consumption were included in the final analysis. Hepatic steatosis was assessed
via transient elastography, with MASLD defined as a controlled attenuation
parameter (CAP) ≥285 dB/m and the presence of at least one cardiometabolic
risk factor. Logistic regression and generalized additive models (GAMs) were
used to evaluate associations between folate levels and MASLD, with subgroup
analyses stratified by age, gender, and body mass index (BMI).

Results: After full adjustment for confounders, RBC folate exhibited a significant
positive association with MASLD (OR = 1.111 and 95% CI: 1.015–1.216 per 1-
unit increase). In contrast, serum folate showed a transient negative association
in minimally adjusted models (OR = 0.869 and 95% CI: 0.802–0.941), which
disappeared after further adjustments. Subgroup analyses confirmed that age,
gender, and BMI did not modify the RBC folate–MASLD relationship.

Discussion: These findings suggest that elevated RBC folate levels are
independently associated with MASLD prevalence, whereas serum folate may
lack clinical relevance due to susceptibility to confounding factors. RBC folate,
as a stable biomarker of long-term folate status,may serve as a superior indicator
for investigating folate–MASLD associations.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease
(MASLD) is one of the leading causes of chronic liver disease,
affecting approximately 25% of the U.S. population and 30% of
the global population (Zhang and Brandman, 2025). It is also
the second most common indication for liver transplantation
(Kwong et al., 2024). Historically, MASLD was referred to as non-
alcoholic fatty liver disease (NAFLD). However, the exclusionary
diagnostic criteria associated with NAFLD have been deemed
inappropriate, prompting a redefinition of the condition. In 2020, an
international panel of experts from 22 countries proposed the term
“metabolic dysfunction-associated fatty liver disease (MAFLD)”
(Eslam et al., 2020). Subsequently, in 2023, threemajor international
liver associations introduced the new nomenclature “metabolic
dysfunction-associated steatotic liver disease (MASLD)” to replace
both NAFLD and MAFLD (Lazarus et al., 2024). Unlike NAFLD,
MASLD more accurately characterizes the disease by emphasizing
the relationship between fatty liver andmetabolic dysfunction rather
than simply categorizing it based on alcohol consumption (Fan et al.,
2024). According to the recent Delphi Consensus Statement,
MASLD is defined as steatotic liver disease (SLD) accompanied
by at least one cardiometabolic risk factor (e.g., obesity, elevated
blood glucose, elevated blood pressure, elevated triglycerides,
or reduced high-density lipoprotein levels) and the absence of
other apparent causes of SLD. Currently, the primary treatment
for MASLD focuses on lifestyle modifications, including weight
loss, exercise, reduced caloric intake, and decreased consumption
of saturated fats and sugary beverages. However, no specific
medications have been proven effective for MASLD treatment
(Rinella et al., 2023).

Folate, a water-soluble B9 vitamin, serves as a coenzyme
substrate for one-carbon transfer reactions, which are crucial
for nucleic acid biosynthesis, methylation reactions, and sulfur-
containing amino acid metabolism (Younossi, 2019). Given that
MASLD is a relatively new concept, there are limited reports on
the relationship between folate and MASLD. However, due to the
overlap between MASLD and NAFLD, findings related to NAFLD
can provide some insights. Nevertheless, clinical research on the
association between folate and NAFLD has yielded contradictory
results, and we hypothesize that the choice of folate indicators may
be a contributing factor. In clinical practice, both red blood cell
(RBC) folate and serum folate are commonly used to assess folate
levels. Although both indicators measure the same substance, their
correlation ranges between 0.5 and 0.6, likely due to differences
in their forms and detection methods (Youssry and Kamel, 2019;
Maruvada et al., 2020). Serum folate reflects the circulating folate
levels in the body but is susceptible to factors such as recent
dietary intake. In contrast, RBC folate represents the body’s folate
stores and is more stable as it is less influenced by short-term
dietary changes (Li et al., 2018; Chen et al., 2021). Therefore, we
conducted a retrospective study using data from the 2017–2020
National Health and Nutrition Examination Survey (NHANES) to
explore the relationship between serum folate, RBC folate, and the
prevalence of MASLD.

2 Materials and methods

2.1 Participant selection

The study utilized data from the 2017–2020 NHANES.
NHANES is a biennial research program designed to assess the
health and nutritional status of adults and children in the United
States. The survey employs a stratified multistage probability
sampling design to select non-institutionalized participants. Data
categories primarily included demographic characteristics, dietary
intake, physical examinations, laboratory tests, and questionnaire
responses. From the NHANES database (2017–2020), we initially
screened 15,560 participants who underwent controlled attenuation
parameter (CAP) assessments for hepatic steatosis and blood
folate testing. Exclusion criteria were as follows: 1. age <18 years;
2. refusal or inability to complete CAP examination; 3. missing
values for RBC folate or serum folate; 4. significant alcohol
consumption (>210 g/week for men or >140 g/week for women);
5. pre-existing liver conditions (e.g., hepatitis B or C infection);
and 6. incomplete data for MASLD diagnosis. After applying
these criteria, 3,879 participants were included in the final analysis
(Figure 1).

2.2 Measurement of MASLD

Hepatic steatosis was evaluated using liver ultrasound
transient elastography (FibroScan®model 502 V2 Touch) with
medium (M) or extra-large (XL) probes. The CAP was used
to diagnose SLD, with a detectable range of 100–400 dB/m.
Participants were classified as having SLD if their CAP value was
≥ 285 dB/m (Taesuwan et al., 2025). MASLD diagnosis required
the presence of SLD (CAP ≥285 dB/m) combined with at least
one of the following cardiometabolic risk factors defined by the
Delphi Consensus Statement: 1. body mass index (BMI) > 25 kg/m2

(or >23 kg/m2 for Asian individuals), waist circumference >94 cm
(men) or >80 cm (women), or ethnicity-adjusted thresholds;
2. fasting glucose ≥ 5.6 mmol/L, 2-h postprandial glucose
≥ 7.8 mmol/L, HbA1c ≥ 5.7%, or diagnosed/treated type 2
diabetes; 3. blood pressure ≥ 130/85 mmHg or antihypertensive
medication use; 4. triglycerides ≥ 1.70 mmol/L or lipid-
lowering treatment; and 5. high-density lipoprotein (HDL)
cholesterol ≤ 1.0 mmol/L (men) or ≤ 1.3 mmol/L (women) or
lipid-lowering therapy.

2.3 Alcohol consumption

Alcohol intake was assessed via the NHANES “Alcohol
Use” questionnaire, which included items on lifetime alcohol
consumption (“ALQ111”), frequency of alcohol use in the
past 12 months (“ALQ121”), and average daily alcohol intake
(“ALQ130”). One standard drink was defined as 14 g of alcohol
(equivalent to 12 oz beer, 5 oz wine, or 1.5 oz liquor). Participants
exceeding sex-specific thresholds (men >210 g/week; women
>140 g/week) were classified as having significant alcohol
consumption. Although MASLD encompasses metabolic and
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FIGURE 1
Flowchart of participant selection.

alcohol-associated steatohepatopathy (MetALD), individuals with
alcohol intake between 140 and 350 g/week (women) or 210 and
420 g/week (men) were excluded due to the heterogeneity of
alcohol-induced liver damage.

2.4 Other covariates and definitions

Demographic variables (age, gender, race, and income-to-
poverty ratio) and lifestyle factors (smoking status and physical
activity) were collected via computer-assisted personal interviews.
Dietary data (energy intake and folate intake) and anthropometric
measurements (weight, height, waist circumference, and blood
pressure) were obtained during mobile examination center (MEC)
visits. Dietary energy intake (DEI) and dietary folate intake
(DFI) were calculated as the average of two 24-h dietary recalls.
Laboratory data included total cholesterol (TC), total glyceride
(TG), HDL cholesterol, alanine aminotransferase (ALT), aspartate
aminotransferase (AST), uric acid (UA), C-reactive protein (CRP),
serum folate, and RBC folate. In particular, population folate status

was assessed using a combination of two analytical methods: whole-
blood folate was measured using a microbiologic assay, while serum
folate forms were measured via isotope-dilution high-performance
liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS); RBC folate was then measured using data from
both assays (Zhang et al., 2021). Hypertension was defined as
systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥
90 mmHg or a history of hypertension. Diabetes was defined as
an FPG ≥ 7.0 mmol/L or HbA1c ≥ 6.5% or ever having a history
of diabetes.

2.5 Statistical analysis

Continuous variables were expressed as median (interquartile
range, IQR), and categorical variables were expressed as frequencies
(percentages). Group differences (MASLD vs non-MASLD)
were analyzed using Kruskal–Wallis tests (continuous) and chi-
square tests (categorical). Multivariable logistic regression models
were constructed to assess associations between folate levels
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(serum/RBC) and MASLD, including a crude model (no covariates
were adjusted), Model I (adjusted for age, gender, race, and income),
Model II (adjusted for covariates in Model I + BMI, physical
activity, smoking, hypertension, diabetes, DEI, and DFI), and
Model III (adjusted for covariates in Model II + TC, ALT, AST,
UA, and CRP). Generalized additive models (GAMs) were used to
explore nonlinear relationships. Subgroup analyses stratified by age,
gender, and BMI were conducted to evaluate effect modification. All
analyses were performed using SPSS 27.0 and R 4.3.2, with statistical
significance set at ∗P∗< 0.05 (two-tailed).

3 Results

3.1 Characteristics of participants

A total of 3,879 participants were included in the final analysis
(1,535 male participants and 2,344 female participants), with an
overall MASLD prevalence of 34.1%. The median age was 45 years
(IQR: 31–61). As shown in Table 1, participants with MASLD
were significantly older (median 51 vs. 41 years, ∗P∗< 0.001) and
exhibited higher BMI (33.4 vs. 26.4 kg/m2, ∗P∗< 0.001) and waist
circumference (111.0 vs. 91.9 cm, ∗P∗<0.001) than non-MASLD
individuals. Additionally, the MASLD group had a higher prevalence
of diabetes (29.4% vs. 8.6%, ∗P∗< 0.001), hypertension (53.2% vs.
31.5%, ∗P∗<0.001), and smoking (41.0% vs. 34.1%, ∗P∗< 0.001).
Laboratory findings revealed elevated levels of total cholesterol,
triglycerides, ALT, AST, uric acid, and C-reactive protein (∗P∗< 0.001
forall),alongsidereducedHDLcholesterol(∗P∗<0.001).Notably,RBC
folate levels were significantly higher in the MASLD group (median
494 vs. 446 ng/mL, ∗P∗< 0.001), whereas no significant differences
were observed in serum folate, DEI, or DFI (∗P∗ > 0.05).

3.2 Associations between serum folate and
MASLD

Multivariate logistic regression demonstrated that serum folate
was not independently associated with MASLD in the crude model
(OR=0.975 and 95%CI: 0.912–1.044),Model II (OR=1.013 and 95%
CI: 0.923–1.111), orModel III (OR= 1.006 and 95%CI: 0.915–1.106).
A transient protective effect was observed in Model I (adjusted for
age, gender, race, and income), where each standard unit increase in
serum folate reduced theMASLD risk by 13.1% (OR = 0.869, 95%CI:
0.802–0.941, and∗P∗< 0.001). However, this association dissipated
after further adjustments for metabolic and inflammatory markers.
Quartile analysis similarly showed no significant trends in serum
folate distribution between MASLD and non-MASLD groups (∗P∗=
0.209) (Figure 3a). GAMs further confirmed nonlinear relationships
in crude and Model I analyses, but these patterns were obscured in
fully adjusted models (Figures 2a–d).

3.3 Associations between RBC folate and
MASLD

In contrast, RBC folate exhibited a robust positive correlation
with MASLD across all models. As a continuous variable, each

standard unit increase in RBC folate elevatedMASLDodds by 28.8%
in the crude model (OR = 1.288, 95% CI: 1.205–1.376, and ∗P∗<
0.001), 19.2% in Model I (OR = 1.192, 95% CI: 1.106–1.285,
and ∗P∗< 0.001), 13.7% in Model II (OR = 1.137, 95% CI:
1.041–1.242, and ∗P∗< 0.01), and 11.1% in Model III (OR = 1.111,
95% CI: 1.015–1.216, and ∗P∗< 0.05). Quartile analysis revealed a
dose-dependent relationship: compared to the lowest quartile (Q1),
the highest RBC folate quartile (Q4) was associated with a 44.3%
increased risk of MASLD in the fully adjusted model (OR = 1.443,
95% CI: 1.113–1.872, and ∗P∗< 0.001) (Table 2). This trend was
visually supported by the significantly higherRBC folate distribution
in the MASLD group (∗P∗< 0.001) (Figure 3b).

3.4 Subgroup analysis

Subgroup analyses stratified by age, gender, and BMI
demonstrated no significant interactions (∗P∗for interaction >
0.05 for all), indicating that the positive association between RBC
folate and MASLD remained consistent across demographic and
metabolic subgroups (Figure 4).

4 Discussion

This cross-sectional study analyzed NHANES data from
2017 to 2020 to explore the association between two forms of
folate (serum folate and RBC folate) and MASLD. Our findings
revealed that serum folate demonstrated a negative correlation
with MASLD prevalence only in a minimally adjusted model
(Model I), but this association lost significance in fully adjusted
or crude models. In contrast, RBC folate levels exhibited a
consistent positive association with MASLD across all models.
In particular, when analyzed as a continuous variable, RBC folate
showed a linear relationship with the MASLD risk, where higher
concentrations correlated with increased odds of MASLD. Similarly,
quartile analyses indicated that higher RBC folate quartiles were
associated with elevated MASLD prevalence, even after adjusting
for confounders. Subgroup analyses further confirmed that age,
gender, and BMI did not modify the relationship between RBC
folate and MASLD.

Clinical findings regarding folate and MASLD or NAFLD
remain controversial. A study on adult participants in China
showed that low serum folate levels have been identified as an
independent risk factor for NAFLD, and the incorporation of serum
folate levels into the existing NAFLD prediction scores has led
to a notable enhancement in the accuracy of NAFLD prediction
(Yuan et al., 2022). Guo et al. found that higher serum folate levels
were associated with a lower risk of NAFLD through a cross-
sectional study of 5,714 American adult participants (Leow et al.,
2023). A meta-analysis of homocysteine, folate, and NAFLD by
Shuai et al. also found that serum folate was negatively associated
with the risk of developing NAFLD (Konyn et al., 2023). On the
contrary, in a study utilizing data from NHANES 1999–2004, Li
et al. investigated the correlation between vitamin B12 markers
and NAFLD. Their findings indicated that RBC folate exerted
a significant independent influence on NAFLD, while serum
folate demonstrated no association with NAFLD (Gofton et al.,
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TABLE 1 Characteristics of the participants studied.

Variable Overall MASLD P-value

No Yes

N (%) 3879 (100) 2558 (65.9) 1321 (34.1)

Age (years) <0.001

Median (IQR) 45.0 (31.0–61.0) 41.0 (28.0–59.0) 51.0 (38.0–63.0)

Gender (%) <0.001

Male 1535 (39.6) 918 (35.9) 617 (46.7)

Female 2344 (60.4) 1640 (64.1) 704 (53.3)

Race (%) <0.001

Mexican American 477 (12.3) 250 (9.8) 227 (17.2)

Other Hispanic 393 (10.1) 269 (10.5) 124 (9.4)

Non-Hispanic White 1370 (35.3) 866 (33.9) 504 (38.2)

Non-Hispanic Black 987 (25.4) 713 (27.9) 274 (20.7)

Other race 652 (16.8) 460 (18.0) 192 (14.5)

Income (PIR) 0.293

<1.3 997 (29.2) 668 (29.8) 329 (28.0)

1.3–3.5 1302 (38.1) 834 (37.2) 468 (39.8)

>3.5 1120 (32.8) 742 (33.1) 378 (32.2)

Physical activity 0.004

Inactivate 1040 (26.8) 649 (25.4) 391 (29.6)

Moderate 1347 (34.7) 884 (34.6) 463 (35.0)

Vigorous 1492 (38.5) 1025 (40.1) 467 (35.4)

Smoking (%) <0.001

Yes 1413 (36.4) 871 (34.1) 542 (41.0)

No 2466 (63.6) 1687 (65.9) 779 (59.0)

Hypertension (%) <0.001

Yes 1510 (38.9) 807 (31.5) 703 (53.2)

No 2369 (61.1) 1751 (68.5) 618 (46.8)

Diabetes (%) <0.001

Yes 608 (15.7) 220 (8.6) 388 (29.4)

No 3271 (84.3) 2338 (91.4) 933 (70.6)

Dietary

DEI (kcal) 1920.0 (1404.0–2540.0) 1893.0 (1375.0–2517.0) 1968.0 (1469.0–2626.8) 0.092

DFI (ug) 302.0 (205.0–435.0) 302.0 (203.0–434.0) 302.0 (207.0–436.0) 0.973

(Continued on the following page)
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TABLE 1 (Continued) Characteristics of the participants studied.

Variable Overall MASLD P-value

No Yes

Examination and laboratory

BMI (kg/m2) 28.7 (24.4–34.0) 26.4 (23.0–30.7) 33.4 (29.2–38.8) <0.001

WC (cm) 98.0 (86.5–111.0) 91.9 (81.6–102.5) 111.0 (101.1–122.4) <0.001

TC (mg/dL) 179 (155.0–206.0) 176.0 (153.0–203.0) 184.0 (159.0–211.0) <0.001

TG (mg/dL) 107 (74.0–156.0) 92.0 (68.0–130.0) 141.0 (102.0–202.0) <0.001

HDL (mg/dL) 51 (42.0–61.0) 54.0 (46.0–65.0) 45.0 (39.0–53.0) <0.001

ALT (U/L) 17.0 (12.0–24.0) 15.0 (11.0–21.0) 21.0 (15.0–31.0) <0.001

AST (U/L) 18.0 (15.0–23.0) 18.0 (15.0–22.0) 19.0 (16.0–25.0) <0.001

UA (umol/L) 303.3 (249.8–356.9) 285.5 (237.9–339.0) 333.1 (279.6–392.6) <0.001

CRP (mg/L) 1.9 (0.8–4.5) 1.4 (0.6–3.5) 3.2 (1.4–6.4) <0.001

Serum folate (ng/mL) 14.3 (9.9–21.1) 14.5 (10.0–21.1) 13.9 (9.6–20.9) 0.076

RBC folate (ng/mL) 464.0 (365.0–596.0) 446.0 (355.0–574.0) 494.0 (392.0–640.0) <0.001

Values were presented as the median (IQR) for continuous variables or as a number (percentage) for categorical variables. Abbreviations: MASLD, metabolic dysfunction-associated steatotic liver
disease; IQR, interquartile range; PIR, poverty income ratio; DEI, dietary energy intake; DFI, dietary folate intake; BMI, body mass index; WC, waist circumference; TC, total cholesterol; TG,
triglyceride; HDL, high-density lipoprotein; ALT, alanine transaminase; AST, aspartate transaminase; UA, uric acid; CPR, C-reactive protein; RBC, red blood cell.

2023). Yalan Chen et al. did not support a causal relationship
between serum folate levels and the risk of MASLD (Chen et al.,
2024). Our study suggests that MASLD may likely be associated
with higher RBC folate levels instead of serum folate, which is
consistent with the findings of Li and Chen et al. A negative
correlation between serum folate and MASLD was only observed in
Model I, which disappeared with the addition of more correction
factors. This may be related to the fact that serum folate is
more susceptible to confounding factors, whereas RBC folate may
be a more stable indicator. It may also be related to different
study populations, inclusion and exclusion criteria, and some
other potential factors.

Folate is a water-soluble vitamin B9, which is absorbed mainly
in the duodenum and proximal jejunum and is stored partly
as polyglutamate folate in red blood cells, the liver, and other
tissues and partly as monoglutamate folate distributed in plasma,
tissue fluids, bile, and urine (Malinowska et al., 2022). There are
significant differences in folate metabolism in erythrocytes and
serum. Folate in erythrocytes is predominantly in the form of 5-
methyltetrahydrofolate and is taken up during erythropoiesis, so
folate levels in erythrocytes reflect long-term folate status rather
than short-term dietary changes (Anderson et al., 2013). In contrast,
serum folate levels are more susceptible to recent dietary intake,
especially the use of folate supplements (Stamm et al., 2018).
Folate intake is important for the maintenance of health. Folate
deficiency during the first 3 months of pregnancy can lead to
neural tube defects (NTDs) in the foetus and a chronic deficiency
can cause macrocytic anemia. Although folate supplementation

through dietary medication can significantly reduce the incidence
of NTDs, some studies have shown that excessive intake of
folate can also have adverse effects on the body (Maher and
Sobczyńska-Malefora, 2021). Bailey R et al. showed that more than
1 mg of folate per day significantly increased serum levels of
unmetabolized folate (UMFA) and that increased UMFA inhibited
hepatic dihydrofolate reductase activity, further reducing folate
metabolism and clearance (Liu et al., 2021). In another study,
researchers found that folic acid supplement intake was associated
with an increase in red blood cell folate concentrations, especially
in individuals with a specific genotype (Anderson et al., 2013).
This suggests that increased folate intake may lead to significant
changes in erythrocyte folate levels, especially in certain genetic
backgrounds. Huang et al. found that individuals with high levels
of folate were associated with an increased risk of benign prostatic
hyperplasia (Malinowska et al., 2022). Daniel L et al. showed that
excessive folate intake can disrupt the internal balance of cholesterol
in the liver (Paternostro and Trauner, 2022). Some other studies
have shown that higher RBC folate concentrations are strongly
associated with the development of gestational diabetes and may
also lead to an increased risk of obesity and type 2 diabetes
(Li et al., 2022; Zhou et al., 2022). A review concluded that excessive
intake of folic acid increases the risk of cancer, disrupts DNA
methylation—leading to abnormalities in red blood cell maturation,
embryonic development, and neurodevelopment—and increases
the risk of gestational diabetesmellitus (Fardous andHeydari, 2023).
These abovementioned findings suggest that we should be careful
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FIGURE 2
Associations between serum folate and the prevalence of MASLD detected by GAMs after adjusting for different models. (a) Crude model (no
covariates were adjusted); (b) Model I (age, gender, race, and income were adjusted); (c) Model II (covariates in Model I with BMI, physical activity,
smoking, hypertension, diabetes, DEI, and DFI were adjusted); (d) Model III (covariates in Model II with TC, ALT, AST, UA, and CRP were adjusted).
Abbreviations: MASLD, metabolic dysfunction-associated steatotic liver disease; DEI, dietary energy intake; DFI, dietary folate intake; BMI, body mass
index; TC, total cholesterol; ALT, alanine transaminase; AST, aspartate transaminase; UA, uric acid; CPR, C-reactive protein.

to take the right amount of folic acid supplementation to avoid
potential health risks.

The exact mechanism of MASLD development is unclear
and is mainly related to various factors such as oxidative stress,
gut microbiology, lipid metabolism, genetic susceptibility, insulin
resistance, and some nutritional and lifestyle factors (Byrne and
Targher, 2015; Rives et al., 2020).There have also been several studies
on the relationship between folate and the occurrence of MASLD. A
study fromGuo et al. found that a folic acid overdose inmice resulted
in a disorder of hepatic lipidmetabolism, characterized by increased
fat synthesis anddecreased lipolysis.Thismetabolic disturbancemay
be due to the inhibition of the one-carbon metabolic pathway by
folate and altered expression of related genes (Guo et al., 2024).
Another study also noted that excessive folic acid intake may affect
hepatic lipidmetabolismby altering the composition and function of
the gut microbiota, which, in turn, affects hepatic lipid metabolism.
This gut–liver axis interaction may play an important role in the
onset and development of MASLD (Yao et al., 2022). Oxidative
stress occurs in the livers of MASLD patients, and excess folate
can lead to an increase in intracellular reactive oxygen species,
which promotes MASLD (Sanyal et al., 2023; Tincopa and Loomba,
2023). UMFA can accumulate in the body when folate intake is

too high, and some studies have found that UMFA is significantly
associated with a higher prevalence of MASLD and that it can
increase the concentration of relevant pro-inflammatory factors and
reduce the cytotoxicity of natural killer cells, which may lead to
the development of MASLD (Fardous and Heydari, 2023; Chen and
Huang, 2024; Kim et al., 2024). However, Shao et al. indicated that a
higher intake of folate did not show any significant correlation with
NAFLD or related liver fibrosis (Teng et al., 2023). In the present
study, we found that the level of DFI was not associated with the
occurrence of MASLD, which is consistent with the findings of Shao
et al. In addition, folate levels may be affected by other nutrients and
metabolites. For example, vitamin B12 and homocysteine levels are
strongly associated with folate metabolism. It has been shown that
B vitamin imbalance due to high folate and relative vitamin B12
deficiency can lead to functional folate deficiency, which triggers
insulin resistance and gestational diabetes. In addition, insulin
resistance or diabetes is one of the major risk factors for MASLD
(Chen et al., 2023; En Li Cho et al., 2023). Some studies have shown
that serum folate deficiency can lead to hyperhomocysteinemia,
which increases the risk of hypertension and cardiovascular disease,
while high homocysteine levels are also an independent risk factor
for liver fibrosis and cirrhosis (Yang et al., 2024). Considering these
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TABLE 2 Relationships between serum/RBC folate and MASLD in different models.

Serum folate Crude model (OR, 95% CI) Model I (OR, 95% CI) Model II (OR, 95% CI) Model III (OR, 95%CI)

Per 1 unit increase 0.975 (0.912–1.044) 0.869 (0.802–0.941)∗∗∗ 1.013 (0.923–1.111) 1.006 (0.915–1.106)

Quartile (ng/mL)

Q1 (<9.9) Ref Ref Ref Ref

Q2 (9.9–14.3) 0.919 (0.763–1.106) 0.960 (0.784–1.175) 1.311 (1.027–1.674)∗ 1.183 (0.919–1.523)

Q3 (14.4–21.1) 0.819 (0.679–0.988) 0.734 (0.597–0.902)∗∗ 1.060 (0.823–1.365) 0.970 (0.747–1.260)

Q4 (>21.1) 0.882 (0.731–1.063) 0.699 (0.566–0.863)∗∗∗ 1.203 (0.930–1.556) 1.139 (0.874–1.484)

P for trend 0.209 <0.001 0.123 0.333

RBC folate

Per 1 unit increase 1.288 (1.205–1.376)∗∗∗ 1.192 (1.106–1.285)∗∗∗ 1.137(1.041–1.242)∗∗ 1.111 (1.015–1.216)∗

Quartile (ng/mL)

Q1 (<365) Ref Ref Ref Ref

Q2 (365–464) 1.315 (1.083–1.597)∗∗ 1.199 (0.970–1.481) 1.219 (0.946–1.570) 1.080 (0.831–1.403)

Q3 (465–596) 1.521 (1.252–1.848)∗∗∗ 1.382 (1.117–1.709)∗∗ 1.331 (1.031–1.718)∗ 1.179 (0.907–1.533)

Q4 (>596) 1.937 (1.600–2.346)∗∗∗ 1.587 (1.283–1.962)∗∗∗ 1.587 (1.232–2.045)∗∗∗ 1.443 (1.113–1.872)∗∗

P for trend <0.001 <0.001 0.004 0.032

Logistic regression was used to detect the odds ratio (95% CI); ∗∗∗P < 0.001, ∗∗P < 0.01, and∗P < 0.05; Crude model: other co-variants are not adjusted; Model Ⅰ: crude model +age + gender + race
+ income; Model Ⅱ: model Ⅰ + BMI + physical activity + smoking + hypertension + diabetes + DEI + DFI; ModelⅢ: Model Ⅱ + TC + ALT + AST + UA + CRP., Abbreviations: MASLD, metabolic
dysfunction-associated steatotic liver disease; RBC, red blood cell; BMI, body mass index; DEI, dietary energy intake; DFI, dietary folate intake; TC, total cholesterol; ALT, alanine transaminase;
AST, aspartate transaminase; UA, uric acid; CPR, C-reactive protein. All continuous variables (age, BMI, TC, ALT, AST, UA, CRP, DEI, DFI, serum folate, and RBC folate) were processed with
standardized regression coefficients to eliminate the impact of different magnitudes.

FIGURE 3
Serum folate (a) and RBC folate (b) quartiles of all participants from the MASLD and non-MASLD groups. The results showed that the distribution of the
RBC folate levels in the MASLD group was relatively higher than that in the non-MASLD group (P < 0.001). However, no obvious difference was
observed between the two groups for serum folate quartiles (P = 0.209).
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FIGURE 4
Subgroup regression to assess the relationship between RBC folate and MASLD. Analyses above were adjusted for age, gender, race, income, BMI,
smoking, diabetes, hypertension, physical activity, DEI, and DFI. In each case, the model is not adjusted for the stratification variable. Abbreviations:
RBC, red blood cell; MASLD, metabolic dysfunction-associated steatotic liver disease; BMI, body mass index; DEI, dietary energy intake; DFI, dietary
folate intake.

factors together can help us better understand and manage folate
levels in red blood cells and serum.

The main strengths of this study are that it used the results
of the NHANES survey, which has a large sample size, and that it
assessed the correlationbetween two indicators of folate (serumand
erythrocyte) and the prevalence ofMASLD.Additionally, this study
used RBC folate as an indicator that better reflects long-term folate
levels in vivo than serumfolate, and rationalizationof covariates and
stratified analyses made the conclusions more reliable. However,
there are still some limitations that cannot be ignored. First, the

nature of this studywas cross-sectional, andwe couldnot determine
a causal relationship between RBC folate and MASLD. Second,
we used CAP results obtained by ultrasound elastography as a
criterion for the diagnosis ofMASLD rather than the gold standard
liver biopsy, and its accuracy and cut-off value are somewhat
controversial. Third, although we included as many covariates as
possible to exclude bias in confounding factors, other potential
factorsmay still cause bias. Accordingly, further prospective studies
are required to elucidate the detailed relationship between RBC
folate and MASLD .
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5 Conclusion

This study demonstrates a significant positive association
betweenRBC folate levels and the prevalence ofMASLD,with a clear
dose-response trend observed across increasing quartiles of RBC
folate. In contrast, serum folate exhibited inconsistent associations,
showing a transient negative correlation only in partially adjusted
models. These findings suggest that RBC folate, reflecting long-term
folate status, may serve as a more reliable biomarker than serum
folate in studying MASLD risk. Future prospective studies and
mechanistic research are warranted to validate these associations
and elucidate the underlying biological pathways linking elevated
RBC folate to MASLD development.
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