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Objectives: Animal models of oral submucous fibrosis (OSF) are essential for the
studying on the pathogenesis of this disease. Current research on animal models
of OSF requires further investigation. In this review, we aim to summarize the
strengths and weaknesses of existing OSF animal models, as well as the recent
progress in this field.

Subject and methods: OSF is an oral potentially malignant disorder (OPMD)
characterized by fibrotic bands, burning sensations, and limited mouth opening.
Numerous experimental animal models have been developed to replicate the
pathological processes in patients with OSF. Therefore, we systematically
evaluated existing animal models of OSF classifying them according to the
elements of building an animal model.

Results: In this study, we propose that the elements of animal models for OSF
include inducers, animal species, and methods of intervention. Additionally, we
highlighted the advantages and limitations of these models and provided
directions for future research.

Conclusion: Using human-like animals as experimental subjects, combining both
physical and chemical stimulation, and adjusting the dosage and type of inducer
may represent the direction of future studies in this field.
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1 Introduction

Oral submucous fibrosis (OSF) is a disease characterized by submucous fibrosis,
ulceration, a burning sensation, and limited mouth opening. It was first identified as a
distinct disease by Indian researchers in 1953 (Pindborg et al., 1964). It has become
increasingly prevalent in Asian regions, especially in Vietnam, India, and several Chinese
provinces. As a result, it has emerged as a significant global healthcare concern (McGurk
and Craig, 1984; Shah et al., 2001). In mainland China, the reported prevalence of OSF
ranges from 0.9% to 4.7% (Liu et al., 2015), and from 2.5% to 3.0% in India (Kumbhalwar
etal., 2022), with these rates continuing to rise. OSF is a potentially malignant disorder with
a high malignant transformation rate (1.5%-15%) (Reichart and Phillipsen, 1998), posing a
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serious threats human life. Therefore, the prevention and treatment
of OSF are critical issues.

1.1 The etiology of OSF

It is widely accepted that the pathogenic factors of OSF include
areca nut chewing (Reichart and Phillipsen, 1998; Zain et al., 1999;
Lee et al,, 2003; Chung et al., 2005; Oakley et al., 2005; Reichart and
Nguyen, 2008), nutritional disorders (Jani et al., 2017; Sachdev et al.,
2018), genetic predisposition (Chiu et al., 2002; Chen et al., 2004; Xie
et al,, 2012), and immunologic factors (Pillai et al., 1987; Liu et al.,
2022). A large body of epidemiological, in vivo, and in vitro studies
has demonstrated that betel nut is a major causative factor in the
development of OSF (Lee et al., 2003; Chung et al., 2005; Hazarey
et al., 2007; Maher et al., 1994; Yang et al., 2001; Yang et al., 2005;
Chen et al., 2006; Yen et al., 2007). Betel nut contains numerous
bioactive components, including alkaloids, flavonoids, phenolic
compounds, and essential oils. Among these, the most important
and widely studied component is arecoline, which is considered the
primary active ingredient responsible for inducing OSF.

Key components found in betel nut include:

Arecoline: A primary alkaloid known to promote fibroblast
proliferation and collagen deposition, contributing to the
fibrotic process in OSF.

Arecaidine: Another alkaloid that may have similar effects to
arecoline in the development of OSF.

Tannins: Polyphenolic compounds that can contribute to tissue
irritation and fibrosis.

Flavonoids: Antioxidant compounds that may have both
protective and harmful effects, depending on their interaction
with other components.

The high concentration of arecoline in betel nut is believed to be
the most significant factor in the induction of OSF, acting
through various molecular pathways to stimulate fibroblasts,
inhibit collagen degradation, and promote extracellular matrix
accumulation, ultimately leading to fibrosis and subsequent
Understanding  the
pathological characteristics of OSF is crucial. However, its

tissue  scarring. pathogenesis  and

exact pathogenesis remains unclear.

1.2 The pathogenesis of OSF

Currently, the most widely accepted theories suggest that OSF
pathogenesis involves abnormal expression of inflammatory cytokines
and growth factors, such as TGF-B, TNF-a, IGF-1, b-FGF, and CTGF
(Chiu et al., 2001; Tsai et al., 2005; Bishen et al., 2008; Khan et al., 2011;
Moutasim et al., 2011; Khan et al.,, 2012; Chang et al., 2013; Kale et al,
2013; Yadahalli et al., 2022), abnormal activation of the NF-«xB, c-Jun
N-terminal kinase (JNK), and p38 MAPK pathways (Deng et al., 2009;
Pitiyage et al, 2011; Liu et al, 2021), imbalance between matrix
(MMPs) and tissue inhibitors
metalloproteinases (TIMPs) (Illeperuma et al., 2010), elevated levels

metalloproteinases of matrix

of salivary copper and copper-dependent enzyme lysyl oxidase (Shich
et al, 2009), MEK, PI3K, and
cyclooxygenase-2 (COX-2) signaling pathways, and the subsequent

abnormal activation of the
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increase in heat shock protein (HSP) 47 (Utsunomiya et al., 2005; Yang
et al,, 2008), as well as the generation of reactive oxygen species (ROS)
(Deng et al., 2009; Pitiyage et al,, 2011). These changes contribute to
decreased collagen degradation, increased collagen accumulation,
excessive extracellular matrix (ECM) deposition and remodeling,
ultimately of OSF.
Furthermore, excessive apoptosis of endothelial cells in OSF leads to

resulting in the fibrosis characteristic
vascular endothelial damage, impairing vascular function and causing
epithelial atrophy (Tseng et al.,, 2012). The histopathological features of
OSF include epithelial atrophy, collagen fiber accumulation in the
lamina propria and submucosa, reduced vascularity, and vessel
occlusion (Figure 1), which collectively compromise the function

and architecture of the oral mucosa.

1.3 The purpose of this study

The purpose of this review is to provide a comprehensive
overview of the various experimental models used to study oral
submucous fibrosis (OSF). Specifically, this review aims to:

Summarize Different Animal Models: Categorize and describe
the various animal models based on species, inducing agents,
intervention techniques, and outcome observation indicators,
providing a structured comparison.

Highlight the Mechanisms of OSF: Focus on the mechanisms
induced by various agents and techniques in these models,
contributing to a  deeper understanding of the
pathogenesis of OSF.

Guide Future Research: Offer insights into future research directions,
recommend optimal models for studying different aspects of OSF,
and suggest improvements or new experimental designs.

Support Translation to Human Disease: Assist researchers in
selecting models that best reflect the pathophysiology of OSF in
humans, thereby enhancing the translational potential of

experimental findings.

2 Method

The study was based on data obtained from a systematic search
conducted on Google Scholar, PubMed, and Scopus. The search
employed Medical Subject Headings (MeSH) and Boolean operators:
(“oral submucous fibrosis” OR “OSF”) AND (“animal models”). No
restrictions were applied regarding the year of publication.

The inclusion criteria are as follows:

1. Original experimental articles;

2. Studies involving the establishment of an animal model of oral
submucous fibrosis (OSF)

3. Articles providing a detailed description of the conditions and
methods used to create the OSF animal model, including the
species of experimental animals, inducing agents, induction
methods, induction duration, and criteria for evaluating results.

The exclusion criteria are as follows:

1. Literature where the full text is unavailable
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FIGURE 1

Characters of oral mucosa when stimulated by inducers. Arecoline prompts the epithelial cells of the oral mucosa to express significant levels of
TGF-B1, which subsequently induces the activation of fibroblasts into myofibroblasts. This transformation results in an increased secretion of collagen
fibers and reduced degradation, ultimately culminating in fibrosis. On the other hand, Bleomycin exerts a toxic effect on cells, leading to DNA
fragmentation and the secretion of a large amount of cellular inflammatory factors. These factors activate fibroblasts, causing them to produce
excessive collagen fibers, ultimately resulting in fibrosis. Additionally, HOCL stimulates tissues to generate a substantial amount of ROS, which enhances
the phosphorylation of ERK1/2 and activates the Ras pathway and gives the diseased fibroblasts a high proliferation phenotype, leading to fibrosis.
(Created by Figdraw).

2. Literature discussing the impact of OSF animal models on  less commonly utilized mammals. Each species offers distinct
diseases affecting systems other than the oral cavity. advantages depending on the specific research objectives. In
previous studies, rodents have been the most commonly used

species for experimental models. Therefore, this study will focus

3 The eXiSting animal models of OSF on the application of rodent models in OSF research. The existing
animal models of OSF can be classified based on inducing agents,

Various animal species have been used in OSF research, intervention techniques and pathological tissue outcomes as
including rodents (rats, mice and hamsters), rabbits, and other =~ follows. This classification aids in identifying the most
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TABLE 1 Existing successful animal models: classified by way of administration and animal species.

Animal Animal strain No. of animals Inducers Intervening measures References
species (gender) (experimental groups/
control groups)
Mouse BALB/c (male) 27/27 Arecoline, 500 mg/mL Oral administration Wen et al. (2015)
Mouse BALB/c (male) 40/40 Arecoline, 1,000 mg/mL Oral administration Wen et al. (2017), Sun
et al. (2021)
Mouse BALB/c (male) (24/24)/(24/24) (ANE, 10 mg/mL and Subcutaneous administration Chiang et al. (2016)
20 mg/mL); (BLM,
0.5 mg/mL)
Mouse Albino BALB/c 20/20 ANE, 0.265 g/mL Applying inducers to buccal Sumeth et al. (2007)
(female) mucosa
Mouse Swiss albino (gender (10/10)/(10/10) (ANE, 50 mg/mL)/(BLM) Applying inducers to buccal Shekatkar et al. (2022)
unknown) mucosa and submucosal
injections
Mouse BALB/c (male) 12/(12/12) (ANE, 20 mg/mL)/(ANE, Submucosal injections Chiang et al. (2020)
0.5 mg/mL)
Rats Sprague Dawley 40/10 ANE, 10 mg/mL Submucosal injections Li et al. (2006)
(male)
Rats Sprague Dawley (10/10/10/10)/(10/10/10/10) BLM, 1 g/mL Submucosal injections Zhang et al. (2016)
(female)
Rats Sprague Dawley (6/6/6/6/6/6)/(8/8) Arecoline, 0.5/2/8 mg/mL Applying inducers to buccal Yang et al. (2019)
(male) mucosa to buccal mucosa and
Mechanical stimulation
Rats Sprague Dawley 10/10 ANE, 33 mg/mL Submucosal injections Maria et al. (2016)
(gender unknown)
Rats Sprague Dawley (32/32)/20 ANE, 1 g/mL Applying inducers to buccal Huang et al. (1997a),
(gender unknown) mucosa and submucosal Huang et al. (1997b)
injections
Hamsters Unknow (male) (28/28/25) Powdery food containing Feeding Chiang et al. (2004)
areca nuts
Rats Sprague Dawley (1/1/1/1/1) Arecoline, 10 mg/mL Applying inducers to buccal Wang et al. (2024)
(male) mucosa to buccal mucosa and
Mechanical stimulation
Rats Sprague Dawley (50/10) Arecoline, unknown Submucosal injections Xuan et al. (2024)
(male)
Mouse BALB/c (male) (5/5/5/5) Arecoline, 2 mg/mL Submucosal injections Zhou et al. (2024)

appropriate animal model for studying specific aspects of OSF

pathology and evaluating potential therapeutic

interventions (Table 1).

3.1 By inducing agents

3.1.1 Areca nut extract

According to the International Agency for Research on Cancer
(Raghavan and Baruah, 1958; Shivashankar et al., 1969; Arjungi,
1976; Betel-quid and areca-nut, 2004), the primary chemical
constituents of areca nuts include carbohydrates, fats, proteins,
crude fiber, polyphenols (flavonols and tannins), alkaloids, and
While alkaloids are the most significant
components, other constituents also play crucial roles in the
development of oral submucous fibrosis (OSF). Research has
shown that certain polyphenols can exacerbate OSF by cross-

mineral matter.
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linking collagen fibers (Sharan et al, 2012). Additionally, areca
nuts contain high levels of copper, which is released into the oral
environment during chewing and can activate lysyl oxidase, leading
to collagen cross-linking and extracellular matrix (ECM)
remodeling. One study suggested that these findings indicate
copper’s potential local effect on the pathogenesis of OSF(Raja
et al., 2007). Therefore, in developing animal models of OSF, it is
important to consider all components of areca nut extract (ANE),
including alkaloids. Additionally, some researchers used (Saikia and
Vaidehi, 1983; Khrime et al., 1991; Chiang et al., 2004) areca nut
powder as an inducer. While the results of these experiments were
not uniformly ideal, the choice of using areca nut powder inspired
future studies. Feeding experimental animals with areca nut powder
or applying a paste made from areca nuts to their oral mucosa
mimics the process of chewing areca nuts. Therefore, these
approaches could offer new directions for selecting inducers for
OSF (Table 2).
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TABLE 2 OSF model classified by inducer and animal species.

Areca nut extract in

10.3389/fphys.2025.1501158

Mouse (Chiang et al., 2016; Sumeth et al., 2007; Shekatkar et al., 2022; Chiang et al., 2020), rat (Li et al., 2006; Maria et al., 2016; Huang et al., 1997a; Huang et al., 1997b), hamster

(Chiang et al., 2004)

Arecoline in

Mouse (Wen et al., 2015; Wen et al,, 2017; Sun et al., 2021; Zhou et al., 2024), rat (Yang et al.,, 2019; Wang et al., 2024; Xuan et al., 2024)

Bleomycin in

rat (Zhang et al., 2016)

3.1.2 Arecoline

Arecoline is the principal alkaloid found in areca nuts. Studies
have demonstrated that arecoline can stimulate fibroblasts in vitro
(Harvey et al., 1986; Jeng et al., 1996). Regarding the mechanism of
arecoline-induced OSF, recent research has shown that arecoline
induces the expression of several molecules, leading to an increase in
plasminogen activator inhibitor-1 (PAI-1), insulin-like growth
factor-1 (IGF-1), nuclear factor kappa-light-chain enhancer of
activated B cells (NF-kB), and vimentin (Tsai et al., 2005; Chang
et al., 2002; Yang et al., 2003; Ni et al., 2007; Chang et al., 2014),
promotion of TGF-p activity (Kong et al., 2018), and depletion of
cellular glutathione (GSH) (Shieh et al, 2003). These processes
ultimately result in the accumulation of extracellular matrix
(ECM), the primary pathological characteristic of OSF.

Furthermore, many studies have shown that arecoline promotes
the progression of OSF by stimulating reactive oxygen species (ROS)
generation (Pitiyage et al., 2011). Excessive reactive oxygen species
(ROS) can induce apoptosis (programmed cell death) in endothelial
cells, thereby compromising the integrity of blood vessels, which
contributes to the pathological alterations in the oral mucosa. These
findings suggest that arecoline may be a primary pathogenic factor
in the development of oral submucous fibrosis (OSF).

3.1.3 Bleomycin (BLM)

BLM is a glycopeptide antibiotic isolated from the fermentation
broth of Streptomyces verticillus (Kong et al., 2018). It was initially
used as an anti-cancer agent due to its cytotoxicity. Previous studies
(Williamson et al., 2015; He et al., 2016) reported that BLM induces
DNA oxidation, which leads to DNA strand scission, resulting in cell
cycle arrest, apoptosis, and a dysfunctional repair response. Later, it
was discovered that BLM could also cause severe lung and skin
fibrosis (Williamson et al., 2015; Li et al., 2022). Following this
discovery, researchers began using BLM to develop lung and skin
fibrosis models (Luzina et al, 2013; Rangarajan et al.,, 2018). The
animals in these studies showed pathological changes in their skin,
such as the over-synthesis of ECM (Davies, 2016; Do and Eming,
2016), similar to those observed in OSF. This provided the
theoretical foundation for using BLM as an inducer to create an
animal model of OSF.

3.1.4 Hypochlorous acid (HOCI)

Hypochlorous acid (HOCI) is a solid oxidant catalyzed and
produced by the heme enzyme myeloperoxidase (MPO)
2008), and it can kill pathogens under
pathological conditions (Ulfig and Leichert, 2021). However, high

(Winterbourn,

concentrations of HOCI in vivo may lead to the development of
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several major inflammatory pathologies, including cardiovascular
disease, neurodegenerative disorders, rheumatoid arthritis, chronic
kidney disease, and certain cancers (Witko-Sarsat et al, 1996;
Descamps-Latscha et al., 2005; Kisic et al., 2016; Aratani, 2018;
Pravalika et al., 2018; Ndrepepa, 2019; Davies and Hawkins, 2020).
The mechanism involves oxidative damage to proteins (Winter
et al., 2008), DNA (Priitz, 1996), and lipids (Winterbourn et al.,
1992). Consequently, some researchers have used HOCI to establish
animal models of systemic sclerosis (SSc) (Fonteneau et al., 2017),
particularly models of skin fibrosis (Ge et al., 2022; Mohammadi
et al., 2022; Yamamoto et al., 2022).

Studies have shown that typical pathological fibrosis changes
occur in the skin of experimental animals treated with HOCI, such as
the infiltration of CD4" T cells and macrophages (Gustafsson et al.,
1990), and an increase in various cytokines, including transforming
growth factor-p (TGF-B), interleukin-1 (IL-1), interleukin-6 (IL-6),
tumor necrosis factor (TNF-a), matrix metalloproteinase-2 (MMP-
2), and matrix metalloproteinase-6 (MMP-6). These changes may
lead to fibroblast activation and extracellular matrix (ECM)
synthesis (Ho et al.,, 2014). These alterations are observed in the
early phase following HOCI administration. In the subsequent
intermediate stage, a decrease in MMP/TIMP1 (Servettaz et al.,
2009) and the loss of adipose tissue (Varga and Marangoni, 2017)
could be observed, potentially resulting in (Maria et al, 2018)
damage to ECM degradation and thinning of the epithelium.

Therefore, using HOCI
establishing animal models of oral submucous fibrosis (OSF), as

provides valuable insights for
the characteristics of the intermediate and early phases are similar to
the pathological changes seen in OSF. Therefore, adjusting the
dosage and duration of HOCI exposure may offer a viable

alternative for inducing OSF in animal models.

3.2 By intervention technique

Different intervention techniques include oral administration,
subcutaneous injection, buccal submucosal injections, application of
inducers to the buccal mucosa, or a combination of inducers and
submucosal injections. Each of these methods has its own
summarized

advantages and  disadvantages, which are

below (Table 3).

3.2.1 Oral administration
3.2.1.1 Advantages
Non-invasive: Oral administration is simple and non-

invasive, making it easier to handle animals. Systemic
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TABLE 3 OSF model classified by intervention methods and animal species.

Oral administration in

10.3389/fphys.2025.1501158

mouse (Wen et al., 2015; Wen et al.,, 2017; Sun et al,, 2021), hamster (Chiang et al., 2004)

Subcutaneous Injection in
rat (Chiang et al,, 2016)

Submucosal Injection in

rat (Li et al,, 2006; Zhang et al., 2016; Maria et al., 2016; Xuan et al., 2024), mouse (Chiang et al., 2020; Zhou et al., 2024)

Topical Application of Inducing Agents to the Oral Mucosa in
rat (Yang et al, 2019; Wang et al,, 2024), mouse (Sumeth et al., 2007)
Combination of Inducing Agents and Submucosal Injection in

rat (Huang et al., 1997a; Huang et al., 1997b), mouse (Shekatkar et al., 2022)

Exposure: Facilitates systemic exposure to inducing agents,
which can replicate the chronic nature of OSF seen in
humans, particularly with agents like areca nut extract or
other fibrogenic substances. Mimics Human Behavior: Reflects
real-world exposure, such as tobacco or areca nut chewing, which
contributes to OSF in humans.

3.2.1.2 Disadvantages

Variable Absorption: Absorption and bioavailability of inducing
agents may vary, leading to inconsistent results. Slow Onset: Oral
administration may result in a slower onset of OSF symptoms,
requiring longer experimental durations.

3.2.2 Subcutaneous injection
3.2.2.1 Advantages

Controlled Dosage: Subcutaneous injection allows for precise
control over the dosage and delivery of inducing agents, ensuring
consistent exposure. Systemic Effect: Promotes systemic
exposure to agents, especially those that require gradual

absorption or release.

3.2.2.2 Disadvantages

Invasive: Injection can cause discomfort or stress in animals,
which may affect the validity of results. Local Reactions: May induce
local tissue reactions, which might not accurately replicate the oral
mucosa environment.

3.2.3 Submucosal injection
3.2.3.1 Advantages

Targeted Induction: Delivers the inducing agent directly to the
site of interest, closely mimicking the localized nature of OSF in
humans. Faster Onset: Induces fibrosis more rapidly, providing
quicker experimental outcomes. Mimics Human Disease: Targets
the oral mucosa directly, reflecting how OSF develops in humans
due to areca nut chewing or other local irritants.

3.2.3.2 Disadvantages

Invasive: Injections are invasive and may cause local injury,
which could affect tissue integrity or influence fibrosis
development. Limited to Small Areas: This method is limited
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to localized fibrosis in the oral mucosa, making it difficult to
model systemic effects.

3.2.4 Topical application of inducing agents to the
oral mucosa
3.2.4.1 Advantages

Non-invasive: This method is non-invasive and relatively easy to
apply to animal models. Mimics Human Exposure: Direct
the
environmental factors (e.g., areca nut or tobacco) contribute to

application  to oral mucosa closely mimics how

OSF in humans.

3.2.4.2 Disadvantages

Limited Penetration: Topical application may not penetrate
deeply enough into tissues, potentially reducing the efficacy of
the model in replicating the full fibrotic process. Inconsistent
Application: The area of application may not be uniform, leading
to variations in the degree of fibrosis across the tissue.

3.2.5 Combination of inducing agents and
submucosal injection
3.2.5.1 Advantages

Comprehensive Induction: This combination ensures both
localized and systemic effects, leading to a more robust model of
OSF. Enhanced Model Precision: Allows researchers to control both
local and systemic exposure to inducing agents, making the model
more accurate in mimicking human disease.

3.2.5.2 Disadvantages

Invasive and Complex: This method is more invasive than single
interventions and introduces additional variables that may affect
outcomes. Increased Animal Stress: Multiple interventions can
increase animal stress and discomfort, potentially influencing
the results.

3.3 By outcome observation indicators

When measuring certain indicators, experimental animals may
need to be euthanized to obtain tissue samples or perform invasive
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TABLE 4 OSF model classified by outcome detection indicators and animal species.

Histological evaluation in

rat (Yang et al,, 2019; Li et al., 2006; Zhang et al., 2016; Maria et al., 2016; Huang et al., 1997a; Huang et al., 1997b), mouse (Wen et al., 2015; Wen et al,, 2017; Sun et al., 2021;
Chiang et al.,, 2016; Sumeth et al., 2007; Shekatkar et al., 2022; Chiang et al., 2020), hamster (Chiang et al., 2004)

Epithelial Changes in

mouse (Wen et al,, 2015; Wen et al,, 2017; Sun et al., 2021; Chiang et al., 2016; Chiang et al., 2020), hamster (Chiang et al., 2004)

Inflammatory Infiltration in

rat (Sumeth et al., 2007), mouse (Huang et al., 1997a; Huang et al., 1997b)

Vascular Alterations in

mouse (Wen et al., 2015; Wen et al., 2017; Sun et al., 2021; Sumeth et al., 2007)

Clinical Signs in

rat (Yang et al., 2019; Li et al,, 2006; Zhang et al., 2016; Maria et al., 2016), mouse (Wen et al., 2015; Wen et al., 2017; Sun et al,, 2021), hamster (Chiang et al., 2004)

Molecular Biomarkers in

rat (Yang et al.,, 2019; Li et al,, 2006; Zhang et al., 2016; Maria et al., 2016), mouse (Chiang et al., 2016; Shekatkar et al., 2022)

Biomechanical Properties in

rat (Li et al., 2006; Zhang et al., 2016; Maria et al., 2016)

procedures. However, other indicators can be assessed using non-
invasive detection methods, which enable researchers to monitor
disease progression or physiological changes without causing harm
or distress to the animals (Table 4).

3.3.1 Histological evaluation

Assessment of tissue changes through histological staining
techniques, such as Masson’s trichrome, Hematoxylin and Eosin
(H&E) staining, or immunohistochemistry, to analyze fibrosis,
collagen deposition, and inflammation. When measuring this
indicator, experimental animals typically need to be euthanized
to obtain tissue samples.

3.3.2 Epithelial changes

Observation of epithelial hyperplasia, thinning, or atrophy as
part of the disease progression. When measuring this indicator,
experimental animals typically need to be euthanized to obtain
tissue samples.

3.3.3 Inflammatory infiltration

Presence of inflammatory cells (e.g., lymphocytes, neutrophils)
in the submucosal area, particularly during the early stages of OSF.
When measuring this indicator, experimental animals typically need
to be euthanized to obtain tissue samples.

3.3.4 Vascular alterations

Changes in blood vessels, such as thickening of the vessel walls
or reduced vascularity. When measuring this indicator,
experimental animals typically need to be euthanized to obtain
tissue samples.

3.3.5 Clinical signs

These may include restriction of mouth opening, changes in
mucosal appearance (e.g., whitening, stiffness), and alterations in
tissue pliability or flexibility, often assessed through clinical
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TABLE 5 Proposed validity scoring system. Adapted from Denayer et al.,
2014.

Criterion Value Score
Species Human 4
Non-human primate 3
Non-human mammal 2
Non-mammal 1
Disease simulation True 4
Complex 3
Pharmacological 2
No 1
Face validity >1 core symptom 4
1 core symptom 3
1 symptom 2
No 1
Complexity In vivo 4
Tissue 3
Cellular 2
Sub-cellular/molecular 1

examination. This detection method is non-invasive and does not
cause harm to the animals.

3.3.6 Molecular biomarkers

Measurement of specific proteins or genes related to fibrosis,
such as collagen types I and III, TGF-{, and other markers associated
with fibrogenesis. The methods used for detecting these biomarkers
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TABLE 6 Scoring of existing OSF animal models based on the standardization framework.

References

Intervention methods

Species

Disease
simulation

Face
validity

10.3389/fphys.2025.1501158

Complexity

Total
score

Wen et al. (2015), Wen et al. Oral administration 2 (non-human 2 (pharmacological) 2 (4 symptoms) | 3 (tissue) 9
(2017), Sun et al. (2021) mammal)
Chiang et al. (2016) Subcutaneous administration 2 (non-human 2 (pharmacological) 1 (no symptom) | 3 (tissue) 10
mammal)
Sumeth et al. (2007) Applying inducers to buccal mucosa 2 (non-human 2 (pharmacological) 4 (2 core 3 (tissue) 11
mammal) symptom)
Chiang et al. (2016) Subcutaneous injection 2 (non-human 2 (pharmacological) 1 (no symptom) | 3 (tissue) 8
mammal)
Chiang et al. (2020) Submucosal injections 2 (non-human 2 (pharmacological) 1 ((no 3 (tissue) 8
mammal) symptom)
Li et al. (2006), Zhang et al. Submucosal injections 2 (non-human 2 (pharmacological) 4 (3 core 3 (tissue) 11
(2016), Maria et al. (2016) mammal) symptom)
Xuan et al. (2024) Submucosal injections 2 (non-human 2 (pharmacological) 4 (2 core 4 (in vivo) 12
mammal) symptom)
Zhou et al. (2024) Submucosal injections 2 (non-human 2 (pharmacological) 1 ((no 3 (tissue) 8
mammal) symptom)
Huang et al. (1997a), Huang Applying inducers to buccal mucosa and | 2 (non-human 2 (pharmacological) 1 ((no 3 (tissue) 8
et al. (1997b) submucosal injections mammal) symptom)
Wang et al. (2024) Applying inducers to buccal mucosa to 2 (non-human 3 (complex) 4 (2 core 4 (in vivo) 13
buccal mucosa and Mechanical mammal) symptom)
stimulation
Yang et al. (2019) Applying inducers to buccal mucosa to 2 (non-human 3 (complex) 3 (1 core 3 (tissue) 11
buccal mucosa and Mechanical mammal) symptom)
stimulation
Chiang et al. (2004) Feeding 2 (non-human 3 (complex) 2 (2 symptoms) = 3 (tissue) 10
mammal)

include qPCR, Western blotting, immunohistochemistry, and other
related techniques. The biological materials analyzed are typically
derived from the buccal mucosa or skin tissues of the experimental
animals. When measuring this indicator, experimental animals
typically need to be euthanized to obtain tissue samples.

3.3.7 Biomechanical properties

Quantification of the mechanical properties of the oral mucosa,
such as tissue elasticity and stiffness, which are affected by the
fibrotic process. This detection method is non-invasive and does not
cause harm to the animals.

4 Discussion

After years of research, significant advances have been made in
the study of animal models of oral submucous fibrosis (OSF).
However, challenges persist in this field. We evaluate all current
research on OSF animal models using a standardized framework
(Denayer et al,, 2014) to identify the most suitable cases for each
intervention method and the animal models that most closely
replicate human OSF (Tables 5, 6). This standardized scoring
system includes the following criteria: animal species, disease
induction method, face validity, and the complexity of outcome
assessment indicators (Denayer et al., 2014).

Frontiers in Physiology

Disease simulation refers to how the disease is simulated in the
study, including the realistic simulation of disease state (true): the
animal model accurately replicates the pathological characteristics of
the disease, including its clinical features, underlying mechanisms,
and progression; the use of multiple methods to induce disease, the
use of pharmacological agents, or the failure to induce the disease.

Face validity is a measure based on subjective evaluation,
assessing the appropriateness or relevance of the model. In this
study, face validity refers to the disease symptoms observed in the
experimental animals, including core symptoms directly related to
OSF, such as reduced mouth opening and the appearance of white
patches on the buccal mucosa. Other general symptoms, such as
weight loss and fur discoloration, are less closely related to OSF but
may still be observed.

Complexity refers to the biological levels at which the outcome
indicators are assessed, including the in vivo, tissue, cellular,
subcellular, or molecular levels.

Using this scoring system, we evaluated existing rodent OSF
models. The study by Wang, S.Y., et al,, conducted in 2024, received
the highest score. Future OSF animal model construction can
reference this study and potentially improve upon it, such as by
incorporating non-human primates or other model species.

Mice and rats are commonly used as experimental animals in
OSF research. Mice offer advantages such as high fertility, docile
genetic purity, and increased

temperament, sensitivity  to
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carcinogens. SD rats, being omnivorous like humans, also have a
gentle nature and social advantages. Furthermore, these animals are
small, inexpensive, and easy to care for, which contributes to their
widespread use as OSF models. Hamsters, with their two cheek
pouches, have a structure similar to that of humans and could be
considered for future studies. Some research has also used other
animals, such as New Zealand white rabbits (Song, 2009), although
these studies lacked detailed experimental data, which limits their
reliability.

Given the ongoing challenges in previous research, such as long
experimental periods and low success rates, the proper dosage of
inducers still requires further investigation and refinement.
Continued efforts are necessary for advancing animal models of
OSF, and we hope that our study will contribute to future
advancements in this field. Although this article provides a
comprehensive overview of current disease models for OSF, it
does not offer a definitive conclusion on which model is optimal.
However, researchers can select one or more appropriate
experimental models based on their specific objectives and
conditions to enhance the credibility of their research findings.

5 Summary and future directions

Establishing animal models is essential for studying oral
submucous fibrosis (OSF); however, a universally accepted
standard model does not yet exist. This may be due to a lack of
consensus on the most effective inducers, animal species, and
intervention methods. To address this challenge, it is crucial to
explore these factors in greater depth and develop more refined
strategies for future research. Given that the exact mechanisms of
OSF remain unclear, further investigation and better-designed
animal models are critical.

The pathogenic factors of OSF include both physical and
chemical stimuli. Purely physical stimuli are insufficient to
of OSF(89);
stimulation with ANE can induce typical fibrotic changes in vivo

induce the development however, chemical
(Khrime et al., 1991). Endoscopic examination reveals whitening of
the esophagus in some OSF patients (Misra et al., 1998), and
pathological analysis shows esophageal fibrosis in approximately

two-thirds of patients (Shilpa et al., 2011). These findings suggest
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