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Flow Mediated Skin Fluorescence (FMSF) is a new non-invasive diagnostic
method for assessing vascular circulation and/or metabolic regulation. The
method measures stimulation of the circulation in response to post-occlusive
reactive hyperemia (PORH). It analyzes the dynamical changes in NADH
fluorescence emitted from skin tissue, providing information on mitochondrial
metabolic status and intracellular oxygen delivery through the circulatory system.
Assessment of the vascular state using the FMSF technique is based on three
parameters: flowmotion (FM) under normoxia conditions, hypoxia sensitivity (HS),
and hyperemic response (HRmax). The functioning of mitochondria can be
assessed by analyzing the ischemic response (IRmax), hypoxia sensitivity (HS),
and the basal level of NADH fluorescence. There is a close relationship between
the functioning of mitochondria and the vascular system. Despite these
interactions, mitochondrial and vascular regulatory function can be monitored
separately as well as simultaneously by the FMSF technique. Uniquely, this
approach delivers information on both mitochondrial and vascular function
based on a single measurement.
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1 Introduction

Flow Mediated Skin Fluorescence (FMSF) is a novel non-invasive diagnostic technique
based on the measurement of nicotinamide adenine dinucleotide (NADH) fluorescence
from skin tissue cells. The diagnostic potential of the method is based primarily on
stimulation of the circulation in response to post-occlusive reactive hyperemia (PORH).
This is the most popular test used to assess vascular reactivity in both macro- and
microcirculation. Occlusion of the brachial artery induces reactive hyperemia. Several
important mediators are involved, with nitric oxide (NO) acting as a potent vasodilator of
muscle-type arteries (Roustit and Cracowski, 2013). The progress and treatment of various
diseases associated with vascular dysfunction can be monitored.

NADH and its oxidized form (NAD+) play a crucial role in biological systems as redox
coenzymes (Gebicki et al., 2004). Under normal aerobic conditions, NADH is oxidized to
NAD+ in mitochondria. During hypoxia, insufficient oxidation leads to excessive NADH
accumulation. During hyperemia accelerated oxidation leads to excessive NADH depletion.
These processes lead to different balances of NADH/NAD+. Therefore, the NADH/NAD+

couple can be treated as a sensitive marker of changes in both mitochondrial function and
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vascular perturbations responsible for the transport of oxygen and
other nutrients to cells. Thus, measuring NADH fluorescence should
enable assessment of both vascular circulation and metabolic
regulation.

As the name of the method itself suggests, the FMSF technique
measures NADH fluorescence from the skin, mainly on the forearm.
The fluorescence of NADH is the strongest component in the overall
fluorescence emitted from human skin and the skin is the most easily
accessible measurement site. The AngioExpert, a device constructed
by Angionica Ltd., measures NADH fluorescence (460 nm) excited
by a 340 nm ultraviolet light at a sampling frequency of 25 Hz
(Katarzynska et al., 2019b). The methodological aspects of the
method (the source of the signal - NADH, reproducibility of
measurements) were investigated (Bugaj et al., 2019; Hellmann
et al., 2017; Tarnawska et al., 2018). The penetration of exciting
light in skin tissue is low (about 0.3–0.5 mm) and a substantial
fraction is absorbed by the epidermis and papillary dermis (Cicchi
et al., 2013). The NADH signal is not disturbed by the presence of
blood vessels (Hou et al., 2022).

Mayevsky’s pioneering work first drew attention to the potential
of using NADH fluorescence to determine mitochondrial function
in vivo (Mayevsky and Barbiro-Michaely, 2009; Mayevsky and
Rogatsky, 2007). NADH fluorescence and mitochondrial
dynamics have also been used to study the metabolism of
keratinocytes in human skin (Balu et al., 2013). Although the
keratinocytes have lower mitochondrial density than other cells,
the mechanisms of NADH accumulation during ischemia and of
NADH oxidation during hyperemia may reflect the general
mechanism of mitochondria functioning in the cells of other
organs (Pawlak-Chomicka et al., 2023; Ronquist et al., 2003;
Waddell et al., 2023). Numerous other studies have shown that
the skin microcirculation reflects the systemic microcirculation, its
dysfunction, and pathologies (Cracowski and Roustit, 2020). This
makes skin cells a sensitive marker of early disorders of vascular
circulation, as it is possible to test microvascular blood circulation
via changes in skin biochemistry–especially the mitochondrial
NADH redox state (as an internal marker) of epidermal cells,
which depends on blood circulation and is sensitive to its
changes. This approach should allow the monitoring vascular
dysfunction, assuming proper mitochondrial functioning. It
should also enable monitoring of mitochondrial dysfunction,
assuming proper functioning of the circulatory system.
Obviously, there may be some overlap in the perturbations
related to these factors.

To date, most studies on the FMSF technique have concentrated
on the assessment of vascular circulation (Gebicki et al., 2021;
Katarzynska et al., 2022; Marcinek et al., 2024a; Marcinek et al.,
2024b; Mikosiński et al., 2023). The FMSF method was compared
with other microcirculation assessment techniques using PORH,
like, for example laser Doppler flowmetry (LDF), laser speckle
contrast imaging (LSCI), flow mediated dilation (FMD), reactive
hyperemia peripheral arterial tonometry (RH-PAT) (Liu et al., 2024;
Szczepanek et al., 2024).

In this paper we focus on the application of the FMSF technique
in assessing mitochondrial function. We provide examples
illustrating vascular and mitochondrial dysfunctions in the
distinct phases of FMSF measurement, including baseline
collection, ischemia, and hyperemia with reperfusion.

2 Brief description of the
analyzed groups

The analysis involved two patient groups: one with vascular
diseases (CVD) and the other with type 2 diabetes (DM2), as
described in previous publications (Katarzynska et al., 2020;
Mikosiński et al., 2023). Brief clinical characteristics of the
analyzed groups are presented in the Supplementary Material.

3 New diagnostic perspective of the
FMSF technique

3.1 NADH fluorescence basal level

During the initial stage of FMSF measurements, the level of
NADH fluorescence is determined.

3.1.1 Mitochondrial function
The level of basal fluorescence (FLbase) is expected to be related

to the overall NADH/NAD+ redox balance, providing at minimum
insight into whether this balance in specific diseases is shifted
towards reduction (increase in NADH fluorescence) or oxidation
(decrease in NADH fluorescence). The validity of this approach can
be confirmed by comparing different patient groups. For example, in
the group of patients with DM2, the basal fluorescence was shifted
towards reduction (increase of NADH fluorescence) compared to
the group of patients with CVD (Table 1) (see also: Wu et al., 2016;
Yan, 2021). In both patient groups, women showed higher basal
fluorescence, although the difference was not always statistically
significant (Supplementary Table S1). Significantly higher levels of
NADH fluorescence have been observed for patients with
mitochondrial disease and m.3243A>G mutation confirmed in
genetic testing (van Kraaij et al., 2023). Other examples also
seem to confirm this differentiation–e.g. in the case of patients
with psoriasis the NADH fluorescence level in psoriatic lesions was
significantly reduced (decreased fluorescence) (Gebicki et al.,
2023a). In contrast, it has been shown in the case of competitive
athletes strenuous physical exertion (exertion to exhaustion) can
significantly shift the NADH level towards reduction (increased
fluorescence) (Bugaj et al., 2019; Bugaj et al., 2020).

Unfortunately, the level of baseline fluorescence varies widely
among homogeneous groups of patients, depending on skin
pigmentation, suntan, and skin lesions. This introduces a
significant error when the NADH/NAD+ balance and
mitochondrial function are interpreted based solely on NADH
fluorescence. Additional calibration methods are therefore
required, both for the measurement method and for the patient’s
skin type and condition.

3.2 Baseline collection

The FMSF signal is collected for 3 min and normalized with
respect to the mean fluorescence value. Normalization of the signal
makes the result independent of measurement conditions related to
the individual characteristics of the patient’s skin and/or different
technical factors, as only relative changes are analyzed.
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3.2.1 Microcirculatory function
The normalized fluorescence signal at the baseline, which

characterizes the resting flow, is collected using the FMSF
method over a period of 3 min. There are no strict time
constraints, other than the patient’s comfort during the
measurement, which requires immobility. The signal typically
shows slight intensity changes, resulting from microcirculation
oscillations–also called flowmotion (Aalkjær et al., 2011; Bernjak
et al., 2008; Gebicki et al., 2020; Marcinek et al., 2023; Nilsson and
Aalkjaer, 2003). The parameter FM (flowmotion), which can be a
simple measure of these oscillations, is based on assessment of
oscillations in terms of the mean square deviations of the
experimental signal (at a sampling frequency of 25 Hz) from
the baseline. Whereas the FM parameter varies within quite a
broad range, log (FM) remains normally distributed.

The strength of oscillations contained in the FMSF signal can
be determined using the Fast Fourier Transform (FFT)
algorithm. The oscillations are grouped into three frequency
intervals, corresponding to endothelial, neurogenic, and
myogenic activities, respectively: ≤0.021 Hz, (0.021–0.052 Hz),
and (0.052–0.15 Hz) (Bernjak et al., 2008; Gebicki et al., 2020;
Marcinek et al., 2023). Comparison of FM parameters allows for
the assessment of microcirculation functioning in different
patients (Gebicki et al., 2020). A significant reduction in the
FM parameter indicates microvascular dysfunction. Analysis of
the components of the oscillation and their interrelationships
allows for the diagnosis of conditions including extreme
fatigue in athletes and post-COVID fatigue (with statistically
significant short-term or long-term reductions in endothelial
oscillations, respectively) (Chudzik et al., 2022). Relative
reductions or increases of myogenic oscillations can be used to
assess stress of various origins (Gebicki et al., 2023b; Marcinek
et al., 2023).

3.3 Ischemic response

In the second stage of measurements, known as the ischemic
response (IR), a change in NADH fluorescence is observed due to
occlusion of the brachial artery by a cuff inflated to 60 mmHg above
the systolic blood pressure of the patient.

3.3.1 Mitochondrial dysfunction
Since blood supply is completely blocked at this stage, the

fluorescence signal does not have the characteristics of blood
flow (the signal remains completely smooth, there are no visible
microcirculation oscillations, including in the cardiac component).
The ischemic response can be entirely attributed to a change in
cellular oxygen metabolism from an aerobic process to anaerobic
processes (including glycolysis). Any disturbances in the ischemic
part can be attributed to mitochondrial dysfunction. The use of
FMSF-PORH method to assess mitochondrial functioning seems to
be a perspective approach, due to the fact that most methods using
PORH remain “blind” during the occlusion period.

The typical kinetics of ischemic changes, which are particularly
characteristic for volunteers with no diagnosed health problems, is
presented in Figure 1A. Such signal waveforms are also observed for
some patients with diagnosed diseases, including diseases associated
with mitochondrial dysfunction. After approximately 3 min or less,
the signal stabilizes. The IRmax parameter, which is a measure of the
ischemic response, corresponds to the maximum change in NADH
fluorescence occurring at this stage (usually after 3 min of
occlusion). This value typically reaches several percent relative to
the baseline fluorescence, although in some cases it can reach over
20 percent. In patients suffering from various diseases, it typically
reaches much lower values (Table 1).

However, deviations from a typical adequate ischemic response
are often observed in this range. In some cases, the change in NADH

TABLE 1 Analysis of the FMSF parameters for CVD and DM2 groups. Results are shown as mean ± standard deviation (SD) with corresponding p-values
indicating only statistically significant differences (p < 0.05). Reproduced from Mikosiński et al. (2023), Katarzynska et al. (2020).

CVD (N = 482) DM2 (N = 70)

IRmax > 0 IRmax < 0 p-value IRmax > 0 IRmax < 0 p-value

N 320 162 46 24

Female/Male 163/157 101/61 18/28 14/10

Age [years] 69.2 ± 10.7 69.7 ± 10.7 62.1 ± 8.4 65.0 ± 7.2

BMI [kg/m2] 28.8 ± 5.8 30.6 ± 6.1 0.002a 29.9 ± 4.6 34.3 ± 6.3 0.005b

FLbase × 103 [a.u.] 474 ± 213 500 ± 191 657 ± 277 822 ± 328 0.014a

log(FM) 1.33 ± 0.41 1.32 ± 0.39 1.46 ± 0.35 1.46 ± 0.30

IRmax [%] 11.2 ± 5.7 —c 11.5 ± 4.6 —c

HRmax [%] 15.5 ± 5.1 17.9 ± 4.8 <0.0001a 15.6 ± 4.4 17.3 ± 4.3

log(HS) 1.19 ± 0.54 0.91 ± 0.52 <0.0001a 1.42 ± 0.47 1.10 ± 0.47 0.010b

aMann-Whitney test.
bt-test.
cnumerical values not calculated for all cases studied.

Abbreviations: BMI, body mass index; FLbase, fluorescence at baseline; log (FM), flowmotion at baseline (logarithm); IRmax, Ischemic Response; HRmax, Hyperemic Response; log (HS), Hypoxia

Sensitivity (logarithm).
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fluorescence is weaker (Figure 1B), or it slightly deviates from the
baseline before occlusion indicating impaired ischemic response
(Figure 1C). However, sometimes the fluorescence signal, and
therefore the concentration of the reduced NADH form, drops
by several percent, almost as a mirror image of the typical signal
course. In such cases, we can speak of a negative, abnormal response
to occlusion (significantly impaired ischemic response) (see
Figure 1D). Additionally, changes in the shape of the signal
course are often observed, as well as some irregularities. The
course remains characteristic for a given patient (Mikosiński
et al., 2023; Pawlak-Chomicka et al., 2023).

Although the mechanisms of atypical ischemic responses–such
as unexplained changes in the transition from oxidative
phosphorylation to anaerobic glycolysis, changes in the share of
mitochondrial and cytoplasmic NADH in fluorescence, and/or
changes in the mitochondrial lactate metabolism (Glancy et al.,
2021) –remain unclear, atypical FMSF signal patterns may be the
result of impaired metabolic processes associated with the loss of or
altered mitochondrial functionality (Pawlak-Chomicka et al., 2023).
These changes cannot be assigned to changes in blood flow,
including microvascular circulation, as there is no flow at all.

In the analyzed patient groups, atypical courses were quite
numerous (about 50%). At the same time, no changes were

observed in the FM parameter, which confirms the lack of
significant differences in vascular microcirculation between the
groups with typical and atypical ischemic responses (Table 1).
Atypical courses have also been reported to occur in large
numbers among patients with Systemic Lupus Erythematosus
(Bogaczewicz et al., 2019), as indicated by the range of observed
changes in IRmax, as well as among patients with diabetic foot ulcers
with low prognosis of healing (Los-Stegienta et al., 2021).

It is worth emphasizing that the same factors which in the short
term reduce the level of ischemic response, such as strenuous
physical exertion, also cause increases in the level of basal
fluorescence (Bugaj et al., 2019), indicating a decrease in
mitochondrial efficiency as a result of strenuous exertion. On the
other hand, intake of inorganic NO3

− or NO3
−-rich products, such as

beetroot juice, through the increase of NO in vivo, transiently
elevates the level of ischemic response IRmax (approx. 30%),
while decreasing the level of basal fluorescence (Jurga et al.,
2024). This allows us to assign both these effects to the
mitochondrial reaction. It has recently been demonstrated that
dietary nitrate significantly improves mitochondrial efficiency by
improving oxidative phosphorylation efficiency, which reduces
oxygen cost during exercise and maximal ATP production
(Larsen et al., 2011).

FIGURE 1
Exemplary FMSF traces showing different levels of mitochondrial function: (A) adequate mitochondrial function (female, 64 y.); (B) slightly impaired
mitochondrial function (female, 77 y., diabetes, hypertension, cardiovascular disease); (C) impaired mitochondrial function (female, 69 y. diabetes,
hypertension, cardiovascular disease); (D) Significantly impaired mitochondrial function (female, 65 y. hypercholesterolemia, hypertension,
cardiovascular disease, heart failure).
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The ischemic response parameter IRmax can therefore provide a
direct measure of mitochondrial efficiency or dysfunction.

3.4 Hyperemic response and reperfusion

After occlusion, the cuff pressure is released and the NADH
fluorescence falls below the baseline, reaching a minimum followed
by a return to the baseline. This third measurement stage, called the
hyperemic response (HR), consists of a very rapid decrease in
NADH fluorescence due to hyperemia (20–30 s), followed by a
slow return of NADH fluorescence to the baseline due to reperfusion
(approximately 3 min).

3.4.1 Vascular dysfunction
The most important parameter characterizing this stage is

HRmax, which is a measure of the maximum decrease in NADH
fluorescence after the release of flow in the brachial artery. This
decrease occurs as oxygen flows rapidly into the epidermal cells,
relative to the resting flow, due to the release of NO and the dilation
of the brachial artery. This process can be correlated with the results
obtained from FMD or LSCI and mainly concerns the
macrocirculation (Gori et al., 2008; Liu et al., 2024; Thijssen
et al., 2011). The diagnostic potential of the HRmax parameter
includes assessment of dysfunction of the macrocirculation,
which facilitates assessment of the risk of developing
cardiovascular diseases often comorbid with other diseases, such
as diabetes mellitus (Hellmann et al., 2017; Katarzynska et al., 2020;
Katarzynska et al., 2019a; Tarnawska et al., 2018).

In the case of atypical signal courses with a negative ischemic
response (IRmax < 0), the HRmax parameter cannot be so easily
interpreted, because the very rapid hyperemic decrease in NADH
fluorescence after the release of arterial flow is perturbed by the
changes caused in the NADH/NAD+ redox balance by the negative
ischemic response. Nevertheless, the slow return of the NADH
fluorescence signal to the pre-occlusion baseline level with almost
identical kinetics to typical FMSF signals allows for the
interpretation of HRmax to assess the risk of developing
cardiovascular diseases.

3.4.2 Microvascular and mitochondrial functioning
A characteristic feature of FMSF patterns, which appears in

most cases at this stage, are clearly visible, strong oscillations of
the microcirculation on the reperfusion line. The altered
strength and frequency of oscillations (in particular myogenic
oscillations (0.052–0.15 Hz)) reflects the reaction of the vascular
microcirculation to transient ischemia. The intensity of these
myogenic oscillations is called hypoxia sensitivity (HS), because
hypoxia is responsible for the increased activity of the vessels
after post-occlusive reactive hyperemia. Whereas the HS
parameter varies within a very broad range, log (HS) remains
normally distributed. The HS parameter, similarly to efficient
stabilization of HIF-1α in microvascular smooth muscle cells
during transient hypoxia, reflects the microcirculatory response
to hypoxia. It allows for assessment of microcirculatory
dysfunction in diabetes, cardiovascular disease, peripheral
arterial disease, and hypertension, as well as assessment of
exercise tolerance (Marcinek et al., 2023).

In patients with impaired ischemic response, a decrease in HS may
additionally confirmmitochondrial dysfunction. Growing evidence from
recent studies indicates a close connection between hypoxia inducible
factor (HIF-1α) stabilization and mitochondria. HIF-1α regulates
mitochondrial respiration and oxidative stress. On the other hand,
there is evidence supporting mitochondria-triggered HIF-1α
activation under various conditions, including hypoxia (Fuhrmann
and Brüne, 2017; Huang et al., 2023; Jewell et al., 2001; Kierans and
Taylor, 2021; Li et al., 2019; Mialet-Perez and Belaidi, 2024).

It is therefore unsurprising that severe redox imbalance, which is a
significant problem occurring in diabetes and its complications, leads to
impaired ischemic response (IRmax) and a lower response to hypoxia, as
measured by the HS parameter. The statistically significant reduction in
the HS parameter observed in the case of patients with diabetic kidney
disease may accompany mitochondrial dysfunction (Los-Stegienta
et al., 2022). Low values for the HS parameter were also associated
with poor prognosis for healing in difficult-to-heal wounds (including
diabetic foot ulcers) (Los-Stegienta et al., 2021). In long COVIDpatients
treated for 3 months with angiotensin-converting enzyme inhibitors
and beta-adrenolytics, a statistically significant increase in the HS
parameter was observed, with a simultaneous and also statistically
significant improvement in the ischemic response IRmax

(Romanowska-Kocejko et al., 2025).
The correlation between the HS and IRmax parameters is more

complicated, however. In healthy individuals, a short-term decrease in
the IRmax (intense exertion) or an increase in the IRmax (a single dietary
nitrate uptake) is associated with increases or decreases in the intensity
of myogenic oscillations, respectively. The microcirculation
compensates for changes in the NADH/NAD+ balance associated
with hypoxia or hyperoxygenation of epidermal cells. Finally, in the
case of serious microcirculation disorders, the HS parameter remains
very low and does not respond at all to hypoxic conditions causing
NADH/NAD+ imbalance.

4 Conclusion

In conclusion, by interpreting the parameters and the dynamics
of the NADH fluorescence signal emitted from skin cells in response
to ischemia and subsequent hyperemia, it is possible to identify
vascular and mitochondrial dysfunctions that accompany or can
lead to the development of chronic diseases. In the FMSF method,
decreasing values of flowmotion (FM), hyperemia response
(HRmax), and hypoxia sensitivity (HS) parameters enable the
identification of vascular circulation disorders. Decreasing values
of ischemia response (IRmax) and hypoxia sensitivity (HS)
parameters, with simultaneous increases in baseline fluorescence
(FLbase), indicate mitochondrial impairment. All the above
parameters are weakly negatively correlated with age
(Supplementary Table S2), except for baseline fluorescence FLbase
which increases with age. Differences are also observed between
women and men. FLbase is higher in women, IRmax is lower, and
HRmax is also higher. The higher FLbase and lower IRmax values
indicate greater susceptibility to mitochondrial dysfunction, while
the higher HRmax indicates better macrocirculation in women.

Monitoring mitochondrial impairment based on NADH/NAD+

balance cannot be performed without simultaneous monitoring of
vascular circulation. Dysfunction of one of these factors affects the
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other. The Flow Mediated Skin Fluorescence method, which uses
various parameters to assess vascular circulation and mitochondrial
function, allows us to study the feedback between mitochondrial and
vascular regulation.
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