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Cnidaria herd optimized fuzzy
C-means clustering enabled
deep learning model for lung
nodule detection

R. Hari Prasada Rao and Agam Das Goswami*

School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Introduction: Lung nodule detection is a crucial task for diagnosis and lung
cancer prevention. However, it can be extremely difficult to identify tiny nodules
in medical images since pulmonary nodules vary greatly in shape, size, and
location. Further, the implemented methods have certain limitations including
scalability, robustness, data availability, and false detection rate.

Methods: To overcome the limitations in the existing techniques, this
research proposes the Cnidaria Herd Optimization (CHO) algorithm-enabled
Bi-directional Long Short-Term Memory (CHSTM) model for effective lung
nodule detection. Furthermore, statistical and texture descriptors extract the
significant features that aid in improving the detection accuracy. In addition, the
FC2R segmentation model combines the optimized fuzzy C-means clustering
algorithm and the Resnet −101 deep learning approach that effectively improves
the performance of themodel. Specifically, the CHOalgorithm ismodelled using
the combination of the inducedmovement strategy of krill with the time control
mechanism of the cnidaria to find the optimal solution and improve the CHSTM
model’s performance.

Results: According to the experimental findings of a performance comparison
between other establishedmethods, the FC2R+CHSTMmodel achieves 98.09%
sensitivity, 97.71% accuracy, and 97.03% specificity for TP 80 utilizing the LUNA-
16 dataset. Utilizing the LIDC/IDRI dataset, the proposed approach attained a
high accuracy of 97.59%, sensitivity of 96.77%, and specificity of 98.41% with
k-fold validation outperforming the other existing techniques.

Conclusion: The proposed FC2R + CHSTM model effectively detects lung
nodules with minimum loss and better accuracy.

KEYWORDS

lung nodule detection, fuzzy c-means clustering, Resnet −101, cnidaria herd
optimization, lobe segmentation, deep learning

1 Introduction

Lung nodule detection is the initial stage of lung cancer screening in clinical medicine
(Sharma et al., 2019) enabling prompt and appropriate treatment that can significantly
lower the death rate (Schabath and Cote, 2019; Ji et al., 2023) Medical image analysis
has long made use of image processing techniques (Naseer et al., 2023). Physicians use a
variety of diagnostic techniques to identify malignant lung nodules early on. In clinical
settings, these techniques include needle prick biopsy analysis, Computed Tomography
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(CT) scan analysis, and morphological assessment (Nasrullah et al.,
2019; Chen et al., 2021). The hit ratio for manually detecting
lung cancer may be lowered by two major issues. The availability
of people and technology comes first since there might not be
enough radiological resources to meet demand (Thallam et al.,
2020). Secondly, a considerable proportion of false positive cases can
be attributed to the initial flaw. Thus, radiologists who interpret the
images should have excellent training. As a result, improvements are
still needed in the detection and classification precision of current
systems (Mahum and AlSalman, 2023). Additionally, the tiny size
and variety of shapes of pulmonary nodules in general medical
imaging further complicate identification and raise the possibility
of an incorrect or missing diagnosis (Ji et al., 2023).

Therefore, systems for computer-aided detection (CAD) are
suggested as a means of automatically detecting lung nodules in
CT scan images. A common diagnostic imaging technique called
CT enables radiologists to look for and assess any worrisome
lung nodules on CT scans (Nguyen et al., 2021). Conventional
CAD systems typically do false positive reduction using traditional
classifiers (Murphy et al., 2009; Sui et al., 2015) and produce nodule
candidates using manually constructed nodule features such as
morphological features (Jacobs et al., 2014) or intensity thresholding
(Akram et al., 2016). Due to the abnormal structure of lung tissues
(Tong et al., 2020) these techniques rarely produce adequate results
(Nguyen et al., 2021). However, themanual techniques require more
time and the ML techniques have limited generalization ability
because of limited training samples. One method for diagnosing
lung cancer is to employ segmentation techniques (Liu et al., 2021a).
Based on the image’s color, and texture, the ROI is chosen as
a segmented area. Three common segmentation techniques are
thresholding, atlas, and region growth. The retrieved attributes of
the segmented area have a substantial impact on the performance of
segmentation-based methods. Approaches based on segmentation
have shown encouraging outcomes in the identification of lung
cancer. These methods must be adjusted to reduce their false
ratio, as they are still not applicable to samples that have not yet
been observed (Mahum and AlSalman, 2023).

Deep learning (DL) approaches have been used with promising
results in the categorization of lung nodules in recent years
(Chen et al., 2020; Li et al., 2020; Wang et al., 2019; Sreekumar et al.,
2020). However, persistently applying local processes within
Convolutional Neural Network (CNN) layers to analyse texture
characteristics does not adequately capture the intricate composition
and long-range relationships present within a lung nodule
(Saihood et al., 2023). Additionally, pooling layers serve as
the foundation for attention-based multiple-instance learning
techniques. Since the features that are retrieved frombothmodalities
have varying characteristics, these models cannot be used statically
and must be fused proportionately. Here the step convolution
module (SCM), which adopts a parallel structure design and
has receptive fields of different sizes and a residual squeeze and
excitation attention module (RSEAM), improves the useful feature
gain through space and channel. Moreover, it cannot be used
statically instead of that a fusion must done proportionately with
the U-Net. The U-Net mainly operates to obtain image features
through a series of convolutional and pooling operations. However,
the RSEA-Net requires a precoding network to provide the gate
signal and the SCM structure is complicated (Liang et al., 2022). A

feature pyramid network (FPN) (Lin et al., 2017) is a tool used in
some techniques to extract multi-scale information from nodules.
Many down-sampled features are restored by the feature pyramid
through up-sampling; nevertheless, the up-sampled features’ pixel
values and positions differ from the original feature images without
down-sampling (Zhang et al., 2022). Without human involvement,
DL approaches may effectively extract significant features in the best
possible way. In the medical field, these methods can increase the
accuracy of disease detection (Naseer et al., 2023).

Existingmethods have limitations in scalability, robustness, data
availability, and false detection rates. To address these issues, a
novel deep-learning model is for accurate lung nodule detection.
This research aims to employ the FC2R + CHSTM model to
identify lung nodules from CT scans. By combining the benefits of
Resnet −101 and FCM, the FC2R segmentation model successfully
separates the lung nodules from the healthy regions. Furthermore,
from the segmentation output, the ResNet-101 features, statistical
features, and texture information are extracted which improves
the nodule detection accuracy. The combination of the induced
movement strategy of krill with the time control mechanism of the
cnidaria improves the CHSTMmodel’s performance to attain better
detection accuracy.

1.1 Cnidaria herd optimization enabled the
Bi-directional long short-term memory

The CHO algorithm mimics the food-searching behaviour
of the cnidaria and the herding characteristics of krill. The
combination of the inducedmovement strategy of krill with the time
control mechanism of the cnidaria improves the CHSTM model’s
performance to attain better detection accuracy.

1.2 Optimized fuzzy C-means clustering
algorithm and the Resnet -101 deep
learning model

The FC2R method for lung nodule segmentation accurately
segments the nodule regions using the FCM with the Resnet −101
model.The proposed optimization is used to compute the coefficient
features and the Resnet −101 model generates the flow maps that
lead to improving the performance of the model.

1.3 Cnidaria herd optimization algorithm
enabled BiLSTM model with fuzzy C-means
clustering algorithm and the Resnet −101
deep learning model

The combined CHSTM + FC2R approach integrates the
advantages of bio-inspired optimization algorithm with the novel
segmentation techniquewhich aids themodel to detect lung nodules
with superior performance. In addition, the CHSTM + FC2R
model increases the system reliability minimizes the overfitting
issues caused by data imbalance problems, and increases the
computational efficiency of the lung nodule detection tasks.
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The organization of the manuscript is described as follows:
Section 2 covers the limits of the linked works’ literature evaluation.
Section 3 discusses the suggested methodology for lung nodule
identification along with its methodology flow. Sections 4, 5 explain
the research outcomes and conclusion respectively.

2 Motivation

To detect effective lung nodules many existing methods are
utilized and they have limitations in scalability, robustness, data
availability, and false detection rates. To overcome all these issues
a novel deep learning is developed for accurate lung nodule
detection. This research aims to employ an FC2R + CHSTM
model to identify the lung nodule from the CT scans. The
FC2R segmentation helps to separate the lung nodule from
the healthy region. The CHO algorithm helps to fine-tune the
hyperparameters of the model and the combination of the induced
movement strategy of krill with the time control mechanism of the
cnidaria improves the CHSTMmodel’s performance to attain better
detection accuracy.

2.1 Literature review

The existing methods implemented for lung nodule detection
with their limitations and advantages are explained in the
following section.

Zhang et al. (2022) utilized an attention deep learning model
that comprised the 3D Resnet model, which effectively refined the
important features. In addition, the channel and spatial attention
techniques minimized the computational cost and time. However,
the focal loss could mitigate the data imbalance problem. Even
though the right steps were taken to improve the data, the model
also required more data as the network got deeper to expand the
model’s capabilities.

A multi-task learning model was utilized Liu et al. (2021),
which identified the size of the nodule by using the anchor-free
method. The model did not need the troublesome anchor-based
strategy, the anchor-free method is more reliable and simpler to
implement. However, the approach has a higher rate of missed
detections because of interference from numerous potential false
positives outside of the lung area.

Chen et al. (2021) initiated a dense neural network that could
get superior accuracy compared to other current techniques while
dealing with varying experimental targets and input lung CT image
pixel sizes. Since LDNNET did not employ semantic segmentation
and location, it was simpler to set up and operate in real-world
scenarios. However, the model necessitated more parameters for
learning that increased the training time.

Ji et al. (2023) designed an improved DL model with an
attention method that improved the model’s detection performance
and reduced the medical image interference features. In addition,
the pyramid pooling module obtained the multi-scale contextual
information and detected the lung nodules effectively. However, the
model found trouble in detecting lung nodules when they were
partly or obscured by other nodules, which could result in missed
diagnoses or false positives.

Naseer et al. (2023) initiated an Alex Net-Support Vector
Machine model for nodule detection and modified U-Net for
segmentation, which demonstrated improved outcomes for the
precise and efficient diagnosis of lung tumor. Nevertheless,
the model required high computational time and reduced the
interpretability and generalizability of lung nodule detection tasks.

A Retina Net model was implemented byMahum andAlSalman
(2023) that utilized a dependable feature fusion-based approach that
could combine various network layers and concurrently boost the
semantic shallow layer for efficient prediction. Additionally, at every
network level, a context-dilated module is integrated with a down-
sampled fusion block, which enhances the network’s capacity to
extract useful features. However, the model could not distinguish
microscopic cancers from background tissues if there was a lot of
clutter or noise in the images.

The faster R-CNN model was utilized by Nguyen et al. (2021)
for lung nodule detection, which minimized the false positives.
The mean-shift clustering technique effectively learned the intricate
features from the training dataset. Although the approach improved
nodule detection performance, there are still several issues. First
off, there was still a small volume of data available for the model’s
training and validation. CNN increases network complexity to
improve performance.

A multi-orientation-based attention mechanism was
developed by Saihood et al. (2023) that provided a great degree
of flexibility in focusing on relevant data that was non-locally
gathered from different nodule regions. Although the research
showed encouraging advancements, their practical application in
healthcare settings required that their clinical efficacy be verified on
actual patient data.

Gugulothu and Balaji (2024) introduced lung nodule detection
and classification with CT images based on hybrid deep learning
(LNDC-HDL) techniques. The use of computed tomography
demonstrates the efficiency and importance of theHDE-NN specific
structure for detecting lung nodes on CT scans, increases sensitivity,
and reduces false positives. However, the major constraint of the
research is computational complexity.

Sebastian and Dua (2023) implemented a DL model for the
detection of lung nodules. To identify every lung lesion in every
CT scan as completely as feasible without resorting to forced
consensus this procedure is designed. However, the model suffers
from computational time.

UrRehman et al. (2024) presented a CNN model with a dual
attention mechanism for effective lung nodule detection. The CNN
model extracts informative features from the images, while the
attention module incorporates both channel attention and spatial
attention mechanisms to selectively highlight significant features.
However, a small volume of data was available for the model’s
training and validation.

Harsono et al. (2022) introduced the Transfer learning-enabled
one stage detector model, I3DR-Net for the detection of lung
nodules. In particular, the I3DR-Net approach integrated the I3D
backbone, with RetinaNet and modified FPN framework over the
small number of high-quality trainable CT images and reduced the
training time. Moreover, this approach demonstrated that weight
transfer learning fromnatural image datasets improves the detection
performance as well as minimizes the training time.
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Wankhade, and Vigneshwari (2023) developed the Hybrid
Neural Network approach which integrated the 3D CNN and
RNN to enhance the detection performance. In addition, the
hybrid approach precisely determined the lung nodule count in the
pulmonary region. However, additional research was required to
validate the results and address the potential challenges, including
obtaining adequate high-quality training data and enhancing the
comprehensibility of DL models.

Xing et al. (2024) developed an improvedMLmodel integrating
the Fuzzy K-Nearest Neighbor (FKNN) for lung disease detection.
In addition, the EMRFO algorithm was applied to choose the
optimal feature subset, and the FKNN model was utilized as the
fitness evaluator. More specifically, the EMRFO algorithm presents
the position information of the suboptimal solution in order to
continuously approach the optimal solution with disturbance, thus
improving the convergence of the algorithm.

2.2 Challenges

➢ The R-CNN architectures could face difficulties in precisely
detecting borders, particularly for tumorswith fuzzy or intricate
features. Post-processing techniques are often necessary to
improve border correctness (Nguyen, et al., 2021).

➢ Lung Retina-net is specifically engineered to identify lung
tumors in CT scans. It might not be appropriate for different
anatomical structures or other imaging modalities when it
comes to detecting cancers (Mahum and AlSalman, 2023).

➢ Yolov5 struggles to discern cancers from intricate backgrounds,
which might result in false positives or overlooked
identifications in congested environments (Ji et al., 2023).

➢ Although focus loss was utilized to rectify data imbalance,
it was recognized that its consequences might not be
entirely eradicated. To mitigate this problem, more efforts
were required (Zhang, et al., 2022).

➢ The AlexNet-SVM might not be easily interpreted, which
could make it difficult to comprehend the rationale behind
particular diagnoses. Additional verification, an evaluation of
generalizability, and practical execution issues were required for
clinical adoption (Naseer, et al., 2023).

3 Proposed CHSTM model for lung
nodule detection

Lung cancer diagnosis relies on detecting pulmonary nodules,
but identifying small nodules in medical images can be challenging
due to their varying shapes, sizes, and locations. Existing methods
have limitations in scalability, robustness, data availability, and false
detection rates. To address these issues, a novel deep-learningmodel
is for accurate lung nodule detection. Initially the input CT images
from the Luna 16 database undergo an image enhancement task
in the pre-processing stage. The enhanced CT images are used to
segment lung lobes, defining regions of interest (ROI). The pre-
processing techniques used in lobe segmentation are erosion and
fill holes. The segmented lobes are fed into the FC2R model for
nodule segmentation.Theproposed optimization is used to compute
the coefficient features and the Resnet −101 model generates the

flow maps that lead to improving the performance of the model.
From the segmentation output, the Resnet −101 features, statistical
features, and texture information are extracted which improve the
nodule detection accuracy. These features are concatenated and
input into the CHSTM classifier, which accurately detects lung
nodules. The CHO algorithm which is inspired by jellyfish and
krill fish characteristics, employed to fine-tune the hyperparameters
of the model for optimal results. The combination of the induced
movement strategy of krill with the time control mechanism of the
cnidaria improves the CHSTMmodel’s performance to attain better
detection accuracy. The proposed model aims to improve accuracy
in detecting lung nodules from CT images and detect the lung
nodules asmalignant or benign. Figure 1 visualizes the flow diagram
of this proposed approach.

3.1 Input for lung nodule detection

The Luna 16 database serves as the input source of this
research, which consists of lung CT scans with the size of
(1∗512∗512). The input for lung nodule detection is mathematically
expressed in Equation 1 as follows,

L = {l1, l2, .....li, ....lN} (1)

where L specifies the dataset and the number of CT scans in the
database is represented as {l1, l2, .....li, ....lN}.

3.2 Pre-processing

Pre-processing is a significant stage in image processing tasks,
in this research it is employed to enhance the input image quality.
In addition, lobe segmentation and ROI extraction are performed
in this stage to improve the visibility of the image and improve the
detection accuracy.

3.2.1 Lobe segmentation
The lungs are made up of five lobes, split by the lobar fissures,

with three lobes in the right lung and two in the left.The lobes receive
blood and oxygen from different blood arteries, they are typically
functionally independent. Moreover, illnesses frequently cannot
spread between lobes because of the fissure border (Ferreira et al.,
2018). To improve the detection accuracy of the CHSTM model,
the lung lobes can be precisely segmented. The pre-processing
techniques used in lobe segmentation are erosion and fill holes.
The lobe segmentation in this research can be carried out in the
following ways:

Step 1: Transform the CT image into a binary image
Step 2: Eliminate the blobs that are connected to the image’s border.
Step 3: Label the image.
Step 4: Keep the labels with the two largest regions
Step 5: Using a disk with a radius of two, do erosion. During this

procedure, the lung nodules that are linked to the blood
vessels are separated.

Step 6: Closure operation utilizing a 10-radius disk.The goal of this
procedure is to maintain nodules affixed to the lung wall.
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FIGURE 1
Flow diagram of the FC2R + CHSTM model for lung nodule detection.

The technique held up well to varying inspiration
levels, low-quality images, and varying disease severity,
which makes it possible to do reliable and effective

regional analysis on big datasets (Gerard and Reinhardt,
2019). The output of lobe segmentation Sl∗ is transferred
into the ROI extraction process.
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3.2.2 Region of interest extraction
ROI extraction is the procedure of finding the parenchyma

mask that may contain suspect lung nodules which reduces the
system’s computation and detection times (Ozekes and Osman,
2010). The key objective of this process is to precisely evaluate lung
images and extract the pertinent nodule regions while eliminating
the background regions. The pre-processing technique used in
ROI extraction is fill holes. In this research, the ROI extraction is
mathematically defined in Equation 2 as follows,

R = li(∼Sl∗) (2)

The output obtained from ROI extraction (R) is provided in the
FC2R model for nodule segmentation.

3.3 Cnidaria herd optimization algorithm
for lung nodule detection

3.3.1 Motivation
The CHO algorithm mimics the food-searching behaviour of

the cnidaria and the herding features of the krill. The standard
algorithms maintain a positive balance between local and global
searches and have a solid population usage rate. However, the
algorithm’s speed of convergence and capacity for exploration and
exploitation is less. In addition, the algorithms require an optimal
strategy to initiate the distribution process. To address these issues,
the research presented a novel CHO algorithm that enhances the
model’s performance and increases detection accuracy by fusing
the induced movement strategy of krill with the temporal control
mechanism of cnidaria.

3.3.2 Inspiration
Jellyfish also known as cnidaria can be found in water with

a range of temperatures and depths, which resemble the bell-
like structure and have unique characteristics that allow them
to regulate their motion. To move their bodies forward, their
undersides close like an umbrella, forcing water out. Even with this
ability, they primarily float on the water, meaning that tides and
currents control their movement. Specifically, cnidaria are weak
swimmers, their orientations concerning currents are particularly
important for maintaining blooms and preventing stranding. A
swarm’s development is influenced by a variety of elements, such
as temperature, predator presence, oxygen availability, available
nutrition, and accessible nutrients. Ocean currents are the most
significant of them since they can gather cnidaria into swarms.
Because they tended to swarm, move about within swarms, and
generate blooms as they follow ocean currents. As a result, cnidaria
evaluates the quantity of food offered at several locations and
chooses the finest one (Chou and Molla, 2022). The krill use a
food search strategy, which involves locating places with large
concentrations of food, and density-dependent attraction, to move
toward the global minima. In this method, each krill looks for
the highest density and food, and it travels in the direction of the
best solution. In other words, the objective function decreases with
increasing distance from the high density and food. For a single goal,
it is generally necessary to define some coefficients when employing
multi-objective herding behavior (Gandomi and Alavi, 2012). The

hybrid algorithm solves the global optimization problems and tunes
the hyperparameters of the CHSTM technique for precise detection
of lung nodules.

3.3.2.1 Initialization
The solution’s population is normally initialized as random;

the solution’s position is mathematically formulated in Equation 3
as follows,

Bt = Bt−1 − r1(Uup −Ulow)Vt−1 (3)

where Bt indicates the solution’s current position, Bt−1 denotes the
previous position of the solution, Vt−1 signifies the velocity of the
solution at the previous iteration, and r1 indicates the positional
factor, the lower and upper bounds are denoted as Ulow and Uup.

3.3.2.2 Fitness evaluation
The solution’s fitness can be assessed using Equation 4, the

higher fitness value indicates the best solution and the lower value
denotes the worst solution.

F(Bt) =max(Accuracy(Bt)) (4)

Phase 1: Exploration phase rand(0,1) > (1− ζ(t))
When the random simulated movement of the solution is

superior to the time control function the exploration phase is
activated. The exploration phase describes that the solution should
be in motion towards ocean currents. At this phase, the solution
includes its foraging behaviors in a wide range around the search
space. In terms of two primary effective parameters, the foraging
movement towards the ocean current is formulated. The location of
the food is the first element, and previous knowledge of the place
is the second. Thus, the foraging behavior as its passive motion
towards the search space has been mathematically formulated in
Equation 5 as,

Bt+1 =
VFαi +ϖF(Bt) +Bt + r3(BG − aμ)

2
(5)

where, rand(0,1) denotes the random simulated movement of the
solution, and ζ(t) indicates the time control function, which is
explained in Equation 6 as,

ζ(t) = (1− t
tmax
(2r2(0,1) − 1)) (6)

here, r2 signifies the hectic factor, the recursive factor is indicated
as r3 ∈ (0.1,1), μ represents the mean position of all solutions
in the swarm, a signifies the trial factor, VF is the foraging
speed factor, BG signifies the global best solution, the adaptive
weightage factor is denoted as ϖF, the differential fitness factor αi
is described in Equation 7 as follows,

αi = F(Bt) − F(BG) (7)

where F(Bt) indicates the fitness value of the solution, F(BG) is the
fitness function of the global best solution.

Phase 2: Exploitation phase rand(0,1) < (1− ζ(t))
In the exploitation phase, the solution exhibits movement inside

the swarm behavior (active motion), and this movement of the
solutions is considered as the exploitation phase. This phase is
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achieved by using the induced movement behavior of the solutions
in which the individual solutions try to conserve a high density and
move due to their mutual effects. Thus the solution obtains safety
search inside the swarm and increased efficiency while maintaining
inside the swarm is expressed in Equation 8 as follows,

Bt+1 =
(Bt + γr4(Uup −Ulow)) + (BGφB +ϖnBt−1)

2
(8)

where γ denotes the sensitive factor, r4 represents the cooperative
movement behavior of solutions, and the effective factor φB is the
combination of the local effect (φlocal) and the target direction effect
(φtarget)which is mathematically explained in Equation 9 as follows,

φB = φ
local +φtarget (9)

The effect of the neighboring solutions in a movement can be
evaluated in Equation 10 as follows,

φlocal =
n

∑
t=1

̂Ft ̂B (10)

where ̂B indicates the adaptive positional vector, the adaptive fitness
vector ̂Ft is calculated using the Equations 11, 12.

̂Ft =
F(Bt) − F(Bt−1)
F(Bworst) − F(BG)

(11)

̂B =
Bt−1 −Bt

‖Bt−1 +Bt‖ + ε
(12)

where Bworst represents the worst solution, and ε denotes the small
positive number.

Phase 3: Equilibrium phase rand(0,1) = (1− ζ(t))
In the equilibrium phase, there is a balance between exploration

and exploitation, thus the solution effectively achieves equilibrium
between these two phases also the physical diffusion process fastens
the change in the equilibrium described in adaptive fitness vector is
calculated in Equation 13 as follows,.

Bt+1 =
{
{
{

(Bt −Uup) +Ulow +Dmaxδ if Bt > Uup

(Bt −Ulow) +Uup +Dmaxδ if Bt < Ulow

(13)

where the maximum diffusion speed is represented as Dmax, and δ
indicates the directional factor. Finally, when the algorithm reaches
its termination condition the iteration will be stopped. For increased
detection accuracy, the CHSTM classifier’s hyperparameters are
efficiently adjusted using the suggested CHO method. Figure 2
displays the CHO algorithm’s flow diagram.

3.4 Nodule segmentation using fuzzy
C-means clustering enabled Resnet −101

Accurate segmentation of lung nodules from CT images is
an essential task for image-driven lung nodule detection. Robust
nodule segmentation is difficult, nonetheless, because lung nodules
vary widely, and similar visual traits are common to lesions and their
surroundings (Wang et al., 2017). Therefore, this research proposed
an FC2R segmentationmodel which is the combination of a fuzzyC-
means clustering algorithm and Resnet −101 deep learning model.

The process of grouping data into homogenous units by taking
object relationships into account is known as clustering. Clustering
techniques accomplish region segmentation by dividing the image
into groups of pixels that have a high degree of similarity within
the feature space. In fuzzy clustering, individual data components
have a set of membership levels associated with them and can
belong to many clusters. These display the degree to which a given
data element is linked to a certain cluster (Nithila and Kumar,
2016). The process of assigning the membership levels to allocate
data components to single or more clusters is known as fuzzy
clustering. Let R = {h1,h2, ......hN} be the ROI extracted image, the
cluster centers C = {d1,d2, ......dC} along with the partition matrix
are denoted as = wik ∈ [0,1] . The degree to which an instance hk
belongs to the cluster di is determined by each component wik. The
objective function for FCM is derived in Equation 14 as follows
(Farahani et al., 2018),

D(W,C) =
c

∑
i=1

n

∑
k=1

wx
ik‖hk − di‖

2 (14)

where, each component and cluster are described in Equations 15, 16
as follows,

wik =
1

c

∑
i=1
( ‖hk−di‖
‖hk−di‖
)

2
(x−1)

(15)

di =

n

∑
k=1

wx
wik
hk

n

∑
k=1

wx
wik

(16)

Where x signifies the fuzzier which indicates the cluster
fuzziness level, The FCM cluster aims to lower the total
weighted mean square error. Every feature vector is approved
by the FCM to correspond with several groups with diverse
membership values (Ganesan and Merline, 2017). The segmented
image with the dimension of (1∗230∗230∗3) is provided as input to
the feature extraction process.

3.5 Feature extraction

Feature extraction is the process of distilling relevant
information from the segmented image. It aims to extract a
concise representation, often expressed as numerical descriptors
or attributes. In the context of lung nodule detection, it helps to
identify relevant patterns and characteristics. The following features
are extracted from segmented lung nodule images.

3.5.1 Resnet −101 feature extraction
Resnet −101 is a variation of the deep CNN model which

comprises 101 layers along with the skip connections. The basic
idea behind residual functions is that each layer of the network
learns from them by referring to its input layer (Ali et al., 2021).
The architecture is easily optimized in this way and achieves notable
accuracy.The network’s depth is based on the internal convolutional
layers.The implementation of Resnet −101 in this research improves
both the model’s detection accuracy and feature extraction capacity.
The features obtained using Resnet −101 with the size of (1∗1024)
are denoted as ( fR).
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FIGURE 2
Flow diagram of the CHO algorithm.

3.5.2 Statistical features
The numerical measurements used to depict the distributional

characteristics of geometric properties within specific regions are
evaluated using statistical features. These characteristics improve
the model’s performance by providing significant insights into the
statistical characteristics of lung nodule images (Mutlag et al., 2020).
In this research features including kurtosis (KR),standard deviation
(σR) mean (MR), skewness (SR), and variance (νR) are extracted
from the segmented image. The standard deviation is used to
calculate themean distance between the pixel values, while themean
measures the average of the pixel intensities. Kurtosis can be used
to assess the distribution’s stability, and skewness is a measure of
the distribution’s asymmetry. The extracted features with the size of
(1∗5) are concatenated as stR = ‖MR‖KR‖SR‖σR‖νR‖.

3.5.3 Texture features
Texture is a significant component in medical images,

which is described as a surface-level representation of the

human visual systems. The texture features are analysed using
matrix representations. In this research, the texture features
are analysed using the local Ternary pattern (LTP) and local
optimal oriented pattern (LOOP). The LTP features address the
issues related to illumination transformation, which is robust
to noise and encodes the grey values of surrounding pixels.
The LTP indicator ltp is described in Equation 17 as follows,
(Wu et al., 2015)

ltp =
P−1

∑
n=0

b(Jn − Jc).3nb(A) =
{{{{
{{{{
{

 1A ≥ τ

 0− τ < A < τ

−1A < −τ

(17)

where τ indicates the user-defined threshold, the central pixel’s gray
value is signified as Jc andneighbouring pixels’ gray value is indicated
as Jn. LOOP is the non-linear fusion of binary and directional
patterns, which offers several advantages in image processing tasks.
Let (mc,nc) be the pixel values of a segmented image A, the
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FIGURE 3
BiLSTM architecture.

FIGURE 4
Architecture of the CHSTM model.
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FIGURE 5
The experimental results obtained from the FC2R+CHSTM model.

pixel intensity is indicated as IN,N = 0, ...7, based on the rank of
magnitude value of the exponential (uN) is assigned to each pixel
(Chakraborti et al., 2018). Further the LOOP descriptor is derived

based on the Equation 18 as follows,

loop(mc,nc) =
7

∑
N=1

b(IN − Ic)2uN (18)
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FIGURE 6
Performance evaluation with TP showing (A) Accuracy, (B) Sensitivity and (C) Specificity.

where the threshold function is explained in Equation 19
as follows,

b(A) =
{
{
{

 1 i f A ≥ 0

 0 otherwise
(19)

The LOOP descriptor effectively determines the rotation
invariance, which also reverses the empirical assignment of the
value. The extracted feature vectors using Resnet-101 features
(1∗1024), statistical features (1∗5) and texture features (1∗32∗32) are
concatenated as E = ‖ fR‖stR‖TR‖, with the size of (1∗1024) which is
presented into the CHSTMmodel.

3.6 Lung nodule detection using cnidaria
herd optimization -enabled Bi-directional
long short-term memory model

The research presented a novel CHSTM model for lung nodule
detection; an input gate, a memory gate, and an output gate are

the three gate control units that the proposed CHSTM model in
this research uses to enhance memory capability and efficiently
detect lung nodules. The architecture of the single BiLSTM block
is visualized in Figure 3. Neurons in the CHSTM are capable
of selectively forgetting and recalling new information about
the cell state through the forgetting and memory gates. They
can also retain this important information and send it on to
subsequent neurons.The input through the neuron’s internal weight
computation controls the forgetting, remembering, and output of
the information. The weights of the gate control units are obtained
from the previous moment. The detection accuracy of the model is
improved by CHSTM’s ability to fully account for both precedent
and upcoming data more easily than LSTM (Hameed and Garcia-
Zapirain, 2020). The equations of the CHSTM model is shown in
Equations 20–24.

Qt = σ(ωQ.[st−1,Et] + dQ) (20)

It = σ(ωI.[st−1,Et] + dI) (21)
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FIGURE 7
Performance evaluation with K-fold showing (A) Accuracy, (B) Sensitivity and (C) Specificity.

Pt = σ(ωP.[st−1,Et] + dP) (22)

X̆t = tanh(ωX.[st−1,Et] + dX) (23)

Xt = Qt ⊙Xt−1 + It ⊙ X̆t (24)

st = Pt ⊙ tanh(Xt) (25)

where the input is signified as It, Qt and Pt indicates the input,
output, and forget gate respectively. σ and tanhdenotes the activation
functions, Xt represents the cell state, and the weights and biases of
the gates are denoted as ωQ,ωI,ωP,ωX and dQ,dI,dP,dX, which are
optimized using the proposed CHA optimization.The element-wise
multiplication is denoted as ⊙, and st signifies the hidden layer state.
The output from the feature extraction is concatenated and fed as the
input to the CHSTMmodel which helps to accurately detect the lung
nodules. The CHO algorithm is applied to tune the model weights
for optimal results.

By reducing the vanishing gradient issue, multiplicative
gates enable memory cells to store and retrieve data for
extensive periods. The activation of the cell state is preserved
using the input gate. Because of this feature, the network
may store crucial information from previous sequences that
enhances the detection performance (Elzayady et al., 2021).
BiLSTM can learn more precise information by using the
information’s forward and backward sequences (Ganesan and
Merline, 2017). Three forward ( ⃗st) and backward LSTM ( ⃖st)
layers create the CHSTM model, and the fully connected
layer receives the output from these layers. The forward
LSTM processes information from left to right and the
backward LSTM processes information from right to left
(Bhanumathi and Chandrashekara, 2021). The output of
the CHSTM model is computed as st = [ ⃗st, ⃖st], where the
output of forward gate and backward gate is expressed in
Equations 26, 27 respectively as follows,

s⃗t = lstm(Et, s→t−1) (26)
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FIGURE 8
Comparative evaluation with TP using LUNA 16 dataset. (A) Accuracy, (B) Sensitivity and (C) Specificity.

⃖st = lstm(Et, s→t+1) (27)

The CHSTM model’s final layer, the linear regression layer,
completes regression tasks that help to detect lung nodules. The
architecture of the CHSTMmodel is illustrated in Figure 4.

4 Results and discussion

The following explains the findings and analysis
of the suggested model, along with a performance
assessment and comparison analysis.

4.1 Experimental setup

The present investigation utilized data acquired from the LUNA
16 dataset consisting of 888 CT scan samples. The performance
of the model is evaluated with TP and K-fold by varying epochs.
The dataset was partitioned into 80% of training data and 20%
of testing data. The model is trained on the training set and the
performance is evaluated on the testing set. The research lung
nodule detection using FC2R + CHSTM is executed in PYTHON
software with Windows 11 operating system, 16 GB RAM, 1 TB
ROM, AMD RYZEN 5000H Series, and including GPU. The
hyperparameters of the model includes the learning rate of 0.001,

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2025.1511716
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Prasada Rao and Goswami 10.3389/fphys.2025.1511716

FIGURE 9
Comparative evaluation with k-fold using LUNA 16 dataset. (A) Accuracy, (B) Sensitivity and (C) Specificity.

epoch of 100, batch size of 64, and the ADAM as the default
optimizer.

4.2 Dataset description

4.2.1 LUNA 16 dataset (Kaggle datasets, 2024)
LUNA 16 is a publicly available LIDC/IDRI dataset and

is a collaborative effort between the Lung Imaging Database
Consortium (LIDC) and the Image Database Resource Institute
(IDRI). Comprising 888 CT scans, this publicly accessible
medical imaging dataset focuses on lung cancer research. It
includes both malignant and benign nodules, enabling scientists

to assess the performance of algorithms in distinguishing
between these two types of nodules. Further, the radiologists
annotated the lesions as non-nodule, nodules <3 mm, and nodules
≥3 mm.

4.2.2 LIDC/IDRI dataset
This research utilized the LIDC/IDRI data set [10], comprising

888 thoracic CT scans with a section thickness of 2.5 mm or
lower. Further, the dataset shows the influence of the presence
of contrast, section thickness, and reconstruction kernel for
assessing the computer-aided detection (CAD) performance.
Four radiologists independently scrutinized the false positive
CAD marks of the best CAD system.
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FIGURE 10
Comparative evaluation with TP using LIDC or IDRI dataset. (A) Accuracy, (B) Sensitivity and (C) Specificity.

4.3 Performance metrics

The performance evaluation of the proposed FC2R + CHSTM
model involves assessing key metrics, such as sensitivity accuracy,
and specificity. Accuracy represents the ratio of correctly identified
lung nodules to the total number of detected nodules using the FC2R
+CHSTMmodel. Sensitivity is defined as the fraction of lung nodule
instances that are positive. Specificity gauges howwell themodel can
distinguish non-tumor areas from the CT scan.

4.4 Experimental results

The experimental outcomes obtained from the FC2R
+ CHSTM model are depicted in Figure 5, which
also illustrates the input CT image, the pre-processing
technique such as ROI extraction output, and lobe
segmentation outcomes. The final outcome of the Sample
1 denotes the lung nodules are benign and sample 2
denotes the lung nodules are malignant.
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FIGURE 11
Comparative evaluation with k-fold using LIDC or IDRI dataset. (A) Accuracy, (B) Sensitivity and (C) Specificity.

4.5 Performance analysis

4.5.1 Analysis of performance with TP
The performance evaluation for the FC2R + CHSTM model in

terms of Training percentage (TP) analysis is shown in Figure 6. At
TP 80 and epoch 40 the FC2R + CHSTM attains 96.00% accuracy
as well as for epoch 100 the accuracy of the model is 97.71%.
Similarly, for epoch 100 and TP 80, the FC2R + CHSTM model
attains 98.08% sensitivity. The specificity value attained by the
proposed FC2R + CHSTM model is 97.02% which demonstrates
that the FC2R + CHSTM model detects the lung nodules with
improved performance. The results depict that the model’s accuracy
is improved by increasing the size of the epoch. The hybridization
of the BiLSTM classifier with the CHA optimization increases the
convergence of the model to get the finest results. Additionally,

the FC2R segments the nodule regions with higher accuracy which
minimizes the computational complexity.

4.5.2 Analysis of performance with K-fold
Figure 7 shows the performance analysis of the FC2R + CHSTM

model with k-fold analysis for various epochs. For epoch 100,
the model’s accuracy is 97.15%, while at k-fold 10 and epoch
40, the FC2R + CHSTM achieves 96.07% accuracy. As the epoch
size increases, the model’s accuracy increases as well, according to
the data. Similarly, the FC2R + CHSTM model achieves 96.87%
sensitivity for k-fold 10 and epoch 100. The proposed FC2R +
CHSTM model attains a specificity value of 98.53%, indicating that
it performs better in detecting lung nodules. To achieve optimal
results, the hybridization of the BiLSTM classifier with the CHA
optimization improves the model’s convergence. In addition, the
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TABLE 1 Comparative analysis with the proposed model using the LUNA 16 dataset.

Methods TP (80) K-fold (10)

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

SVM 50.67 50.94 50.41 89.29 88.69 89.90

KNN 71.18 71.56 70.81 90.03 89.19 90.87

ANN 81.69 82.12 81.27 90.58 89.31 91.85

CNN 87.36 87.81 86.90 91.54 90.56 92.52

DeepNN 90.39 90.86 89.92 92.01 91.18 92.84

BiLSTM 90.85 91.76 90.12 92.21 91.55 92.85

SFO Based DeepNN 91.91 92.39 91.43 92.33 91.80 92.86

KHO Based DeepNN 92.67 93.15 92.18 93.28 92.43 94.13

Modified AlexNet-SVM 92.67 94.74 93.56 93.85 92.82 94.35

I3DR-Net 93.43 94.81 93.63 94.36 94.72 94.42

JFOSTM 94.49 94.99 94.18 94.76 95.03 94.68

KHOSTM 94.84 95.57 94.20 95.47 93.10 96.15

SKO based DeepNN 95.50 96.00 95.00 96.11 95.54 96.69

FC2R + CHSTM 97.71 98.09 97.03 97.16 96.87 98.53

FC2R segments the nodule regions with higher accuracy which
minimizes the computational complexity.

4.6 Comparative techniques

The performance of the FC2R + CHSTM model is compared
with other conventional models such as Salmon fish optimization
(SFO Based Deep NN) (Mozaffari and Fathi, 2012), Support Vector
Machine (SVM) (Khan et al., 2019), Convolutional Neural Network
(CNN) (Huang et al., 2017), Deep Neural Network (Deep NN)
(Shukla et al., 2021), Artificial Neural Network (ANN) (Dandıl et al.,
2014), K-Nearest Neighbour (KNN) (Lennartz et al., 2021), BiLSTM
(Ganesan and Merline, 2017), Krill herd optimization (KHO Based
Deep NN) (Yu et al., 2022), Jellyfish optimization based BiLSTM
(JFOSTM) (Chou andMolla, 2022), Krill herd optimization enabled
BiLSTM (KHOSTM) (Gandomi and Alavi, 2012), SKO based Deep
NN, LNDC-HDL (Gugulothu and Balaji, 2024), and CNN + IMFO
+ LBP (Sebastian and Dua, 2023), I3DR-Net (Harsono et al.,
2022), Modified AlexNet-SVM (Naseer et al., 2023) to explicate the
efficiency of the model in lung nodule detection.

4.6.1 Comparative evaluation with TP utilizing
LUNA 16 dataset

Figure 8 presents a comparison of the FC2R + CHSTM
with the traditional approaches using TP for the Luna 16
dataset using TP analysis. The FC2R + CHSTM model achieves

97.71%, outperforming the current CNN by 10.60%, BiLSTM
by 7.03%, Modified AlexNet-SVM by 5.16%, and I3DR-Net by
4.38%. For sensitivity measure, the model attains 98.08% which
shows improvement over the Modified AlexNet-SVM by 3.41%,
I3DR-Net by 3.34%, and JFOSTM by 3.16%. For TP 80 the
FC2R + CHSTM obtained 97.02% specificity that demonstrates
superior performance improvement than the conventionalModified
AlexNet-SVM, I3DR-Net, and JFOSTMby 3.57%, 3.50%, and 2.93%
respectively. Thus, the FC2R + CHSTM model obtains enhanced
results than the existing methods, and the integration of the
CHO algorithm combines the induced movement strategy of krill
with the time control mechanism of the cnidaria that increases
the performance of theFC2R + CHSTM model to attain better
detection accuracy.

4.6.2 Comparative evaluation with K-fold
utilizing LUNA 16 dataset

Figure 9 compares the FC2R + CHSTM model performance
to the existing methods using K-fold 10. The FC2R + CHSTM
model obtains 97.15%, outperforming the Modified AlexNet-
SVM by 3.41%, I3DR-Net by 2.88%, and JFOSTM by 2.47%. For
sensitivity measure, the model attains 96.87% which exceeded
the existing technique Modified AlexNet-SVM by 4.18%, I3DR-
Net by 2.22%, and JFOSTM by 1.90%. For K-fold 10 the
FC2R + CHSTM obtained 98.53% specificity that demonstrates
superior performance improvement than the conventional
Modified AlexNet-SVM, I3DR-Net, and JFOSTM by 4.24%,
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TABLE 2 Statistical analysis using the LUNA 16 dataset.

Methods Accuracy Sensitivity Specificity

Best Mean Variance Best Mean Variance Best Mean Variance

SVM 74.05 60.17 106.36 77.41 60.49 126.09 70.70 59.84 91.88

KNN 81.70 63.99 147.32 78.20 62.07 130.98 85.20 65.92 165.76

ANN 82.75 64.80 142.00 79.23 63.29 117.02 86.27 66.32 170.36

CNN 84.38 66.67 150.73 82.33 65.74 143.80 86.42 67.60 161.69

DeepNN 86.22 69.01 144.26 84.54 68.49 149.74 87.90 69.54 145.06

BiLSTM 87.33 70.99 152.87 85.47 70.43 154.35 89.18 71.55 158.65

SFO Based DeepNN 88.35 71.93 154.76 86.44 71.41 160.90 90.27 72.44 154.93

KHO Based DeepNN 89.15 73.00 160.51 86.94 72.06 157.52 91.36 73.93 171.61

Modified AlexNet-SVM 90.94 74.31 177.04 89.69 73.50 182.06 92.19 75.12 179.72

I3DR-Net 93.23 76.94 159.13 94.25 76.41 174.45 92.21 77.48 150.02

JFOSTM 94.26 78.96 144.58 95.70 78.76 171.71 92.82 79.17 123.68

KHOSTM 95.25 81.85 127.82 97.05 81.93 144.93 93.45 81.78 117.03

SKO-DeepNN 95.59 84.51 82.56 97.13 84.79 95.07 94.05 84.22 74.02

FC2R + CHSTM 96.61 86.51 57.92 97.31 85.41 96.83 95.91 87.61 32.09

4.18%, and 3.91% respectively. Thus, the FC2R + CHSTM model
obtains enhanced results than the implemented methods, and
the integration of the CHO algorithm combines the induced
movement strategy of krill with the time control mechanism
of the cnidaria that advances the performance of the FC2R +
CHSTMmodel.

4.6.3 Comparative evaluation with TP utilizing
LIDC/IDRI dataset

The comparative evaluation of the FC2R + CHSTM and the
conventional methods utilizing TP for the LIDC/IDRI dataset
is shown in Figure 10. The FC2R + CHSTM model outperforms
the Modified AlexNet-SVM by 5.87%, I3DR-Net by 3.50% and
JFOSTM by 2.43%, with a high accuracy of 96.60%. With a
sensitivity measure of 97.30%, the proposed model outperforms
the Modified AlexNet-SVM by 7.83%, I3DR-Net by 3.15%, and
JFOSTM by 1.65%. In comparison to the traditional Modified
AlexNet-SVM, I3DR-Net, and JFOSTM, the proposed approach
attained a significant improvement of 3.88%, 3.85%, and 3.22%
better, respectively, achieving a specificity of 95.90% for TP
80. More specifically, the FC2R + CHSTM model outperforms
the other existing techniques via the application of the CHO
algorithm combines the cnidaria’s time control mechanism
with the krill’s induced movement strategy, improving the
FC2R + CHSTM model’s performance and achieving higher
detection accuracy.

4.6.4 Comparative evaluation with K-fold
utilizing LIDC/IDRI dataset

The performance of the FC2R + CHSTMmodel is compared to
the existing approaches in terms of K-fold 10 with the LIDC/IDRI
dataset in Figure 11. The FC2R + CHSTM model achieves 97.59%,
surpassing the Modified AlexNet-SVM by 1.77%, I3DR-Net by
1.45% and JFOSTM by 1.04%.With a sensitivity measure of 96.77%,
the FC2R + CHSTM model outperforms the Modified AlexNet-
SVM by 1.61%, I3DR-Net by 1.14%, and JFOSTM by 0.45%.
Subsequently, the FC2R + CHSTM achieves 98.30% specificity for
K-fold 10 and obtained a substantial improvement of 1.92% over
AlexNet-SVM,1.76% over I3DR-Net, and 1.62% over JFOSTM.
The CHO algorithm integrates the induced movement strategy of
krill with the time control mechanism of cnidaria, improving the
performance of the FC2R + CHSTM model. As a result, the model
achieves better outcomes than the other existing approaches.

4.7 Comparative discussion

The implemented methods employed for lung nodule detection
pose several limitations related to generalizability, interpretability
challenges, and data requirements. In addition to that the
conventional SVM model creates data imbalance issues which
affect the reliability of the detection model. While the modified
attention-based techniques mentioned in the literature minimized
the computational cost, it has a higher rate of missed detections
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TABLE 3 Statistical analysis using the LIDC/IDRI dataset.

Methods Accuracy Sensitivity Specificity

Best Mean Variance Best Mean Variance Best Mean Variance

SVM 74.05 60.17 106.36 77.41 60.49 126.09 70.70 59.84 91.88

KNN 81.70 63.99 147.32 78.20 62.07 130.98 85.20 65.92 165.76

ANN 82.75 64.80 142.00 79.23 63.29 117.02 86.27 66.32 170.36

CNN 84.38 66.67 150.73 82.33 65.74 143.80 86.42 67.60 161.69

DeepNN 86.22 69.01 144.26 84.54 68.49 149.74 87.90 69.54 145.06

BiLSTM 87.33 70.99 152.87 85.47 70.43 154.35 89.18 71.55 158.65

SFO Based DeepNN 88.35 71.93 154.76 86.44 71.41 160.90 90.27 72.44 154.93

KHO Based DeepNN 89.15 73.00 160.51 86.94 72.06 157.52 91.36 73.93 171.61

Modified AlexNet-SVM 90.94 74.31 177.04 89.69 73.50 182.06 92.19 75.12 179.72

I3DR-Net 93.23 76.94 159.13 94.25 76.41 174.45 92.21 77.48 150.02

JFOSTM 94.26 78.96 144.58 95.70 78.76 171.71 92.82 79.17 123.68

KHOSTM 95.25 81.85 127.82 97.05 81.93 144.93 93.45 81.78 117.03

SKO-DeepNN 95.59 84.51 82.56 97.13 84.79 95.07 94.05 84.22 74.02

FC2R + CHSTM 96.61 86.51 57.92 97.31 85.41 96.83 95.91 87.61 32.09

FIGURE 12
Computation time analysis.

because of interference from numerous potential false positives
outside of the lung area.The LNDC-HDL technique faces challenges
in computational complexity. The CNN + IMFO + LBP model
suffers from computational time. To overcome this issue this
research proposed the FC2R + CHSTM model which detects
the lung nodules with better accuracy and minimum run time.

The CHSTM + FC2R model increases the system reliability
minimizes the overfitting issues caused by data imbalance problems
and increases the computational efficiency of the lung nodule
detection tasks. The comparative discussion of the FC2R +
CHSTM model concerning TP and K-fold analysis is shown
in Table 1.

4.8 Statistical analysis

Statistical Analysis is carried out on different datasets including
the LUNA 16 dataset and LIDC/IDRI dataset to evaluate the
robustness of the results. In addition, the statistical measures
such as best, mean and variance are applied for evaluating the
metrics accuracy, sensitivity, and specificity, and the results are
described in this section. Tables 2, 3 reveal the results of the
statistical analysis for the LUNA 16 dataset and LIDC/IDRI
dataset respectively. Moreover, the statistical analysis portrayed in
Tables 2, 3, ensures that the proposed research obtained robust
results in terms of performance metrics facilitating the improved
interpretation of results.

4.9 Computation time analysis

Computation analysis is carried out between the proposed
approach and the other existing techniques to analyze the
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computation efficiency. Figure 12 illustrates the results of the
computation time analysis evaluated in terms of computation
time with respect to the varying iterations. For iteration 100,
the computation time attained by the proposed strategy is
20.33s, which is low compared to the other existing approaches.
In the proposed approach, the CHO algorithm finetunes the
hyperparameters of the CHSTM model and solves various
high-dimensional challenging problems. Consequently, the
CHO algorithm offers a fast convergence speed towards the
optimal solution, enhances the training process, and reduces the
computation time.

5 Conclusion

In conclusion, this research developed an innovative approach
for lung nodule detection, combining deep learning and bio-
inspired optimization techniques. The CHSTM model, powered
by the CHO algorithm effectively detects lung nodules from CT
images. The FC2R segmentation model combines the Resnet −101
deep learning model and the FCM technique that effectively
improves the performance of the model. CHO is inspired by the
food-searching and herding characteristics of cindaria and krill
fish respectively. By adjusting model hyperparameters using the
CHO algorithm, the accuracy of the model is improved. The
statistical and texture features extract the pertinent features that
improve nodule detection accuracy.The combination of the induced
movement strategy of krill with the time control mechanism
of the cnidaria improves the CHSTM model’s performance by
attaining better detection accuracy and detecting lung nodules as
malignant or benign. According to the findings of a performance
comparison between the FC2R + CHSTM model and the existing
approaches, the suggested model achieves 97.71% accuracy,
98.09% sensitivity, and 97.03% specificity for TP 80 using the
LUNA-16 dataset. Further, the proposed approach obtained
the accuracy, sensitivity, and specificity of 97.59%,96.77%, and
98.41% with k-fold validation utilizing the LIDC/IDRI dataset.
Subsequent research endeavours to enhance the precision of the
suggested approach by focusing network training on intricate
instances.
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