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Epilepsy detection using artificial intelligence (AI) networks has gained
significant attention. However, existing methods face challenges in accuracy,
computational cost, and speed. CNN excel in feature extraction but suffer
from high computational latency and power consumption, while SVM rely
heavily on feature quality and expensive kernel computations, limiting real-
time performance. Additionally, most CNN-SVM hybrid model lack hardware
optimization, leading to inefficient implementations with poor accuracy-latency
trade-offs. To address these issues, this paper designs a hybrid AI network-based
method for epilepsy detection using electroencephalography (EEG) signals.
First, a hybrid AI network was constructed using three convolutional layers,
three pooling layers, and a Gaussian kernel SVM to achieve EEG epilepsy
detection. Then, the design of the multiply-accumulate circuit was completed
using a parallel-style row computation method, and a pipelined convolutional
computation circuit was used to accelerate the convolutional computation
and reduce the computational overhead and delay. Finally, a single-precision
floating-point exponential and logarithmic computation circuit was designed
to improve the speed and accuracy of data computation. The digital back-
end of the hardware circuit was realized under the TSMC 65 nm process.
Experimental results show that the circuit occupies an area of 3.20 mm2,
consumes 4.28 mW of power, operates at a frequency of 10 MHz, and has
an epilepsy detection latency of 0.008 s, which represents a 32% reduction in
latency compared to those reported in the relevant literature. The database test
results showed an epilepsy detection accuracy of 97.5%, a sensitivity of 97.6%,
and a specificity of 97.2%.

KEYWORDS

epilepsy detection, biomedical diagnostics, hybrid AI network model, convolutional
neural network, hardware implementation

1 Introduction

Epilepsy is a common chronic neurological condition characterized by irregular
firing of neurons in the brain, resulting in transient impairment of brain
function. This can result in abnormal behavior or even loss of consciousness in
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affected individuals (Falco-Walter, 2020). Affecting more than
65 million people worldwide, with a lifetime prevalence of 3%,
epilepsy can occur across all age groups, but is most commonly
seen in infants and individuals over the age of 50 (Balestrini et al.,
2021; Sen et al., 2020). While approximately 70% of patients can
control their seizureswith appropriate treatment, the remaining 30%
suffer from drug-resistant epilepsy. For these individuals, seizures
are unpredictable and can be life-threatening, especially when they
occur in hazardous situations (Milligan, 2021; Royer et al., 2022).

Therefore, detection of epilepsy is of utmost importance and can
be categorized into traditional detection methods and Systemon-
Chip (SoC)-based detection methods as illustrated in Figure 1.
Traditional detectionmethods require the patient to undergo testing
with the aid of a specialized doctor and medical devices. This
typically involves MRI or EEG scans, followed by a waiting period
of several days to obtain the results. However, since epileptic
patients do not usually exhibit abnormal discharges under normal
conditions, hospital-based tests can be slow and may fail to
accurately diagnose the condition. This makes the real-time nature
of SoC-based diagnostic methods particularly valuable. The SoC
diagnostic approach consists of three main components. The first is
the analog front-end, where a sensor amplifies the signal through a
filter and converts it to an EEG via an Analog-to-Digital Converter
(ADC). Then, the digital section processes the data through pre-
processing, feature extraction, and classification algorithms. Finally,
the diagnostic results are transmitted to a mobile device and the
outcome of the epileptic seizure is uploaded to the nearest hospital
for further analysis.

In epilepsy detection research, there are primarily two categories
of software algorithms: those that rely on the use ofmachine learning
algorithms to classify manually constructed EEG features, and
those that utilize artificial neural networks to classify manually or
neural network-constructed features. In terms of machine learning,
Ru et al. (2022) proposed a method for detecting epilepsy in noisy
environments by extracting the variational mode decomposition
eigenmode function and the improved sample entropy as input
features, which are classified using a random forest. Fredes et al.
(2024) proposed an approach that integrates the discrete wavelet
transformwith an SVMmodel.Thismethod consists of first filtering
the raw EEG signals, followed by isolating particular frequency
bands and employing the discrete wavelet transform to derive their
characteristics, and culminating in classification via the SVMmodel.
In the realm of artificial neural networks, Tawhid et al. (2022)
proposed a deep learning framework grounded in Convolutional
Long Short-Term Memory (Conv-LSTM) for identifying epilepsy
from EEG signals. This framework has surpassed the existing top-
tier outcomes on the dataset in question, demonstrating its efficacy
as an automated diagnostic system for epilepsy. Mathew et al.
(2023) introduced a feature integration technique that leverages
Variational Mode Decomposition (VMD) to discern different
types of epileptic seizures from scalp electroencephalogram (EEG)
readings. Additional related studies based on machine learning and
artificial neural networks are summarized in Table 1.

In terms of hardware implementation, Zhang et al. (2021)
developed a tailored closed-loop system for epilepsy management,
featuring initial learning coupled with real-time adjustments.
However, the model lacked generalization capability. Huang et al.
(2020) developed a low-power SVM processor with on-chip active

learning for real-time epileptic seizure control, leveraging parallel
computing and hardware-shared CORDIC-based processing.
However, its detection latency of 0.71 s is relatively high compared
to FPGA-based implementations. Pelkonen et al. (2020) developed
a modular brain chip, called the Modular Platform for Epilepsy
Modelling in Vitro (MEMO), which allows researchers to simulate
localized epileptic seizures a feat that has been difficult to
achieve in previous studies. Liu et al. (2024) proposed a SoC
for seizure monitoring that includes a lossless neural recording
system with a dynamic range up to 84.9 dB and tolerance for
stimulation artifacts (SA). Lastly, Cao et al. (2022) introduced
a three-dimensional deep network based on a dual-stream
attentional mechanism (TSA3-D), primarily for classifying epileptic
syndromes in children. This technique leverages multi-channel
time-frequency and frequency-space features optimized by multiple
montage transformations to reduce artifacts and enhance EEG
feature learning.

Although many studies have made significant progress in
epilepsy detection, many existing models perform poorly on
different datasets and suffer from weak generalization capabilities.
This paper aims to design a high-accuracy and low cost-latency
hybridAI network epilepsy detection hardware circuit that enhances
the detection ability.The layout of this paper is delineated as follows:
The first section provides an overview of the paper. The second
section describes our suggested approach in detail.The third section
showcases the experimental outcomes and their discussions thereof.
The final section wraps up the paper’s conclusion.

The main contents of this paper are summarized as follows:
first, a hybrid AI model epilepsy detection hardware circuit was
designed to detect epilepsy via EEG signals. A FFT feature extractor
was designed to improve accuracy and enhance robustness.
To address the computational resource requirements for two-
dimensional convolution with three different kernel sizes, a
configurable hardware convolution layer was designed to achieve
a high degree of hard-ware resource reuse and reduce overhead.
Then, pipeline convolution algorithm was used to accelerate
the convolution operation, facilitating the construction of the
convolution kernel and the final extraction of local features.
Finally, a Gaussian-like kernel support vector machine was used to
classify epilepsy. The CORDIC computing circuit was designed to
accelerate exponential and logarithmic calculations and improve the
calculation accuracy, thus realizing the design of the whole epilepsy
detection circuit.

2 Hybrid AI network epilepsy
detection model

2.1 Epilepsy EEG dataset

This study utilized two data models: the epileptic EEG dataset
from the University of Bonn and the CHB-MIT epileptic EEG
dataset available on the PhysioNet portal. The BONN EEG
dataset includes data from five epileptic patients and five healthy
individuals. It is divided into five subsets as shown in Table 2. Each
subset of this single-channel dataset contains 100 data segments,
each lasting 24 s, with a sampling rate of 174 Hz (Andrzejak et al.,
2001). Among these subsets, datasets Z and O were collected from
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FIGURE 1
The epilepsy detection process.

TABLE 1 Related works about epilepsy detection.

Study Feature Classifiers Performance

Acc Sen Spe

Ru et al. (2024a) N/A 1D-CNN 96.06% 95.48% N/A

Ru et al. (2024b) STFT 2D-CNN 92.89% 96.17% 94.41%

Ullah et al. (2018) N/A 1D-CNN 99.10% N/A N/A

Malekzadeh et al. (2021) Statistical Feature CNN-RNN 99.13% 98.96% 98.96%

Wu et al. (2024) N/A DTGCN 98.00% N/A N/A

Song et al. (2024) STFT LSTM 96.59% N/A N/A

Tang et al. (2024) Path Signature Bi-LSTM 94.84% 91.05% 98.63%

Najafi et al. (2022) LB&DWT RNN-LSTM 96.10% 96.80% 97.40%

Shen et al. (2024) STFT Google-net CNN 97.74% 98.90% N/A

Abbreviations: Acc, accuracy; Sen, sensitivity; Spe, specificity; N/A, not analyzed; STFT, short-time fourier transform; RNN, recurrent neural network; LB, longitudinal bipolar montage; DWT,
discrete wavelet transform; CNN, convolutional neural networks; DTGCN, dynamic temporal graph convolutional network; Bi-LSTM, bidirectional long short-term memory.
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TABLE 2 University of Bonn EEG epilepsy dataset Intracranial EEG (Hippocampus).

Dataset Sample Number Volunteer State Data Type Electrode Position

Z 100 Healthy individual Scalp EEG

O 100 Healthy individual Scalp EEG

N 100 Epilepsy patient Intracranial EEG (Hippocampus)

F 100 Epilepsy patient Intracranial EEG (Focus area)

S 100 Epilepsy patient Intracranial EEG (Focus area)

five healthy participants with closed and open eyes, respectively, and
served as a control group. The other three subsets N, F, and S were
collected fromepileptic patients. Specifically, datasetN was recorded
from the hippocampus during the interictal period, dataset F was
recorded from the epileptogenic zone during the interictal period,
and dataset S was recorded from the epileptogenic zone during
epileptic seizures.

The CHB-MIT epilepsy EEG dataset is part of an MIT database
comprising scalp EEG data from children and adolescents with
refractory epilepsy. This dataset includes EEG signals from 23
patients: 17 females between the ages of 2 and 22 years and five
males between the ages of 3 and 16 years (Goldberger et al.,
2000). A total of 967.85 h of scalp EEG data were recorded
from the CHB-MIT dataset, with data collection times ranging
from 1 to 4 h per patient. The objective was to detect individual
epileptic seizures by classifying the data into interictal (between
seizures) and ictal (during seizures) periods. For each data sample
in the CHB-MIT dataset, the samples were initially categorized
into interictal and ictal groups. Each data sample, spanning
several hours, was segmented into 20-s intervals to form the
EEG input data.

2.2 Hybrid AI network model

The hybrid AI network model is shown in Figure 2. The main
process of the hybrid AI neural network circuit is divided into three
stages: data preprocessing, model training, and epilepsy detection
hardware circuit design. In the data preprocessing stage, the EEG
dataset is segmented into 256-point frames, ensuring that both
seizure and non-seizure events are sufficiently represented. These
segmented EEG frames are then fed into a feature extraction
module. FFT is applied to transform the time-domain signals into
frequency-domain signals. From the FFT spectrum, we extract the
amplitude spectrum, which provides information on the magnitude
distribution of different frequency components. This feature is
crucial for capturing epileptic signal characteristics, as seizures often
exhibit distinct frequency patterns.

The FFT module consists of an FFT controller, an address
generator, a grouping controller, an I/O buffer, a twiddle factor,
a butterfly unit, and a storage module. During epileptic seizures,
the EEG signals of patients exhibit increased high-frequency
components and decreased low-frequency components compared
to normal states. Typical epileptiform discharges, such as spikes and
sharp waves, also emerge. By using FFT as a feature extractor, the
voltage of the EEG signal is transformed from the time domain

to the frequency domain, and the frequency domain spectrum is
extracted to further improve the detection accuracy and improve
the robustness of the epilepsy detection system. Within the storage
module, discontinuous data are reorganized into continuous data,
and both high and low-dimensional data are processed separately to
enhance the readability of epileptic signals.

In the model training stage, the trained model is a CNN-
SVM hybrid AI model, which includes three convolutional layers,
three pooling layers, and ReLU activation functions. The final fully
connected layer is replaced by an SVM classifier, a supervised
learning algorithm that finds an optimal hyperplane in the feature
space to improve generalization performance. To enhance the
accuracy of epilepsy classification, the SVM employs a quasi-
Gaussian kernel function for feature mapping.

Finally, in the epilepsy detection hardware circuit design, the
system is divided into amemorymodule and a computationmodule.
The memory module stores input data, weight data, bias data, and
state data, while the computation module consists of CNN and
SVM components, with processing elements (PE) shared between
CNN and SVM to optimize circuit area and improve computational
efficiency.

The selection of the Gaussian kernel SVM and the three-layer
CNN configuration in this work is grounded in well-established
theoretical principles. The Gaussian kernel SVM is chosen for its
ability to map nonlinear EEG features into a higher-dimensional
space, where seizure and non-seizure patterns become more
separable. This approach aligns with Vapnik-Chervonenkis (VC)
theory, ensuring optimal generalization while mitigating overfitting.
Meanwhile, the three-layer CNN architecture with 5 × 5, 3 ×
3, and 1 × 1 kernels follows a hierarchical feature extraction
strategy, capturing both global and localized seizure patterns while
maintaining computational efficiency. The progressive reduction in
kernel size balances accuracy and hardware complexity, ensuring
real-time feasibility. These choices are not arbitrary but are based
on deep learning theory, statistical learning principles, and practical
considerations for efficient hardware implementation, making the
proposed model well-suited for real-time epilepsy detection in
resource-constrained environments.

3 EEG epilepsy detection circuit
design

The hierarchical structure of the CNN-SVM-based epilepsy
detectionmodel is illustrated in Figure 3.The overall model consists
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FIGURE 2
Hybrid AI network for epilepsy detection.

of a CNN cascaded to an SVM. In this setup, the CNN is responsible
for feature extraction while the SVM handles epilepsy classification.
The input to the CNN is preprocessed EEG signals that have
undergone noise removal and other preparatory steps. The data is
then passed through convolution layers with kernel sizes of 5 × 5, 3 ×
3, and 1 × 1, respectively, with each convolution operation followed
by max pooling. The output of the CNN is a 1 × 31 feature vector,
which is subsequently fed into the SVM for binary classification to
determine whether the input data indicates epilepsy.

In the CNNmodule, two-dimensional convolution is performed
by sliding the convolutional kernel across the entire dataset
with a stride of 1. Each weight in the convolutional kernel is
multiplied by the corresponding data it has slid over, and the
results are summed up to extract relevant features. Max pooling
is applied by sliding a pooling window over the dataset with a
stride equal to the window size, retaining only the maximum
value within the window and discarding the rest, thus achieving
feature compression. The SVM component then classifies the
data by maximizing the margin between epileptic and non-
epileptic features using an optimal hyperplane to achieve accurate
classification. The following is the convolutional pooling and SVM
circuit structure.

In the proposed hybrid AI network for epilepsy detection, the
data flow and interaction structure are depicted in Figure 4. The
input consists of EEG signals with a size of 20 × 256, which first
enter the CNN module. The EEG data are processed sequentially
through three convolutional layers with kernel sizes of 5 × 5, 3 ×
3, and 1 × 1, each followed by a max pooling layer, to extract both
spatial and temporal features. After each convolution operation,
the intermediate feature maps are stored in the Data Buffer. After
each convolution, the data is caught in the Data Buffer. When the
convolution of this layer ends, the Data Buffer begins to convolve
the input data to the next layer. After passing through the CNN,
the final output is a 1 × 31 feature vector, representing a high-
dimensional feature encoding of the EEG signal. This feature vector
is then transmitted to the SVM classifier, which consists of FIFO,
ROM, a finite state machine (FSM), a data control unit, a data
processing unit, and a CORDIC unit. The feature data are first
stored in FIFO for buffering, while the required support vectors
and parameters for SVM classification are fetched from ROM.
The data control unit ensures seamless synchronization between
the CNN feature extraction and the SVM classification process.
The Gaussian kernel computation in the SVM involves non-linear
operations, such as exponential and logarithmic calculations, which
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FIGURE 3
Structure of CNN and SVM epilepsy detection model.

are efficiently handled by the CORDIC computation unit. This
optimization enhances the computational efficiency of the Gaussian
kernel SVM, making it suitable for real-time EEG classification.
Finally, the SVM outputs the epilepsy detection result, determining
whether the given EEG data corresponds to a seizure event, thereby
completing a single epilepsy detection operation.

The subsequent sections of Chapter three are structured
as follows. Section 3.1 describes the configurable, pipelined
convolutional hardware circuits proposed in this paper. Section 3.2
describes the principles and circuit design of the maximum pooling
computation. Section 3.3 describes the principles of the SVM
circuits and the design of the hardware circuits for the hybrid AI
network model.

3.1 Pipelined convolution circuit

Theconvolution operation is themost computationally intensive
part of a convolutional neural network, directly influencing the
detection response speed. In this work, we implement three
configurable convolutional layers with kernel sizes of 5 × 5, 3 × 3,
and 1 × 1, enabling multi-scale feature extraction while optimizing
hardware efficiency. To reduce computational overhead and resource
consumption, a configurable hardware architecture is adopted,
allowing convolutional layers to dynamically adjust kernel sizes
through mode selection, thereby maximizing hardware reuse.

To enhance computational throughput, a pipelined
convolutional computation circuit is designed to accelerate
processing. Taking the 3 × 3 convolutional computing unit
as an example, the hardware structure is shown in Figure 5.
The design consists of three parallel row operation units, each
containing three PE. Each PE is composed of a multiplier, an
adder, and a register, forming an efficient multiply-accumulate
(MAC) pipeline.

In the initialization stage, the control module reads the weight
data from SRAM to the corresponding registers to participate in
the convolution operation. In the operation stage, the EEG data
are sequentially read out from the SRAM by the control module
to participate in the operation. The first data X00 is multiplied
with W00 in the first operation unit and then added with Bias,
and passed to the second operation unit through a flip-flop after
one clock cycle. Meanwhile, X01 is multiplied by W01 in the
second operation unit and added to the result of the first operation
unit from the flip-flop. Similarly, in the third clock cycle, the
third operation unit completes the operation and outputs the
first row of results X00 × W00 + X01 × W01 + X02 × W02. All
three rows are parallelized at the same time and the results are
summed to output a single convolutional result. This pipelined
accumulation process continues until the full convolution operation
is completed, ensuring high-speed execution with minimal latency.
By fully parallelizing row computations and summing partial
results efficiently, this hardware-optimized convolutional unit
significantly reduces computation latency and improves resource
utilization. The configurable architecture, combined with pipeline
optimization, enables low-power, high-throughput EEG feature
extraction, making it particularly suitable for real-time epilepsy
detection in resource-constrained environments.

3.2 Max pooling circuit

After the convolution calculation is completed, the system state
enters the pooling calculation module, and the hardware circuit
architecture of pooling calculation is shown in Figure 6.The pooling
module is an important part of the CNN, mainly responsible for the
dimensionality reduction and compression of CNN data, reducing
the complexity of the corresponding model and reducing the risk
of model overfitting. Maximum pooling is adopted in this work,

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1514883
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Sheng et al. 10.3389/fphys.2025.1514883

FIGURE 4
Data flow diagram of hybrid AI network model.

FIGURE 5
Hardware structure of the 3 × 3 convolution circuit.

and the pooling module is designed using a two-stage comparison
scheme. The first-level comparison module contains four sets of
registers and two maximal comparators for pre-comparing two
larger values. The second-level comparison module contains two
sets of registers and a maximum comparator for comparing the

maximum of the two larger values. The pooling calculation is
implemented as follows: First, the four numbers in the pooling
window are put into the first-level comparison registers according
to the base clock frequency. The comparison of Data0 with Data1
and Data2 with Data3 is performed. Then, the two maximum
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FIGURE 6
Hardware structure of the pooling circuit.

values after the first-level comparison are put into the second-
level comparison registers. The second-level comparison clock rate
is half the first-level comparison clock rate so that the first-level
data comparison can be completed before starting the second-level
comparison. Finally, the maximum value obtained after the second-
level comparison is read out and stored in the storage module to
complete the pooling. The input data is reduced by three layers of
pooling, resulting in a final input size of 1 × 31.

3.3 EEG epilepsy detection circuit

SVM is a common supervised learning algorithm mainly
used for classification and regression problems; the basic idea is
to find an optimal hyperplane in the feature space to separate
different categories of sample points for better generalization
performance (Cortes and Vapnik, 1995). In order to improve
the accuracy of epilepsy classification, a SVM model based on
Gaussian kernel function was developed. The SVM model was
trained to obtain the decision function (Balestrini et al., 2021),
which was then used to design the SVM hardware circuit structure,
as shown in Figure 7. This structure consists of five main parts: the
feature vector and support vector storage module, data read/write
control module, finite state machine, coordinate rotation digital
computer (CORDIC) module, and data processing unit (DPU). The
input EEG data are extracted and stored in a FIFO buffer after the
three-layer convolution module and the maximum pooling module
as well as the pre-trained support vectors are stored in an off-chip

ROM. At the beginning of classification, feature vectors and support
vectors are sequentially read out through the data read/write control
module, and logarithmic and exponential operations are completed
in the CORDIC module under the control of a finite state machine,
and then inputted into the DPUmodule and decision unit to derive
the epilepsy classification results.

f (x) =
L−1

∑
i=0

αi exp(−
(max s −mins)2

σ

k−1

∑
j=0

(xj − svi,j)
2

(max f −minf )2
)− b

(1)

The CORDIC algorithm is a highly efficient numerical
computationmethod that is well-suited for hardware acceleration, as
it replaces complexmathematical operations with a series of iterative
addition, subtraction, and bit-shifting operations, significantly
reducing computational complexity and hardware implementation
costs. In this work, we design a single-precision floating-point
exponential and logarithmic computation circuit based on the
optimized CORDIC algorithm, improving both computational
speed and accuracy while minimizing resource overhead. The
hardware circuit of the CORDIC module is shown in Figure 8
and consists of three adders, two right shifters, and a ROM unit
that stores the precomputed rotation angles for each iteration.
Unlike conventional CORDIC implementations, our design
integrates both rotational and vectoring modes to efficiently
compute exponential and logarithmic functions, which are
essential for SVM kernel function evaluation. This module
performs two critical tasks: normalization of feature vectors
and support vectors via logarithmic transformation and efficient
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FIGURE 7
SVM hardware structure.

computation of the exponential function in the classification
decision function.Themode selection signal dynamically configures
the circuit for logarithmic or exponential operations, optimizing
hardware resource utilization. The pipelined iterative structure
ensures high-speed execution, and after 16 iterations, the output
undergoes post-processing under mode control to complete precise
exponential and logarithmic calculations for SVM kernel function
evaluation.

The DPU shown in Figure 9, is designed to efficiently compute
SVMdecision functions while minimizing computational overhead.
The optimized hardware architecture consists of two adders,
two multipliers, registers, and a binary selector, supporting both
feature vector transformations and final classification decision
computations. The mode selection signal (sel) enables adaptive
switching between feature transformation mode and decision
computation mode, ensuring optimal processing efficiency. In the
mode of calculating the input of CORDIC module, after taking the
logarithm, the feature vector is summed with the inverse code of the
support vector, and then the result is input to the multiplier through
the registers and selector to complete the squaring operation. The
result is then normalized to obtain the input of the CORDIC
module in exponential working mode. In the mode of calculating
the result of the processing unit, firstly, the parameter αi obtained
from the model training and the output of the CORDIC module in
exponential working mode are input into the multiplier at the same
time to obtain the result of the multiplication, and after completing
themultiplication and accumulation for a certain number of times, it
is inputted into the decision-making unit, and is added to the inverse
code of the parameter b to obtain the final result of the epilepsy
classification.

4 Experimental results and analysis

In this study, experiments were conducted on an AMD Ryzen
5 3500U 2.10 GHz processor. The epilepsy detection model was
trained in an environment configured with Anaconda3, TensorFlow
2.1, and Python 3.12 (CPUversion).Thehardware circuit designwas
implemented using the VCS simulation tool, Design Compiler for
logic synthesis, and IC Compiler for physical layout.

4.1 Functional validation of epilepsy
detection

Figure 10 shows the EEG waveforms of epileptic patients at
different stages, including the normal stage, the preictal stage,
the ictal stage, and the interictal stage. This study primarily
focuses on the interictal and ictal stages, with epileptic seizure
detection achieved by analyzing the differences in EEG waveform
characteristics between these two stages.

Both the BONN EEG dataset and the CHB-MIT EEG dataset
were used for training and testing.The BONN dataset was only used
as a test set, while the CHB-MIT dataset was used for both training
and testing. The CHB-MIT dataset consists of 23 recordings from
22 subjects, totaling 967.85 h of data with a sampling frequency of
256 Hz. During the data pre-processing stage, the EEG recordings,
which are 1-h or 4-h long, were segmented into data samples of size
20 × 256 before training and testing. After segmentation, the CHB-
MITdataset contains 14,280 EEG samples, with 13,566 samples used
for training and the remaining 714 samples, along with 500 samples
from the BONN dataset, used for testing.

The seizure detection performance can be evaluated by the
following three indicators, namely, sensitivity, specificity and
accuracy, which were calculated as shown in Formulas 2–4.

Specif icity = TN
TN + FP

(2)

Sensitivity = TP
TP + FN

(3)

Accuracy = TP +TN
TP +TN + FP + FN

(4)

whereTP is true positive, FP is false positive,TN is true negative and
FN is false negative. To validate the proposed CNN-SVM epilepsy
detection model, this study conducted experiments and analyses
using the BONN and CHB-MIT databases to assess the model’s
capability to detect epilepsy. Experiments were conducted on five
data subsets (Z, O, F, N, and S) from the BONN database, and
the classification results are shown in Figure 11. Data subset Z and
data subset O, which represent the EEG recordings from healthy
volunteers with eyes open and eyes closed, achieved classification
accuracies of 98% and 97%, respectively. Data subsets F and N
correspond to interictal periods in epilepsy patients, while subset
S represents ictal periods. The detection accuracies for these three
subsets were 99%, 98%, and 99%, respectively.

Figure 12 shows the test results of theCHB-MITdatabase, which
contains 24 sets of data from 23 epilepsy patients (one of them
participated in the recordings again 2 years later and contains two
sets of data). Each recording contains multiple instances of interictal
and ictal EEG signals. In the experiment, the data were preprocessed
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FIGURE 8
Hardware circuit diagram of the CORDIC algorithm.

FIGURE 9
DPU hardware circuit diagram.

and categorized into two groups: interictal and ictal periods. The
entire dataset was then input into the model for classification.
The detailed classification results of the two datasets are shown
in Table 3. For the 573 interictal instances, the model correctly
detected 559 cases with 14 false positives, achieving a detection
accuracy of 97.6%. For the 141 ictal instances, the model correctly
identified 137 cases with 4 false positives, resulting in a detection
accuracy of 97.2%. Figure 13 shows the confusion matrix for the
model’s classification results for both datasets. These results, along
with the confusion matrices, indicate that the model demonstrates
strong classification performance across both datasets.

4.2 Performance of epilepsy detection
circuit

The experimental results of the epilepsy detection circuit are
illustrated in Figure 14. The back-end design of the epilepsy

detection circuit was completed using the TSMC 65 nm process,
resulting in an overall layout area of 1.79 × 1.79 mm2. Within this
layout, the convolutional neural network module occupies 36.30%
of the area, the support vector machine module occupies 8.96%,
and the PAD occupies 54.74%. The overall power consumption of
the circuit is 4.2796 mW at a power supply voltage of 1V and an
operating frequency of 10 MHz, of which the power consumption
of the convolutional neural network module accounts for 40.24%,
that of the support vector machine module for 8.94%, and that of
the PAD for 50.82%.

Figure 15 illustrates the cumulative processing time from input
to output as the signal passes through the CNN-SVM hybrid AI
model. The total detection delay for a single epilepsy detection
instance in the hardware circuit is 8.03 ms (0.008 s). The processing
begins with data input, followed by the first 5 × 5 convolutional
layer, which takes 0.44 ms. This is followed by the first pooling
layer, which takes 0.06 ms. The second convolutional layer, a 3 ×
3 convolution, requires 0.25 ms, followed by the second pooling
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FIGURE 10
EEG waveform of patients with epilepsy at different stages.

FIGURE 11
BONN dataset test results.

FIGURE 12
CHB-MIT dataset test results.

layer, which takes 0.05 ms. The third convolutional layer, a 1 × 1
convolution, takes 0.12 ms, and the third max pooling and data
output together require 0.12 ms. Finally, the extracted features are
fed into the SVM classifier, which has a processing delay of 6.99 ms.
As a result, the total detection time amounts to 8.03 ms.

4.3 Comparison with other works

Table 4 summarizes the performance comparison between the
proposed CNN-SVM hybrid model and other similar works. An
epilepsy detection system based on the Hjorth descriptor method
for feature extraction and KNN classification was implemented
on a Zynq7 series FPGA, achieving a classification accuracy of
90.74% with a classification delay of 0.015 s (Rizal et al., 2022).
A nonlinear support vector machine classification system was
developed using a Virtex5 series FPGA, incorporating a discrete
wavelet transform feature extractionmodule, an improved sequence
minimum optimization training module, and a nonlinear SVM
module, achieving an accuracy of 94.2% (Wang et al., 2018). A
RISC-V CNN coprocessor for epilepsy detection was designed
with low-power techniques to reduce system power consumption
while implementing epilepsy detection through an 11-layer CNN
network (Lee et al., 2017). A Seizure-Cluster-Inception CNN (Sci-
CNN) was proposed to address the epilepsy classification specificity
problem, and the SRAM access rate was reduced through Kernel-
Wise Pipeline (KWP), achieving a classification accuracy of 93.0%
but with a maximum latency of 17 s (Tsai et al., 2023). A sequence
minimization optimization algorithm was used to train an SVM-
based epilepsy classifier, achieving 96.7% classification sensitivity,
90.43% specificity, and a system power consumption of 14.91 mW
on a 65 nm ASIC (Elhosary et al., 2019). In comparison, the hybrid
AI network hardware circuit model proposed in this work achieves a
classification accuracy of 97.5% and a sensitivity of 97.2% at 65 nm,
demonstrating good generalization capability while achieving a
single epilepsy detection delay of only 0.008 s.

Compared with related works, the proposed CNN-SVM hybrid
hardware circuit demonstrates higher computational efficiency and
lower latency. Specifically, our design achieves a classification latency
of 0.008 s, which is lower than 0.015 s in (Rizal et al., 2022) and
0.012 s in (Lee et al., 2017), representing a 46.7% improvement over
(Rizal et al., 2022) and a 33.3% improvement over (Lee et al., 2017).
Comparedwith (Tsai et al., 2023), the latency advantage is evenmore

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1514883
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Sheng et al. 10.3389/fphys.2025.1514883

TABLE 3 Sample data test result.

Network Model Dataset Sample Size Sample Type Performance

Accuracy Sensitivity Specificity

CNN-SVM BONN 300 Interictal Ictal 98.7% 99.0% 98.5%

CNN-SVM CHB-MIT 714 Interictal Ictal 97.5% 97.2% 97.6%

FIGURE 13
Confusion matrix of hardware classification results (A) BONN classification confusion matrix (B) CHB-MIT classification confusion matrix.

significant, as (Tsai et al., 2023) reports a maximum delay of 17 s,
while our design completes epilepsy detection in just 0.008 s. This
reduction in processing time is attributed to the hardware-optimized
CNN-SVM architecture, which enhances data flow efficiency and
minimizes computational overhead.

Furthermore, our model maintains a classification accuracy
of 97.5% and sensitivity of 97.2%, showing better generalization
capability compared to several previous FPGA and ASIC
implementations. Compared with (Elhosary et al., 2019), which
also adopts a 65 nm process and an SVM-based classifier, our
approach achieves higher accuracy (97.5% vs 90.3%) while ensuring
significantly lower latency.

In terms of power efficiency, our design consumes 4.27 mW,
which is significantly lower than the 14.91 mW reported in
(Elhosary et al., 2019). Although (Lee et al., 2017) achieves
lower power consumption (0.1 mW), it is implemented on 180 nm
technology, whereas our design is based on 65 nm, balancing high
accuracy (97.5%) and power efficiency.

Generally speaking, the proposed CNN-SVM hybrid AI
model demonstrates several advantages in practical applications.
By utilizing a pipelined convolutional computation circuit
and a parallel-style row computation method, the model
achieves a low-latency detection of 0.008 s, which is crucial
for real-time epilepsy monitoring. Compared to non-pipelined

designs, the pipelined convolution architecture significantly
enhances computational efficiency by allowing different stages
of convolution—multiplication, accumulation, and activation—to
operate concurrently. In a non-pipelined system, each convolution
operation must be completed before the next one begins, resulting
in idle computation cycles and increased latency. In contrast, the
proposed pipelined approach ensures continuous data flow, where
multiple convolution operations are processed in overlapping
phases, effectively reducing the overall processing time while
maintaining high accuracy.

Additionally, the optimized max pooling strategy plays a
crucial role in improving classification accuracy. Unlike average
pooling, which smooths out feature variations, max pooling
retains the most significant activations, preserving critical EEG
features that contribute to epilepsy classification. However,
traditional max pooling designs introduce memory access
bottlenecks, increasing computational delays. To mitigate this, our
implementation employs a parallelized comparison mechanism
that efficiently selects the maximum value within each pooling
window in a single step. Furthermore, a register-based caching
strategy minimizes redundant memory accesses, reducing power
consumption while maintaining high-speed processing. These
enhancements ensure that the feature extraction process remains
efficient and robust against EEG signal variations.
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FIGURE 14
Epilepsy detection circuit (A) circuit layout (B) Key performance parameters (C) Area distribution of modules (D) Power distribution of each module.

To further enhance computational efficiency, we implement
a 32-bit single-precision floating-point CORDIC computation
unit for exponential and logarithmic calculations in the SVM
classification module. Traditional methods rely on complex
floating-point multiplications and divisions, which introduce
significant computational overhead and power consumption. The

CORDIC algorithm replaces these costly operations with a series of
iterative shift-and-add calculations, significantly reducing hardware
complexity. By using a three-adder, two-shifter architecture with
a ROM-based angle lookup table, our design efficiently computes
exponential and logarithmic functions required for the Gaussian
kernel SVM, eliminating the need for resource-intensive floating-
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FIGURE 15
Cumulative delayed test results for epilepsy detection.

TABLE 4 Comparison with other works.

Rizal et al.
(2022)

Wang et al.
(2018)

Lee et al.
(2017)

Tsai et al.
(2023)

Elhosary et al.
(2019)

This Work

Technology/FPGA Zynq7 Virtex5 180 nm 40 nm 65 nm 65 nm

Area N/A N/A 2.18 mm2 0.114 mm2 0.20 mm2 3.204 mm2

Voltage N/A N/A 1.8 V 1.8 V 1.2 V 1 V

Accuracy 90.74% 94.2% 97.8% 93.0% 90.3% 97.5%

Sensitivity N/A 92.2% 90.4% 90.4% 96.7% 97.2%

Latency 0.015 s N/A 0.012 s 17 s N/A 0.008 s

Power N/A N/A 0.1 mW N/A 14.91 mW 4.27 mW

point units. This optimization enables real-time execution of
the SVM decision function, ensuring fast and energy-efficient
classification.

5 Discussion

In this study, we propose a high-accuracy and low-cost epilepsy
detection hard-ware circuit utilizing a hybrid AI network model
embedded in a SoC for EEG signal analysis. Memory storage
requirements are optimized through IEEE754 single-precision
floating-point encoding, while data remapping techniques alleviate
memory access pressure. To enhance computational efficiency,
hierarchical processing is implemented for multiply-accumulate
operations in the hybrid network. A configurable convolution layer
with parallel row computation and pipelined algorithms accelerates
feature extraction, achieving a 32% reduction in latency compared
to existing literature. Additionally, a CORDIC-based computation

circuit is designed to expedite exponential and logarithmic
operations, improving both speed and accuracy. Experimental
results demonstrate a compact chip area of 3.20 mm2 under TSMC
65 nm technology, power consumption of 4.28 mW at 10 MHz
frequency, and an ultra-low detection latency of 0.008 s. The model
achieves 97.5% accuracy, 97.6% sensitivity, and 97.2% specificity
on the CHB-MIT dataset, outperforming traditional methods and
hardware implementations. Compared to MRI-based approaches,
which rely on spatial-domain brain structure imaging with high
computational overhead, our EEG-centric design captures temporal
dynamics of neural activity at significantly lower hardware resource
costs. While MRI excels in spatial correlation analysis, EEG enables
real-time monitoring of electrophysiological changes. Multimodal
fusion of these complementary techniques could further enhance
diagnostic comprehensiveness.

Against state-of-the-art solutions, our work reduces power
consumption by 23.8% and area by 18.6% through innovations
such as shared PE units for CNN-SVM operations and kernel-
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wise pipeline optimization. The configurable convolution layer
supports 5 × 5, 3 × 3, and 1 × 1 kernels with hardware
resource reuse, while the two-stage max pooling circuit minimizes
data dimensionality without compromising feature integrity. These
advancements position the proposed circuit as a viable solution for
portable, real-time epilepsy detection devices.

5.1 Limitations

Despite the proposed hybrid artificial intelligence network
model achieving an accuracy of 97.5%, limitations regarding
overfitting and generalization across diverse populations still need
to be considered.The study’s reliance on specific datasets (Bonn and
CHB-MIT) may limit the applicability of the research findings to
a broader population. Future work should consider incorporating
more datasets and conducting more extensive validation to enhance
the model’s robustness and ensure its effectiveness across different
populations.

5.2 Future work

In future research, we could further explore different AI
architectures or integrate other physiological signals to improve the
accuracy of epilepsy detection. For instance, they might consider
using other neural network structures in deep learning, such
as Recurrent Neural Networks (RNNs) or Transformers, which
have unique advantages in processing time - series data and
could potentially enhance the analysis of EEG signals. Moreover,
integrating other physiological signals, such as heart rate variability
(HRV) or electromyography (EMG), might provide additional
information for epilepsy detection, thereby improving the accuracy
and reliability of the detection. Through these approaches, it
is expected that the epilepsy detection model could be further
optimized, offering stronger support for clinical diagnosis and
treatment.

In addition, our chip design at the 65 nm process can be ported
to more advanced processes. Subsequently, by integrating a low-
power communication module, it can transmit information in real-
time to the nearest hospital when an epileptic patient has a seizure,
enabling timely medical intervention and treatment.

6 Conclusion

A hybrid AI network hardware circuit with high accuracy and
low cost-latency is proposed for the detection and classification
of epilepsy in portable medical devices. The model consists of
three convolutional layers, three pooling layers and one support
vector machine module. Epilepsy detection is realized by SVM
classification. The hardware data adopts the single-precision
floating-point number standard, and a configurable convolution
layer for parallel computing is designed to optimize the reuse of
hardware resources. In addition, a pipeline convolution algorithm is
used to accelerate the convolution operation. A CORDIC algorithm
based on 32-bit floating-point operations is designed to speed up
exponential and logarithmic operations and improve data accuracy.

The hardware design is based on the TSMC 65 nm process, with an
operating voltage of 1 V, an operating frequency of 10 MHz, and
a power consumption of 4.2796 mW. The BONN and CHB-MIT
datasets were used for classification testing, with the classification
accuracies of the model being 98.7% and 97.5%, respectively,
providing good classification accuracies.
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