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Hypothyroidism is a common thyroid dysfunction with a higher prevalence in
women. Impairments in the regulation of basal metabolism, small intestine
nutrient transporter, dyslipidemia, and disruption in circadian clocks have been
associated with the thyroid disorder. This study aimed to evaluate whether
hypothyroidism affects the small intestine circadian clock and the daily expression
patternof gut nutrient transporters in femalemice. Adult femaleC57BL/6Jmicewere
subjected to hypothyroidism by the administration of methimazole (0.1%) and
sodium perchlorate (1%) in drinking water for 45 days. After, the animals were
subdivided and euthanized every 4 h over the 24 h period under deep
anesthesia. The proximal small intestine segment was collected and immediately
frozen for geneexpression analysis of circadian core clock components (Bmal1,Per2,
Cry1, and Nr1d1) and nutrient transporters by RT-qPCR. The daily protein content of
nutrient transporters involved in the absorption of the products of hydrolysis of lipids,
proteins, and carbohydrates was evaluated over 24 h in isolated small intestinal
epitheliumbyWestern blotting. Theexpressionof clock genes andprotein content of
nutrients transporters in the jejunumof control femalemice exhibited a well-defined
circadian rhythmicity, while no rhythmic oscillation over 24 h was observed for the
transporter transcripts. Hypothyroidism abolished the circadian rhythmicity of
circadian clock, punctually reduced the transcript content of Slc2a5 (GLUT5) at
ZT12 and Slc2a2 (GLUT2) at ZT4, and disrupted the circadian oscillation of L-FABP,
CD36, PEPT1, and GLUT2 protein contents in the small intestine of female mice. In
conclusion, our findings indicate that thyroid hormonesmodulate the circadian clock
of small intestine and the daily rhythmicity of components related to absorptive
processes in femalemice.Moreover, our data suggest that themechanisms triggered
by thyroid hormones involve posttranscriptional and/or translationalmodifications of
proteins related to lipid, protein, and carbohydrate absorption. Together, these data
contribute to the general comprehension of metabolic alterations often observed in
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hypothyroidism and have far-reaching implications at clinical levels considering the
higher worldwide prevalence of hypothyroidism in women and its association with
obesity and metabolic syndrome.
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GRAPHICAL ABSTRACT
This study aimed to evaluate whether hypothyroidism affects the small intestine circadian clock and the daily expression pattern of gut nutrient
transporters in female mice. C57BL/6J adult female mice were divided into Control and Hypothyroid groups. Hypothyroidism was confirmed by the
increased Tshb mRNA content in the pituitary gland, reduced total thyroxin (T4) serum concentration, and decreased heart weight/tibia length ratio in
hypothyroid female mice. The animals were euthanized every 4 h over 24 h under deep anesthesia, and the tissues were freshly collected. Gene
expression analysis of the jejunum was performed by RT-qPCR, and the protein content of the isolated intestinal epithelium was evaluated by Western
blotting. Hypothyroidism disrupted the circadian oscillation of core clock components and the circadian oscillation of L-FABP, CD36, PEPT1, and
GLUT2 protein contents in the small intestine of female mice, which might contribute to the metabolic alterations often observed in hypothyroidism.
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Introduction

The modern lifestyle is associated with exposure to artificial light
at night and shift work, leading to the desynchronization of
biological rhythms in a significant portion of the population
worldwide (Ng and Kaur, 2022). The desynchronization is
reinforced by the mealtime irregularity once food exerts an
important role as a temporal cue in the entrainment of biological
rhythms (Hussain and Pan, 2015; Lewis et al., 2020). The disruption
of circadian rhythmicity is strongly associated with impairments in
the whole body endocrine-metabolic homeostasis and
gastrointestinal processes (Voigt et al., 2019). Higher prevalence
of irritable bowel syndrome and abdominal pain are among the
major complaints related to gastrointestinal disorders by shift
workers and transcontinental travellers (Hussain and Pan, 2015;
Knutsson and Boggild, 2010; Nojkov et al., 2010; Vener et al., 1989).
Moreover, the disruption of daily rhythmic processes involved in the
intestinal macronutrient absorption might contribute to the
pathogenesis of endocrine-metabolic disorders (Bishehsari
et al., 2016).

The most common endocrine-metabolic diseases are diabetes
mellitus, metabolic syndrome, and thyroid dysfunctions, showing a
positive correlation among them (Khatiwada et al., 2016).
Hypothyroidism has a higher prevalence in women, and it is
characterized by higher Thyroid Stimulating Hormone (TSH)
levels and reduced serum concentrations of thyroid hormones
(TH) (Bargi-Souza et al., 2015; Bargi-Souza et al., 2013; Goulart-
Silva et al., 2011; Secio-Silva et al., 2022), thyroxine (T4), and
triiodothyronine (T3). Moreover, it has been associated with an
increased risk of metabolic syndrome development, abdominal
obesity, and hypertriglyceridemia in a sex-dependent manner
(Iwen et al., 2013; Mehran et al., 2017). Elevated TSH levels,
although still within the normal range, are associated with
obesity, dyslipidemia, hypertension, inflammation, and metabolic
syndrome (Chang et al., 2019). In parallel, individuals with
metabolic syndrome exhibit higher free T4 levels and present a
positive correlation between insulin resistance and total T3 serum
levels (Iwen et al., 2018; Tarcin et al., 2012).

Besides the well-known systemic effects of THs in
thermogenesis, energy homeostasis, and metabolism (Iwen et al.,
2018; Tarcin et al., 2012; Sentis et al., 2024), THs also affect the
intestinal development (Giolito and Plateroti, 2022; Ishizuya-Oka
et al., 2009), motility (Xu et al., 2024) and small intestine absorption
as described in studies evaluating the jejunum, isolated intestinal
epithelium, and enterocytes, as well as in human colon
adenocarcinoma cells, known as Caco-2 cells. Briefly, it has been
shown that THs increase the villi length (Losacco et al., 2018),
modulate the expression of lipid (Losacco et al., 2018; Chu et al.,
1995; Shin and Osborne, 2003; Zhu and Cheng, 2010), carbohydrate
(Blakemore et al., 1995; Hashimoto et al., 2009; Matosin et al., 1996;
Matosin-Matekalo et al., 1999; Mochizuki et al., 2007; Potenza et al.,
2009) and protein (Ashida et al., 2002; Ashida et al., 2004; Jumarie
and Malo, 1994) transporters by transcriptional and translational
mechanisms.

There is a strict correlation between thyroid function and
circadian rhythmicity (Ikegami et al., 2019). It has been
demonstrated that thyroid axis components exhibit daily
rhythmicity (Fliers et al., 2014; Kalsbeek et al., 2005; Kalsbeek

et al., 2000; Roelfsema and Veldhuis, 2013). Shift workers have a
higher prevalence of hypothyroidism, reaching approximately 30%
for women and 20% for men (Oţelea and Călugăreanu, 2018). We
have recently demonstrated that thyroid dysfunctions alter the core
circadian clock expression in the central clock, located in the
suprachiasmatic nuclei (SCN) of the hypothalamus, heart, and
pituitary gland (Bargi-Souza et al., 2019; Emrich et al., 2024;
Peliciari-Garcia et al., 2018; Peliciari-Garcia et al., 2016).
Hypothyroidism also alters the daily pattern of spontaneous
locomotor activity, body temperature, and oxygen consumption,
showing that THs modulate the rhythmicity of metabolism by
mechanisms possibly involving the transcriptional regulation of
the core clock component Bmal1 by T3 (Emrich et al., 2024).

Therefore, considering these THs effects in the molecular
clockwork machinery and the increased hypothyroidism
prevalence in women, this study aimed to evaluate the
rhythmicity of the jejunum clockwork machinery (Bmal1, Per2,
Cry1, and Nr1d1) and transporters involved in the macronutrient
absorption (L-FABP, FATP4, MTTP, CD36, NPC1L1, PEPT1,
NHE3, GLUT5, and GLUT2) in female mice under control and
hypothyroid conditions, looking for a possible explanation for the
increased risk of metabolic syndrome development in hypothyroid
women, as observed in population studies.

Materials and methods

Animals and treatments

Seven-week-old female C57BL/6J mice (Mus musculus) were
obtained from the Central Animal Facility of the Federal University
of Minas Gerais (UFMG). Four to five animals were housed in
collective cages (28 cm × 17 cm × 12 cm), with water and food ad
libitum. They were kept in a temperature (28°C ± 2°C) controlled
room under a 12 h/12 h light-dark cycle (07:00 h/19:00 h, Zeitgeber
Time (ZT) 0 = 07:00 h). Luminosity was kept between 200 and
300 lux during the light phase and 0.5–1 lux in the dark phase.

The mice were divided into the Control (C - euthyroid) and
Hypothyroid (H) groups. Hypothyroidism was induced by the
treatment with methimazole (0.1%) and sodium perchlorate (1%),
inhibitors of thyroid hormone synthesis, dissolved in the drinking
water for 45 days (Emrich et al., 2024; Barros et al., 2023; Marsili
et al., 2010). Body weight was weekly evaluated. After treatment, control
and hypothyroid animals were equally divided into six subgroups for the
24 h tissue collection, taking place every 4 h, corresponding to ZTs 0/24,
4, 8, 12, 16, and 20, as previously described (Emrich et al., 2024). Each
animal was euthanized by decapitation following the inhalation of the
anesthetic isoflurane (3%–5%). All experimental procedures were
approved by the Ethics Committee on the Use of Animals (CEUA)
of the UFMG (CEUA: 349/2023), according to the legislation of the
National Council for Control andAnimal Experimentation (CONCEA).

Tissue collection and intestinal
epithelium isolation

The pituitary gland was collected for assessment of
hypothyroidism induction, immediately frozen in liquid nitrogen,
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and kept at −80°C for further molecular analysis. The serum was
obtained from trunk blood, centrifuged at 4000 RPM for 20 min
(5804R Centrifuge, Eppendorf, Hamburg, Germany), and stored
at −20°C until subsequent analysis. The heart and tibia were
collected for the respective weight and length measurements.

The small intestine segment was collected, and the length was
measured from the end of the stomach to the beginning of the
cecum. The initial 4 cm corresponding to the duodenum were
discarded, and the following 10 cm were collected, which
corresponds to the proximal portion of jejunum, which was then
washed with saline solution (0.9% NaCl). For the gene expression
analysis, 30 mg of tissue was collected, washed, and then frozen in
liquid nitrogen and kept at −80°C for further molecular analysis.

For the evaluation of the daily protein content, the jejunum
fragment was placed into a washing solution (3.2 mM DTT and
3 mM sodium azide diluted in saline) and processed, as previously
described (Losacco et al., 2018; Torelli Hijo et al., 2019). Briefly, the
intestine mucosa was exposed, cut into ±0.5 cm pieces, and washed
with cold saline to remove the luminal contents. Next, the tissue
fragments were incubated in washing solution (0.5 mM DTT and
1.5 mM EDTA, dissolved in saline) for 5 min at room temperature
and then bathed in phosphate-buffered saline (PBS, pH 7.4) for
20 min at 4°C. The intestine fragments were incubated in an orbital
shaker for 60 min at 37°C and 200 RPM (Orbital shaker, Model 420,
ThermoFisher Scientific, United States of America) in a PBS1X
solution containing 0.5 mMDTT and 1.5 mM EDTA to detachment
of the epithelium. At the end, the liquid phase containing the
isolated epithelium was filtered with gauze and transferred to a
new tube, followed by centrifugation at 2000 RPM (5804R
Centrifuge, Eppendorf, Hamburg, Germany) for 10 min at 4°C.
Afterwards, the supernatant was discarded, the pellet was diluted in
RIPA lysis buffer (150 mM NaCl, 0.5% sodium deoxycholate,
50 mM Tris·HCl, pH 8.0, 0.1% SDS, 0.1% Nonidet P-40, 2 mM
Na3VO4, 10 mM NaF, and 0.2 mM phenylmethylsulfonyl fluoride
(PMSF)), supplemented with complete Mini, EDTA-free Protease
Inhibitor Cocktail (Roche Diagnostics), and the homogenate was
stored −80°C until protein quantification.

Total RNA extraction and analysis of gene
expression by RT-qPCR

The expression of clock genes and genes encoding proteins
involved in nutrient absorption in the jejunum segment, as well as
the TshbmRNA content in the pituitary gland, were evaluated using
Reverse Transcription (RT) followed by Real-Time Polymerase
Chain Reaction (PCR) (RT-qPCR). Total RNA was obtained with
TRIzol® reagent (Thermo Fisher Scientific, Waltham,
Massachusetts, United States) according to the manufacturer’s
protocol. The concentration of total RNA was assessed by
spectrophotometry using NanoDrop One (Thermo Fisher
Scientific). The integrity of total RNA was also verified from 1 µg
of total RNA in agarose gel (1%), stained with GelRed (1:100000,
Thermo Fisher Scientific). The total RNA was considered intact
when 28S and 18S ribosomal RNA bands were observed in the
transilluminator with UV light. The Reverse Transcription assay
followed the M-MLV Reverse Transcriptase enzyme protocol
(Promega®, United States of America) using 1 µg of total RNA of

each sample for cDNA synthesis. Real-time PCR was performed
using the RT2 SYBR® Green qPCR Mastermix (QIAGEN Sciences,
Maryland 20874, United States of America) and carried out by
ViiA™ 7 Real-Time PCR System (Applied Biosystems™). The
primers used for the PCR assay, efficiency, and slope values are
listed in Table 1. The specificity of the reaction was analyzed by the
dissociation curve (melting point). Efficiency and slope values were
determined using a serial dilution curve (0.001 up to 1) (Dussault
and Pouliot, 2006). The expression of each target gene in pituitary
gland and jejunum was normalized by Rn18s and Gapdh expression,
respectively, according to the 2−ΔCT method (Livak and Schmittgen,
2001; Secio-Silva et al., 2023).

Circadian analysis of protein content in
jejunum epithelium

The jejunum epithelium homogenate was centrifuged at
17,949 g at 4°C for 20 min, and the supernatant was collected.
Total protein concentration was estimated by spectrophotometry
from the bovine serum albumin curve using the Bradford reagent, as
described (Bradford, 1976). The samples were then prepared as 1 μg/
μL in Laemmli solution. For the SDS-PAGE electrophoresis, 30 µg of
each sample were heated to 37°C for 30 min and then applied to
SDS-PAGE and subjected to electrophoresis at 100 V for 1 h. In each
gel, one sample of each group and respective ZT was applied.
Polyacrylamide gels were made at a concentration of 10% for
analysis of NPC1L1, NHE3, GLUT2, GLUT5, CD36, MTTP,
PEPT1 proteins, and 12% for FATP4 and L-FABP proteins.
These intestinal transporters were selected based on their
expression and involvement in the absorption of carbohydrates,
proteins, and lipids in the jejunum segment. Proteins were
transferred by electrophoresis at 100 V for 100 min to a
nitrocellulose membrane (Bio-Rad Laboratories, Inc.,
United States of America). After transference, the membranes
were stained with Ponceau S 0.1% (w/v) in 5% (v/v) acetic acid
to check equal loading of gels and further data normalization
(Romero-Calvo et al., 2010). The labeling specificity for each
protein target was confirmed by comparison with the standard
molecular weight of Colorcode Prestained Protein Marker
(10–180 kDa) (Sinapse Biotecnologia, Brazil) (Table 2), also used
as a reference to cut the membranes according to the protein target.
The membranes were washed three times with a solution of PBS 1X
and 0.1% Tween 20 (PBST) for 10 min each and then blocked with
5% skimmed milk powder diluted in PBST for 1 h at room
temperature.

The specific primary antibodies used are listed in Table 2. The
primary antibody incubation was carried out overnight under
agitation at 4°C–8°C. The membranes were then washed four
times with PBST, 10 min each, and subjected to incubation with
peroxidase-conjugated secondary antibody (Jackson Immuno
research laboratories, Inc., United States of America) diluted 1:
5000 in PBST for 75 min at room temperature. After this procedure,
the membranes were washed four times with PBST and incubated
with 1 mL of the Enhanced Chemiluminescence solution (ECL: 1 M
Tris-HCL pH 8.5, 250 mM Luminol, 90 mM p-coumaric acid, and
30% hydrogen peroxide). For the GLUT2 and MTTP analyses, the
membranes were stripped with 10 mL of stripping solution (Glycine
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TABLE 1 Primer sequences used for qPCR and their respective efficiency and slope values.

Gene Gene Bank # Sequence (5′-3′) Amplicon length (bp) Slope Efficiency

Bmal1 NM_007489.4 F: GAT GAC GAA CTG AAA CAC
R: CTC GGT CAC ATC CTA CGA CAA

70 −3.42 0.96

Per2 NM_011066.3 F: GCT GCA GTA GTG AGC AGT CT
R: AGG TAA TGC CCT CAA CCT GC

261 −3.27 1.02

Cry1 NM_007771.3 F: TTC GCC GGC TCT TCC AA
R: ATT GGC ATC AAG ATC CTC AAG A

75 −3.20 1.06

Nr1d1 NM_145434.4 F: AGG TGA CCC TGC TTA AGG CTG
R: ACT GTC TGG TCC TTC ACG TTG A

82 −3.56 0.91

Slc9a3 NM_001081060.3 F: GCA GGA GTA CAA GCA TCT CT
R: TCC ATA GGC AGT TTC CCA TTA G

222 −3.01 1.15

Cd36 NM_001159558.1 F: GCT AAA TGA GAC TGG GAC CAT
R: CAC CAC TCC AAT CCC AAG TAA

118 −3.49 0.93

Fabp NM_017399.5 F: AGG GGG TGT CAG AAA TCG TG
R: CCC CCA GGG TGA ACT CAT TG

93 −3.48 0.94

Slc2a2 NM_031197.2 F: TCT GTC TGT GTC CAG CTT TG
R: CCA ACA TTG CTT TGA TCC TTC C

95 −3.34 0.99

Npc1l1 NM_207242.2 F: CCA GAT TAT AGC CTC CCA GTT C
R: CCG TAG TTC AGC TGT GAT GT

118 −3.31 1.00

Slc15a1 NM_053079.2 F: CAA ACA GTG GGC TGA GTA CA
R: GCT GGG TTG ATG TAG GTG TAG

99 −3.62 0.89

Slc2a5 NM_019741.3 F: GGT TGG AAT CTG TGC AGG TAT
R: GCC GAC AGT GAT GAA GAG TT

118 −3.16 1.07

Mttp NM_001163457.2 F: AGA CCC CTA AGC TCG TTT TCT
R: TTT GCT TGG GTT CCT TTCACC

70 −3.49 0.93

Slc27a4 NM_011989.5 F: GTG GTG CAC AGC AGG TAT TA
R: GTT TCC TGC TGA GTG GTA GAG

111 −3.35 0.99

Gapdh NM_001289726.2 F: GGC AAA TTC AAC GGC ACA GT
R: AGA TGG TGA TGG GCT TCC C

70 −3.26 1.03

Rn18s NR_003278.3 F: GCG AAT GGC TCA TTA AAT CAG TTA
R: TGG TTT TGA TCT GAT AAA TGC ACG

150 −3.49 0.93

Tshb NM_009432.2 F: GGC AAA CTG TTT CTT CCC AA
R: GTT GGT TCT GAC AGC CTC GT

198 −3.13 1.08

TABLE 2 Primary antibodies used for Western blotting.

Protein Molecular weight (kDa) Reference Target Species Host Initial concentration Dilution

L-FABP 14 SC-374537 human, mouse and rat mouse 200 μg/mL 1:500

FATP4 70 SC-25670 human, mouse and rat rabbit 200 μg/mL 1:500

MTTP 99 LS-C331668 human, mouse and rat rabbit - 1:1000

CD36 88 SC-70644 human, mouse and rat mouse 200 μg/mL 1:500

NPC1L1 145 SC-166802 human, mouse and rat mouse 200 μg/mL 1:1000

PEPT1 75 SC-373742 human, mouse and rat mouse 200 μg/mL 1:500

NHE3 80–100 SC-16103R human, mouse and rat rabbit 200 μg/mL 1:500

GLUT5 55 Gtx83627 human, mouse, rat, dog and monkey mouse 1 mg/mL 1:500

GLUT2 60–62 SC-518022 human, mouse and rat mouse 200 μg/mL 1:500
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15 g/mL and NaCl 11.6 g/mL, pH 2.2) for 30 min under agitation,
followed by the addition of 625 µL of 1 N NaOH and incubation for
another 30 min. Next, the membranes were washed three times with
PBST for 10 min. The stripping protocol was repeated twice. After,
the membranes were incubated with blocking solution with 5%
skimmed milk for 1 h at room temperature, followed by incubation
with GLUT2 or MTTP primary antibodies.

The images from immunoblotting membranes were captured in
the GE Amersham Image 600 Luminescence Analyzer (GE)
instrument (Amersham Biosciences, Amersham, United Kingdom).
The densitometry of blots for each target protein per ZT
was obtained with ImageJ version 1.53t (Wayne Rasband and
contributors, National Institutes of Health, Bethesda, Maryland).
Each sample was normalized by the respective lane densitometry
of Ponceau staining. The results were expressed as
arbitrary units (AU).

Evaluation of total T4 serum concentration

Total T4 serum concentration was assessed by a commercial
ELISA kit (Monobind Inc. - EUA, USA Diagnóstica), according to
themanufacturer’s protocol. The absorbance at 450 nmwas detected
by BioTek Epoch Reader Instruments, Inc.

Statistical analysis

The outliers were detected by ROUT (Q = 1%) analysis, followed
by the normality test using the Shapiro-Wilk test and
homoscedasticity using Fisher’s and Spearman’s tests. The
comparisons of Tshb mRNA content, total T4 serum
concentration, and the heart weight/tibia length ratio between
Control and Hypothyroid groups were performed using the
Mann-Whitney test. Body weight evolution was evaluated by
Two-way ANOVA considering the variables treatment (control
vs. hypothyroid) and time (weeks), and pairwise comparison was
assessed by Bonferroni’s multiple comparison test. The gene
expression and protein content data for each group were
organized by ZT (0/24, 4, 8, 12, 16, 20). The ZT24 values
correspond to the double plotting of the ZT0 results. The
oscillation within each experimental group over 24 h was
assessed by One-way ANOVA or Kruskal–Wallis tests, according
to the criteria of normality and homocedasticity. When One-Way
ANOVA or Kurskal-Wallis depicted statistical significance, the time
series were subjected to the cosinor fitting of the data with a 24 h
periodicity to test whether the depicted oscillation exhibited a
circadian pattern (Carvalho-Moreira et al., 2024; Cornelissen,
2014). The rhythmometric parameters (mesor, amplitude, and
acrophase) were obtained for the time series that circadian
rhythmicity was statistically confirmed. The differences related to
the rhythmometric parameters among Control and Hypothyroid
groups were compared using the Student’s t-test. Furthermore, Two-
way ANOVA was applied considering the variables treatment
(control vs. hypothyroid) and time (ZT0/24, 4, 8, 12, 16, and 20),
as well as the interaction between these variables. The pairwise

FIGURE 1
Evaluation of hypothyroidism induction efficacy in female mice
and body weight evolution. (A) Expression of the Tshb transcript in the
pituitary gland of Control (black) and Hypothyroid (red) mice. The
results were multiplied by 106 for better visualization. (B) Total
T4 serum concentration in Control and Hypothyroid mice. (C) Body
weight evolution over the weeks of treatment in Control and
Hypothyroid female mice. (D) Heart weight/tibia length ratio of
Control and Hypothyroid animals. Data are presented asmeans ± SEM
(A–C) or median and interquartile range (D). (A, B, D) Unpaired t-test
(two-tailed), **P < 0.01, ****P < 0.0001 vs. Control, n= 7–12/group for
TshbmRNA expression and total T4 serum concentration; n = 43–48/
group for heart weight/tibia length ratio. (C) Two-way ANOVA
considering the variables: treatment (control vs. hypothyroid) and time
(weeks of treatment); ****P < 0.0001 for time and treatment main
effects (results displayed above the graph). Pairwise comparison was
tested by Bonferroni’s multiple comparison test, **P < 0.01 vs. Control
group at the respective week of treatment, n = 43–48/group.
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TABLE 3 Rhythmic analysis of the transcripts’ content in the jejunum of Control and Hypothyroid female mice.

Kruskal–Wallis test Cosinor analysis

P-value Control Hypothyroid

Control Hypothyroid Mesor Amplitude Acrophase P-value Mesor Amplitude Acrophase P-value

Bmal1 0.0028 0.1989 8.13 ± 0.85 6.05 ± 1.15 22.39 ± 0.79 0.0154 x x x x

Per2 0.0231 0.5126 14.51 ± 1.80 9.35 ± 2.43 10.97 ± 1.11 0.0448 x x x x

Cry1 0.0454 0.0018 12.84 ± 0.52 7.66 ± 0.75 19.60 ± 0.35 0.0097 - - - 0.0974

Nr1d1 0.0164 0.0724 65.77 ± 5.99 54.16 ± 8.33 9.512 ± 0.61 0.0072 x x x x

Fabp 0.0103 0.6564 - - - 0.2598 x x x x

Slc27a4 0.0480 0.0413 - - - 0.9729 - - - 0.2500

Mttp 0.3964 0.0670 x x x x x x x x

Cd36 0.6134 0.0683 x x x x x x x x

Npc1l1 0.2630 0.0481 x x x x - - - 0.8430

Slc15a1 0.8522 0.7542 x x x x x x x x

Slc9a3 0.9507 0.2208 x x x x x x x x

Slc2a5 0.0839 0.9531 x x x x x x x x

Slc2a2 0.2303 0.1204 x x x x x x x x

Absence of temporal variation by Kruskal–Wallis test analysis of variance is indicated as “x”. Absence of circadian rhythmicity is represented by “-”. Mesor and amplitude values were multiplied by 1000 for better visualization.

Fro
n
tie

rs
in

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

0
7

Se
cio

-Silva
e
t
al.

10
.3
3
8
9
/fp

h
ys.2

0
2
5
.15

15
4
3
7

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2025.1515437


FIGURE 2
Circadian clock transcript expression in the jejunum of Control (black) and Hypothyroid (red) female mice. Relative gene expression of Bmal1 (Ai-ii),
Per2 (Bi-ii),Cry1 (Ci-ii), andNr1d1 (Di-ii)was normalized by theGapdhmRNA expression. i and ii) Data are presented asmeans± SEM. i) Two-way ANOVA
results are described above the graph, and the 24 h cosine curve fitting is represented as black filled lines for the Control group. The absence of a line in
the Hypothyroid group indicates no significance for the Kruskal–Wallis test or absence of a 24 h-period of rhythmicity, as described in Table 3. White
and black horizontal bars represent the light and dark phases, respectively. ii) Graphical clock representation from the relative expression of each core
clock component in the Control and Hypothyroid groups. The ZT24 values correspond to the double plotting of the ZT0 results. Zeitgeber Time (ZT); n =
6–9/group/ZT.
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comparison was evaluated by Bonferroni’s multiple comparison test.
The results were plotted as means ± SEM and considered statistically
significant when P < 0.05. Statistical analyses were performed using
GraphPad Prism version 9.4.1 for macOS, GraphPad Software, San
Diego, California, United States of America, www.graphpad.com.

Results

Effectiveness of hypothyroidism induction

The effectiveness of hypothyroidism induction was evaluated by
the quantification of the thyroid axis components, such as the Tshb
transcript in the pituitary and total T4 serum concentration.
Considering the effects of thyroid hormone on cardiac mass, the
systemic hypothyroid condition was assessed bymeasuring the heart
weight (Hajje et al., 2014), which was normalized by the tibia length,

once alterations in body weight are expected under hypothyroidism
(Rakov et al., 2017; Yin et al., 1982).

The hypothyroidism was confirmed by the increased pituitary
Tshb mRNA content (Figure 1A), reduced total T4 serum
concentration (Figure 1B), and heart weight/tibia length ratio
(Figure 1D). The body weight of control mice increased over the
weeks, while the body weight of the hypothyroid group remained
stagnant (Figure 1C).

Hypothyroidism alters the circadian core
clock expression in the proximal intestine of
female mice

The expression of core clock components Bmal1, Per2, Cry1,
and Nr1d1 was evaluated in the proximal intestine of female mice
under control or hypothyroid conditions (Table 3; Figure 2). A

FIGURE 3
Daily expression of transcripts related to lipid, peptides, sodium, and carbohydrate absorption in the jejunum of Control (black) and Hypothyroid
(red) femalemice. Daily expression of Fabp (A), Slc27a4 (B),Mttp (C),Cd36 (D),Npc1l1 (E), Slc15a1 (F), Slc9a3 (G), Slc2a5 (H), and Slc2a2 (I). The target gene
expressionwas normalized by theGapdhmRNA expression. Data are presented asmeans ± SEM. Two-way ANOVA results are described above the graph.
Bonferroni’s multiple comparison test: *P < 0.05 and ****P < 0.0001 vs. respective Control. The absence of a line indicates no significance for the
Kruskal–Wallis test or absence of a 24 h-period of rhythmicity, as described in Table 3.White and black horizontal bars represent the light and dark phases,
respectively. The ZT24 values correspond to the double plotting of the ZT0 results. Zeitgeber Time (ZT); n = 6–9/group/ZT.
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TABLE 4 Rhythmic analysis of nutrient transport-related proteins investigated in the isolated intestinal epithelium of Control and Hypothyroid female mice.

Kruskal–Wallis test or one-
way ANOVA

Cosinor analysis

P-value Control Hypothyroid

Control Hypothyroid Mesor Amplitude Acrophase P-value Mesor Amplitude Acrophase P-value

L-FABP 0.0074 0.0204 9.65 ± 0.04 0.32 ± 0.06 16.40 ± 0.71 0.0194 - - - 0.8105

FATP4 0.0024 0.0257 12.68 ± 1.23 5.96 ± 1.69 9.753 ± 1.14 0.0496 10.27 ± 0.74 4.54 ± 1.07 8.18 ± 0.86 0.0330

MTTP 0.0166 0.0068 37.62 ± 4.07 41.05 ± 6.08 18.88 ± 0.51 0.0064 24.36 ± 2.78 21.45 ± 4.12* 19.35 ± 0.67 0.0163

CD36 0.0072 0.2516 7.47 ± 0.37 2.647 ± 0.53 8.98 ± 0.76 0.0180 x x x x

NPC1L1 0.4559 0.4519 x x x x x x x x

PEPT1 0.0019 0.0955 10.74 ± 0.72 4.08 ± 1.08 6.23 ± 0.90 0.0486 x x x x

NHE3 0.0065 0.0362 10.48 ± 0.67 6.10 ± 0.98 19.70 ± 0.57 0.0085 9.59 ± 0.99 4.93 ± 1.36 21.94 ± 1.12 0.0499

GLUT5 0.0140 0.0493 9.52 ± 0.66 4.20 ± 0.98 19.07 ± 0.80 0.0310 8.95 ± 0.51 3.33 ± 0.74 20.09 ± 0.80 0.0260

GLUT2 0.0337 0.0200 30.62 ± 2.22 10.60 ± 2.95 12.76 ± 1.19 0.0482 - - - 0.2594

Absence of temporal variation by One-Way ANOVA, or Kruskal–Wallis test analysis of variance is indicated as “x”. Absence of circadian rhythmicity is represented by “-”. Mesor and amplitude values were multiplied by 10 for better visualization. One-tailed, unpaired

Student’s t-test (n = 4–5/group/ZT) *P < 0.05 vs. respective Control.
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FIGURE 4
Daily content of proteins related to lipid and cholesterol absorption in the isolated intestinal epithelium of Control (black) and Hypothyroid (red)
female mice. Protein content of L-FABP (Ai-ii), FATP4 (Bi-ii), MTTP (Ci-ii), CD36 (Di-ii), and NPC1L1 (Ei-ii), transporters related to the absorption of lipids
and cholesterol. i and ii) The data are presented as means ± SEM. i) Representative bands are arranged above the respective graphs, with the molecular
weight height indicated alongside. Two-way ANOVA significance is presented above each graph. Bonferroni’s post hoc test *P < 0.05 vs. respective
control. The 24 h cosine curve fitting is represented as filled lines for the Control (black) and Hypothyroid (red) groups. The absence of a line indicates no
significance for the Kruskal–Wallis test/One Way ANOVA or absence of 24 h-period rhythmicity, as described in Table 4. White and black horizontal bars
represent the light and dark phases, respectively. ii) Graphical clock representation from the protein content of transporter in Control and Hypothyroid
groups. The ZT24 values correspond to the double plotting of the ZT0 results. Zeitgeber Time (ZT), n = 4–5/group/ZT.
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FIGURE 5
Daily content of proteins related to peptide, sodium, and carbohydrate absorption in the isolated intestinal epithelium of Control (black) and
Hypothyroid (red) female mice. Protein content of PEPT1 (Ai-ii) and NHE3 (Bi-ii), transporters related to peptide and sodium intestinal absorption, and
GLUT5 (Ci-ii) and GLUT2 (Di-ii) transporters related to the intestinal carbohydrate absorption. i and ii) The data are presented as means ± SEM. i)
Representative bands are arranged above the respective graphs, with the molecular weight height indicated alongside. Two-way ANOVA
significance is presented above each graph. Bonferroni’s post hoc test *P < 0.05 vs. respective control. The 24 h cosine curve fitting is represented as filled
lines for the Control (black) and Hypothyroid (red) groups. The absence of a line in the Hypothyroid group indicates no significance for the Kruskal–Wallis
test/One-Way ANOVA or absence of 24 h-period rhythmicity, as described in Table 4.White and black horizontal bars represent the light and dark phases,

(Continued )
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significant time variation over 24 h was observed in the expression of
all investigated clock genes in the Control group, while only Cry1
mRNA showed 24 h oscillation in Hypothyroid mice (Table 3, P <
0.05 for Kruskal–Wallis test).

The expression of all investigated core clock components in the
proximal intestine of Control female mice exhibited a circadian
rhythmicity depicted by the significant P-value for the cosine curve
fitting of the data (represented by the solid black line in Figure 2;
Table 3). No 24 h rhythmicity was detected in the core clock
components from the jejunum of Hypothyroid female mice
(Figure 2; Table 3).

Daily expression of transcripts related to
nutrient absorption in the jejunum of
female mice

The daily expression pattern of genes encoding proteins
involved in the absorption and transport of lipids, peptides,
carbohydrates, and sodium in the small intestine of control and
hypothyroid female mice was investigated (Figure 3; Table 3).

Significant daily oscillations in jejunum were observed for Fabp
mRNA content, which encodes FABP, of control female mice; Slc27a4
gene expression, which encodes FATP4 protein, in both control and
hypothyroid mice; and Npc1l1 mRNA content (encoding NPC1L1)
only in jejunum of hypothyroid mice (Table 3). The transcript content
of Fabp, Slc27a4, Slc2a5, and Slc2a2, which encode FABP, FATP4,
GLUT5, and GLUT2 proteins, respectively, showed significant time
variation in the proximal intestine of female mice (Figures 3A, B, H, I).
The effect of treatment (hypothyroidism) was significant for Slc27a4,
Npc1l1, Slc2a2 and Slc2a5 (Figures 3B, E, H, I). Moreover, the
interaction between time and treatment factors was significant for
Slc2a5 (Figure 3H).

No significant alterations were depicted for the content ofMttp,
Cd36, Slc15a1, and Slc9a3 transcripts (Figures 3C, D, F, G,
respectively), which encode the proteins MTTP, CD36, PEPT1,
and NHE3, respectively, according to the Two-way ANOVA.
Pair-wise analysis showed punctual differences between control
and hypothyroid mice, showing reductions of Slc2a2 mRNA
contents at ZT12 and ZT4, respectively (Figures 3H, I).

According to cosinor analysis, none of these investigated
transcripts exhibited a circadian oscillatory pattern in both
groups (Table 3).

Hypothyroidism disrupts the circadian
rhythmicity of proteins related to the
nutrient transport in isolated intestinal
epithelium of female mice

The temporal analysis within each experimental group showed
significant daily oscillations for all investigated proteins in the

isolated intestinal epithelium of female mice, except for
CD36 and PEPT1 in the hypothyroid group and NPC1L1 in
both experimental groups (Table 4). The content of all
investigated proteins, with the exception of NPC1L1 (Figure 4E),
exhibited circadian rhythmicity in the intestinal epithelium of the
Control group (Figures 4, 5). The respective mesor, amplitude, and
acrophase are described in Table 4.

Hypothyroidism disrupted the circadian pattern of L-FABP,
CD36, PEPT1, and GLUT2 content (Figures 4A, D, 5A, D,
respectively; Table 4), and reduced the rhythmic amplitude of
MTTP protein (Figure 4Ci; Table 4) in isolated intestinal
epithelium of female mice.

The comparison between control and hypothyroid groups
showed significance for time main effect in all proteins evaluated
(Figures 4, 5), with the exception of NPC1L1. The effects of
hypothyroidism (treatment factor) were significant for the
content of MTTP, CD36, PEPT1, and GLUT2 proteins (Figures
4C, D, 5A, D), while the interaction between time and treatment was
significant only for L-FABP content (Figure 4A). In addition, the
hypothyroidism reduced L-FABP content at ZTs 16 and 20
(Figure 4Ai), FATP4 at ZT12 (Figure 4Bi), MTTP at ZT20
(Figure 4Ci), PEPT1 at ZT 8 (while P = 0.09 was depicted at
ZT4) (Figure 5Ai), and GLUT2 at ZT16 (Figure 5Di) according
to the pairwise comparisons.

Discussion

The present study shows that the proximal intestine of female
mice exhibits a functional circadian clock and that the protein
content of most nutrient transporters rhythmically oscillates over
the 24 h period (except NPC1L1). Moreover, this study
demonstrates that hypothyroidism alters the circadian
rhythmicity of the jejunum clock and the majority of proteins
involved in the absorption/transport of nutrients in the proximal
intestine of female mice.

The proximal intestine is an important player in energy
homeostasis given its role in macronutrient absorption. This
process exhibits daily rhythmicity which in turn, is under control
of the endogenous circadian clock but also driven by food intake
(Hussain and Pan, 2015; Sladek et al., 2007). Herein, the circadian
pattern of core clock gene expression in the proximal intestine
confirms the existence of functional clockwork machinery in the
jejunum of female mice. Importantly, this transcript expression
analysis was performed in the whole jejunum in order to
preserve the strict communication between epithelial, immune,
and neural cells in the mucosa and muscle and the intrinsic
synchronization of the clock genes, which could be compromised
by the tissue dissociation and cell isolation (Becquet et al., 2014; de
Lima Cavalcanti et al., 2023).

A clear circadian rhythmicity in the protein content of nutrient
transporters in control enterocytes was observed, except for

FIGURE 5 (Continued)

respectively. ii) Graphical clock representation from the protein content of transporter in Control and Hypothyroid groups. The ZT24 values
correspond to the double plotting of the ZT0 results. Zeitgeber Time (ZT), n = 4–5/group/ZT.
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NPC1L1. Interestingly, the protein circadian pattern of jejunum
nutrient transporters did not correlate with their respective
transcript levels. Several studies demonstrate that circadian
regulation can occur in different stages of protein expression,
from epigenetic modifications to transcriptional, posttranscriptional,
translational, and posttranslational regulations (Green et al., 2016;
Kojima et al., 2011). For instance, the daily rhythms of one-fifth of
proteins in the liver are not accompanied by transcriptional level
alterations (Robles et al., 2014). Therefore, the data from control
female mice strongly suggest that part of intestine plasticity related to
the absorptive processes over 24 h might involve the regulation of
steps beyond gene transcription, such as posttranscriptional and/or
translation steps. Further studies might help to characterize the
molecular mechanisms involved in the circadian regulation of gut
transporters.

The enterocytes of the proximal intestine are targets of TH
actions (Losacco et al., 2018; Matosin-Matekalo et al., 1999;
Mochizuki et al., 2007; Ashida et al., 2002; Ashida et al., 2004;
Jumarie and Malo, 1994). The TH are involved in regulation of
circadian clockwork machinery in a sex- and tissue-specific manner
(Bargi-Souza et al., 2019; Emrich et al., 2024; Peliciari-Garcia et al.,
2018; Peliciari-Garcia et al., 2016; Barros et al., 2023; de Assis et al.,
2024). It is well known that the desynchronization of biological
rhythms affects several physiological and biochemical processes and
is associated with a higher prevalence of obesity and metabolic
disorders (Antunes et al., 2010). Herein, we have shown that
hypothyroidism disrupts the circadian expression of core clock
components in the small intestine of female mice. A recent study
demonstrated the specific deletion of Bmal1 in the intestine of mice
decreased glucose absorption due to the reduction of SGLT1 protein
levels. This effect led to a decline in hepatic glycogen levels and
points out the pivotal role of the intestine circadian clock for the
systemic metabolic homeostasis (Onuma et al., 2022). Similar
correlation could be applied to our data considering the loss of
circadian rhythmicity in the expression of core clock components,
including Bmal1, in the small intestines of female mice.

As observed in control animals, the daily content of all
investigated transcripts related to nutrient absorption did not
exhibit a circadian pattern in the hypothyroid small intestine.
Next, the daily pattern of proteins involved in nutrient
absorption was investigated in the isolated epithelium of female
mice. It is worth mentioning that the isolation of this epithelium
ensures a refinement in the technique ensuring the analysis of
transporters exclusively in intestinal sites involved with nutrient
absorption. The hypothyroidism disrupts L-FABP, CD36, PEPT1,
and GLUT2 circadian rhythms, reduces the MTTP amplitude, and
punctually decreases the FATP4 content at the moment of the light
to dark photoperiod transition. In parallel, NPC1L1 content in
female enterocytes was not altered by hypothyroidism. Together,
these findings indicate a possible impairment in the absorption of all
macronutrients under hypothyroid conditions.

MTTP, FATP4, CD36, and L-FABP proteins are involved in the
intestinal absorption of lipid hydrolysis products (Hussain, 2014).
MTTP is a key protein for chylomicron formation, being essential
for the processing and absorption of lipid from a diet, and its
deficiency in the intestine is associated with lipid malabsorption (Xie
et al., 2006; Yen et al., 2015). CD36 protein is an important
transporter for the absorption of long-chain fatty acids and

regulation of chylomicron formation (Cifarelli and Abumrad,
2018). Also, L-FABP exerts an important role in the lipid
absorption, once it binds to lipid metabolites that cross the apical
membrane of the enterocyte, transporting them to the endoplasmic
reticulum, where they are used for the TAG synthesis, a prerequisite
for the chylomicron biogenesis (Gajda and Storch, 2015). Thus,
hypothyroidism seems to impact the daily rhythmicity of transport
and processing of products of the triacylglycerol hydrolysis, such as
fatty acids.

Previous studies have reported that hypothyroid-induced
alterations in whole-body metabolism are accompanied by tissue-
specific changes in triglycerides-derived fat acid uptake (Klieverik
et al., 2009). Downregulation of low-density lipoprotein (LDL)
receptor activity, decreased hepatic uptake of cholesterol from the
circulation, reduction of T3-mediated control of sterol regulatory
element-binding protein 2 (SREBP-2) - which modulates cholesterol
biosynthesis through regulation of 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMG-COA redutase) activity (Duntas
and Brenta, 2018) - reduced hepatic β-oxidation and insulin
resistance are also associated with hypothyroidism. Together,
these alterations might contribute to the increased risk of
dyslipidemias and abnormal accumulation of liver triglycerides
(hepatic steatosis) often observed in hypothyroid individuals
(Hatziagelaki et al., 2022).

Regarding the content of proteins related to peptide
absorption, control female enterocytes exhibited a well-defined
circadian oscillatory pattern for the PEPT1 and NHE3 proteins,
with acrophase in opposition (antiphase). The circadian
oscillatory pattern of PEPT1 content and its activity have been
previously reported in the jejunum and duodenum portions of
the small intestines of rats (Pan et al., 2002; Qandeel et al., 2009).
Hypothyroidism does not affect the NHE3 rhythmicity while it
abolishes the PEPT1 circadian oscillation. Our findings suggest
that the intestinal absorption of dietary protein could be
impaired under hypothyroid conditions, which might
contribute to the reduction of protein synthesis and muscle
weakness observed in such thyroid dysfunction (Mullur et al.,
2014; Salvatore et al., 2014).

Finally, regarding the proteins involved in carbohydrate
transportation, both GLUT5 and GLUT2 have shown a circadian
oscillatory pattern in the enterocytes of control female mice. The
acrophase of GLUT2 in the control group occurred at the beginning
of the dark phase (ZT12), which is consistent with the activity
pattern of nocturnal mice. Similar daily oscillation in the
GLUT2 protein was described in the rat small intestine (Corpe
and Burant, 1996). Although the intestinal glucose absorption is
mainly regulated by the SGLT1 protein, previous studies have
demonstrated that in response to increased glucose concentration
after a meal, the GLUT2 is translocated to the apical membrane of
enterocytes, contributing to the glucose uptake in the small intestine.
Besides, GLUT2 present in the enterocyte basolateral membrane of
the enterocyte is crucial for the release of glucose into the
bloodstream (Kellett and Brot-Laroche, 2005). Our results show
that hypothyroidism impairs the daily expression of GLUT2 in
enterocytes and may contribute to the carbohydrate-altered
metabolism in this thyroid dysfunction.

It is worth mentioning that changes in the proteins related to the
absorption of nutrients in enterocytes could influence the plasticity
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andmorphology of the jejunum, as already described in hypothyroid
male mice (Losacco et al., 2018), culminating in the shift of preferred
metabolic pathways. Together, these alterations could contribute to
body composition and metabolic changes under hypothyroid
conditions, as commonly observed in malabsorption diseases
such as celiac disease (Medza and Szlagatys-Sidorkiewicz, 2023;
Montoro-Huguet et al., 2021). It is important to highlight that
the identified phenotype was evaluated solely in females, and no
functional assays for jejunum nutrient absorption were conducted.
Further functional investigations may contribute to the
characterization of the small intestine circadian physiology as
well as the implications of the chronodisruption induced by
hypothyroidism in the pathogenesis of metabolic syndrome
in females.

Conclusion

In conclusion, our findings demonstrate the importance of THs
for the proper rhythmic expression of core clock components and
proteins related to the absorption and transport of macronutrients
as fatty acids, proteins, and carbohydrates, as well as micronutrients
as sodium in the jejunum of female mice. Such alterations may
contribute to the wide range of metabolic modifications commonly
associated with hypothyroidism, explaining, at least in part, the
correlation between hypothyroidism, diabetes mellitus, and
metabolic syndrome.
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