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Objective: This study aims to investigate the association between skeletal
muscle mass (SMM) and left ventricular mass (LVM), providing a basis for health
management and cardiac health interventions in sarcopenic populations.

Methods: We conducted a retrospective analysis of participants who underwent
SMM assessment at Linyi People’s Hospital from January 2017 to December
2023, including a total of 278 individuals. The study employed Bayesian
multivariate skewed regression analysis, incorporating ridge regression as a prior
distribution to address the skewness and heavy-tailed characteristics of the LVM
data. Data collection included clinical information, SMM, and cardiac function
metrics. Posterior inference was conducted using Markov Chain Monte Carlo
(MCMC) methods, and model convergence was assessed through Gelman-
Rubin diagnostics.

Results: The results of ridge regression indicate that age (8 = 4.54, 95% CI =
1.23-7.85) and appendicular lean mass (ALM) (8 = 16.82, 95% Cl = 2.87-30.77)
are significantly positively correlated with LVM. In contrast, Bayesian multivariate
skewed regression analysis demonstrates that the skeletal muscle index (SMI)
(B = 22.22, 95% Cl = 2.41-39.07) exerts a significant positive effect on LVM.
Additionally, locally weighted scatterplot smoothing (LOWESS) analysis reveals
that LVM tends to increase with higher levels of both ALM and SMI.

Conclusion: This study found that skeletal muscle mass (such as ALM and
SMI) is significantly associated with LVM, suggesting that there is an association
between improvements in skeletal muscle and a potential positive impact on
cardiac health, highlighting the importance of regional muscle mass. These
findings provide new insights for cardiac health management in sarcopenic
populations, indicating that there is a relationship where interventions could
potentially involve enhancing ALM.

sarcopenia, left ventricular mass, Bayesian multivariate skewed regression, skeletal
muscle mass, skewness, heavy-tailed characteristics
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1 Background

Sarcopenia is a syndrome characterized by the progressive loss
of skeletal muscle mass (SMM) and strength associated with aging,
often accompanied by functional impairment and a decline in
quality of life (Narici and Maffulli, 2010). The causes of sarcopenia
primarily include age-related declines in muscle synthesis capacity,
lack of physical activity, malnutrition (particularly insufficient
protein intake), chronic diseases (such as diabetes and heart
disease), hormonal changes, and chronic inflammation (Narici
and Maffulli, 2010; Liu et al., 2024a; Chandrashekhar et al.,
2023). Additionally, degeneration of nervous system function
can also affect muscle control and utilization efficiency. Despite
the growing understanding of sarcopenia, challenges remain in
clinical management and intervention, such as difficulties in
early identification, adherence to intervention measures, the need
for individualized management, and insufficient multidisciplinary
collaboration (Narici and Maffulli, 2010; Kirk et al., 2020). Recent
studies have increasingly indicated that low SMM not only affects
an individual’s mobility and quality of life but may also be closely
related to changes in cardiac function. Current perspectives suggest
that the reduction of SMM may be associated with an increased
risk of cardiac remodeling and heart failure (Liu et al., 2024a).
Left ventricular mass (LVM) is an important indicator of cardiac
health, and existing research has shown a correlation between SMM
and LVM; however, significant controversy remains regarding their
causal relationship. For instance, Keng et al. (2019) conducted
a study involving 378 participants aged 265 years, finding that
23.3% had sarcopenia. Their multivariate linear regression analysis
indicated a significant positive correlation between SMM and LVM.
Similarly, Pela et al. (2020) analyzed 100 participants aged 70 years
and older, and their multivariate linear regression analysis also
revealed a positive correlation between LVM and appendicular lean
mass (ALM), indicating that LVM increases with ALM. Tinti et al.
(2022) studied 228 participants aged 65-91 years and found that
those with low SMM had lower LVM compared to those with
normal muscle mass; partial correlation analysis showed significant
correlations between LVM and both ALM and skeletal muscle index
(SMI). Wang et al. (2020) observed that among patients with chronic
heart failure, those with sarcopenia exhibited lower LVM compared
to patients with normal skeletal muscle levels. Their multivariate
linear regression analysis demonstrated a significant linear positive
correlation between LVM and SMI. Collectively, an increasing
body of research indicates a close relationship between sarcopenia
and cardiac health, particularly suggesting that the reduction in
SMM may significantly correlate with changes in LVM. Liu et al.
(2024b) studied patients with hyperthyroidism aged 18 years and
older, and the results from generalized linear models and structural
equation modeling also indicated correlations between SMM, SMI,
and LVM. The integrative mechanisms between cardiac and skeletal
muscle quality may include several aspects. First, skeletal muscle,
as a major metabolic organ, can directly influence systemic blood
circulation and oxygen delivery through changes in its mass and
function, thereby affecting the cardiac workload. For instance, the
secretion of Akt (protein kinase B) by skeletal muscle is considered
a cardioprotective factor that helps to reduce cardiac injury. A
decrease in Akt levels within muscle tissue may diminish this
protective effect, thereby increasing the risk of cardiac damage
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(Pelaetal.,2020; Liu Y. et al., 2024). Second, declining cardiac health
can lead to inadequate blood oxygenation and reduced physical
activity, further exacerbating sarcopenia or the decline in skeletal
muscle quality (Keng et al., 2019; Wang et al., 2020). Lastly, both
cardiac and skeletal muscle health are influenced by common risk
factors such as aging, obesity, and metabolic syndrome, which can
create a negative feedback loop between the two. For example,
insulin resistance can induce concurrent alterations in both cardiac
and skeletal muscle functions; impaired insulin signaling can reduce
the efficiency of glucose utilization in cardiomyocytes, leading to
insufficient energy production and compromised cardiac function.
At the same time, decreased levels of insulin-like growth factor
1 (IGF-1) can negatively affect skeletal muscle protein synthesis,
resulting in a decline in muscle quality and accelerating the onset of
sarcopenia. This metabolic imbalance not only impacts the health of
both the heart and skeletal muscles but may also interact to further
exacerbate symptoms of heart failure and muscle loss (Tang et al.,
2020; Aghdam etal., 2020; Ungvari and Csiszar, 2012). Overall, there
exists a close interrelationship between muscle and cardiac health,
and maintaining the wellbeing of both is crucial for the overall health
of the elderly population.

Although some cross-sectional studies have revealed a potential
link between low SMM and LVM, these studies have notable
limitations. First, many of them fail to account for a wider range
of potential confounding factors, which could lead to biased results.
Second, the traditional statistical methods employed in most studies
may not adequately capture the complex relationships between
variables, particularly in cases of small sample sizes or weak effect
sizes. Finally, most studies focus primarily on populations aged 65
and older, which may restrict the generalizability of the findings
and fail to fully represent the relationship between muscle quality
and cardiac health across different age groups and backgrounds.
To effectively address these issues, the introduction of Bayesian
analysis methods is particularly necessary. Bayesian approaches, by
integrating prior knowledge with observational data, can provide
more reliable inferences in situations of high uncertainty. The
advantages of this method lie in its flexibility and adaptability,
as it can effectively handle confounding factors and missing data,
thereby enhancing the stability and interpretability of the models.
Additionally, Bayesian analysis allows researchers to utilize prior
research findings as prior information, which not only improves the
accuracy of the model but also better reflects the complexity of the
real world. By employing Bayesian methods, it becomes possible
to delve deeper into the relationship between SMM and LVM,
ultimately providing more targeted insights for health management
and intervention strategies in sarcopenic populations.

2 Study subjects and methods
2.1 Study subjects

This
underwent skeletal muscle evaluation through dual-energy X-ray

retrospective  analysis included participants who
absorptiometry (DXA) at Linyi People’s Hospital from January 2017
to December 2023. Based on the inclusion and exclusion criteria,
a total of 278 participants were enrolled in the study, with ages

ranging from 18 to 91 years. Participants were selected based on
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predetermined inclusion and exclusion criteria. Those with low
skeletal muscle mass were included in the study group, while normal
participants served as the control group. The studies involving
human participants were reviewed and approved by the Science and
Technology Ethics Committee of Linyi People’s Hospital (Ethical
Review No.: 202404-H-021) and was conducted in accordance with
the principles outlined in the Declaration of Helsinki. The use of
the data has been approved by the appropriate ethics committee to
ensure compliance with ethical standards.

2.1.1 Diagnostic criteri

The diagnostic criteria for low SMM were based on the 2019
criteria from the Asian Working Group for Sarcopenia (Chen et al.,
2020): SMI <7.0 kg/m? for males and SMI <5.4 kg/m? for females,
assessed using DXA.

2.1.2 Inclusion criteria

(1) Age =>18years; (2) Participants who had undergone
echocardiographic examination; (3) Availability of complete
baseline data, including sex, age, weight, medical history, current
medical status, smoking history, and alcohol consumption history.

2.1.3 Exclusion criteria

(1) Participants with severe cardiovascular diseases, such as
heart failure, that could lead to changes in cardiac structure; (2)
Participants who had undergone surgery, experienced fractures, or
had other conditions that could lead to prolonged bed rest and
disuse of muscles; (3) Participants who had been on long-term
medications such as growth hormones or estrogen that might affect
SMM; (4) Based on previous studies, multiple pregnancies may
have an impact on cardiac structure; therefore, female participants
with more than four pregnancies were excluded (Gunderson et al.,
2011); (5) Participants who have engaged in long-term athletic
occupations may have altered cardiac structures (Wisloff et al.,
2009); (6) Participants involved in prolonged high-load occupations
and night shift work may also experience changes in cardiac
structure (Trott et al., 2022).

2.2 Study methods

2.2.1 Data collection

The objective of this study was to retrospectively investigate
the association between skeletal muscle conditions and LVM in
individuals with low SMM. Clinical data for all eligible participants
were collected as covariates, including age, sex, height, weight,
smoking status (defined as smoking more than 20 cigarettes daily
for over 10 years, or more than 40 cigarettes daily for over 5 years),
alcohol consumption status (defined as drinking alcohol for more
than 300 days per year or consuming more than 120 g of alcohol per
month), lipid profiles, medical history, current medical conditions,
smoking history, drinking history. Body Mass Index (BMI) was
calculated as BMI = weight (kg)/height (m?).

Based on the results of DXA scans (GE, United States), data were
collected on total SMM, upper limb skeletal muscle mass (UpSMM),
and lower limb skeletal muscle mass (LowSMM) for all participants.
The SMI was calculated as SMI = ALM (kg)/height (m?).
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In addition, echocardiography (EPIQ7, PHILIPS, Netherlands)
was performed to collect data on the left atrium (LA), aorta (AO),
left ventricular diastolic diameter (LVDd), interventricular septal
thickness at end-diastole (IVSTd), left ventricular posterior wall
thickness at end-diastole (LVPWTd), right ventricle (RV), ascending
aorta (AAO), main pulmonary artery (MPA), ejection fraction
(EF), and fractional shortening (FS). LVM was calculated using
the formula (Wang et al., 2018):

LVM = 0.8 x 1.04 x [(LVDd + LVPWTd + IVSTd)® - LVDd*] + 0.6

2.2.2 Statistical analysis

We first performed normality tests for all variables and selected
appropriate statistical methods based on the results. For variables
that did not conform to a normal distribution, non-parametric
tests or data transformations were employed. Comparisons between
the study group and the control group, as well as between
subgroups, were conducted using t-tests or Mann-Whitney U tests
for continuous data, while categorical data were compared using chi-
square tests. The analysis indicated that the LVM (left ventricular
mass) data were right-skewed (Skewness: 0.92), suggesting that
conventional linear regression models might not be suitable for
these data. Additionally, while generalized linear models (GLMs)
can handle non-normally distributed data, they typically still require
the assumption of a specific distribution form, such as Poisson or
binomial, which is not applicable in our study. Therefore, we chose a
Bayesian multivariate skew regression model. This model not only
naturally accommodates the skewness of the data but also allows
us to incorporate existing information through prior distributions,
thus enhancing the stability and accuracy of parameter estimates.
In this process, we performed ridge regression analysis to address
multicollinearity issues. Ridge regression reduces the variance of
the regression coefficients by introducing an L2 regularization
term, thereby enhancing the model’s stability. However, using
ridge regression as prior information may have its limitations. For
example, the regularization process of ridge regression can lead to
estimated regression coefficients being biased toward zero, which
can affect the interpretability of the model. Additionally, ridge
regression assumes that the relationships between all explanatory
variables are linear, which may not be applicable in all data contexts.
Due to these limitations, we chose to use non-informative priors
to reduce the model’s dependence on specific prior distributions,
thereby enhancing the model’s flexibility and broad applicability. By
employing skewed Student’s t-distribution and skewed-I Student’s
t-distribution, we effectively addressed the asymmetry and heavy-
tailed properties of the data. The Bayesian model incorporated prior
distributions of parameters through a prior product structure, which
included the distributions of regression coefficients, transformation
matrices, and skewness parameters, allowing for varying degrees
of freedom and tail behavior, thus providing more comprehensive
support for the model’s estimation. For inference, Markov Chain
Monte Carlo (MCMC) methods were utilized for posterior
inference, ensuring that the model remained flexible and accurate
when handling complex data (Tang et al., 2020; Aghdam et al,,
2020). Assuming we have n observations represented as (x;, y;),
where x; is the vector of explanatory variables and y; is the
variable of interest, each y; can be expressed as: y,=g,B)+
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1, 12A"¢, where g; (B) is a known regression function, B represents
the regression coefficients, A is the transformation matrix that
introduces dependencies among different components, and ¢; is
the residual under a multivariate standard normal distribution.
During the MCMC sampling, we set up 32 chains with 20,000
iterations to ensure model convergence and the reliability of
results. Following the MCMC sampling, sensitivity analyses were
conducted to assess the robustness of the model against different
prior distributions and other assumptions. Following collinearity
analysis, we found collinearity issues among SMI, SMM, ALM, and
BMI (VIF>10). Therefore, we incorporated an L2 regularization step
into the Bayesian analysis process. The introduction of skewness
parameters and the treatment of residuals allowed us to address
the skewness characteristics of the dependent variable. Finally, we
employed locally weighted scatterplot smoothing (LOWESS) to fit
the correlation trends between skeletal muscle mass parameters and
LVM. All statistical analyses were performed using Python 3.10
(https://www.python.org) and R x64 4.1.0 (https://www.r-project.
org), with statistical significance set at P < 0.05.

3 Results

In this study, 104 participants were aged 60 years and older,
including 159 females and 119 males. A total of 80 participants were
diagnosed with low SMM, with an age range of 18-91 years.

3.1 Comparison of baseline characteristics
between the two groups

A comparison of clinical and cardiac measurement variables
was conducted between the study group (n = 80) and the control
group (n = 198). The analysis revealed no significant differences in
age and sex between the two groups (P = 0.322 and P = 0.121).
While there were significant differences in skeletal muscle-related
parameters, the BMI of the study group was significantly lower
than that of the control group (22.34 kg/m? vs 25.16 kg/m?, P <
0.001). Other clinical variables showed no significant differences in
the incidence of type 2 diabetes mellitus (T2DM), hypertension,
malignancies, theumatic autoimmune diseases, and dyslipidemia
between the groups.

Regarding cardiac measurement indices, the results indicated
that the measurements for LA, IVSTd, LVPWTd, AAO, and MPA
were significantly smaller in the study group compared to the
control group. Additionally, FS also showed a significant difference
between the two groups, suggesting that the study group may have
some degree of cardiac functional protection. Finally, LVM was
significantly lower in the study group compared to the control group
(118.67 gvs 137.48 g, P < 0.001) (see Table 1).

3.2 Bayesian multivariate skew regression
analysis

Upon analyzing the distribution characteristics of LVM, we

observed a skewness of 0.92, indicating a right-skewed distribution
of the data. Additionally, the Shapiro-Wilk test yielded a statistic
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of 0.953 with a P = 9.03e”®, further supporting the rejection of the
normality assumption for the data and indicating that LVM does not
conform to a normal distribution. These features could potentially
affect the validity and inference of traditional statistical methods.
Therefore, to model and analyze this data more accurately, we opted
for Bayesian multivariate skew regression. This approach not only
accommodates non-normally distributed data but also effectively
captures the skewness and heavy-tail characteristics of the data. Its
flexibility makes it particularly robust and reliable for analyzing
complex biomedical data. By incorporating prior distributions, we
were able to leverage existing knowledge and data for inference,
thereby enhancing the accuracy and interpretability of the model.

3.2.1 Ridge regression analysis results

In this study, we selected ridge regression, due to its effectiveness
in handling multicollinearity and high-dimensional data, as well as
its stability in parameter estimation. Following the ridge regression
analysis of LVM, the results indicated that age, ALM had significant
positive effects on LVM (see Table 2).

3.2.2 Bayesian multivariate skew regression
analysis results

The Bayesian multivariate skew regression analysis revealed
that only SMI exhibited a significant positive association with
LVM, suggesting that improvements in muscle mass may have
a beneficial impact on cardiac health. Other variables, such
as SMM, ALM, and T2DM, did not demonstrate statistical
significance, which may reflect the complex interactions among
different factors influencing LVM (see Table 3). Most parameter
shrinkage factors stabilized around a value close to 2 after sufficient
iterations, indicating that these estimates are relatively reliable
(see Table4; Figurel Evaluation of Convergence Diagnostics
for Bayesian Regression Model Parameters). In this study, the
root mean square error (RMSE) was 126.92, and the mean
absolute error (MAE) was 23.68, indicating an acceptable level
of predictive performance. The posterior distributions of the
majority of parameters showed clear concentration, implying stable
estimations. For the standard deviation parameter o, the posterior
distribution was skewed towards higher values and relatively broad,
indicating substantial residual variability and some uncertainty
in the noise estimation (see Figure 2 Posterior Distributions of
Bayesian Regression Parameters).

3.3 LOWESS results

The LOWESS smoothing curve analysis demonstrated the
relationships between LVM and Age, SMI, SMM, and ALM.
The results indicated that, overall, as LVM increased, all muscle
indicators exhibited a rising trend. We further illustrated the trends
and slopes of several muscle parameters in relation to age, as
well as the trends of SMI and LVM across different age groups
(those older than 60 years and those younger than 60 years). SMI
decreased with age in both groups, while LVM exhibited a gradual
upward trend with increasing age in participants under 60 years.
However, in the population over 60 years, LVM showed more
complex variations. (see Figure 3 The Relationship Between Left
Ventricular Mass and Body Composition Metrics by LOWESS;
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TABLE 1 The comparison of variables between the Study group and the control group.

Variable Study group (n = 80) Control group (n = 198)
Clinical covariates
Age (years) (med, IQR) 53.50 (31.80) 52.50 (22.30) 0.99 0.322
Age<60years/>60years 45/35 131/67 2.41 0.121
Female (%) 44 (55.00) 115 (58.08) 0.22 0.638
Height (cm) (%+5) 161.62 + 8.74 164.11 +8.99 213 0.034
Weight (kg) (med, IQR) 59.50 (14.80) 67.20 (19.90) 5.47 <0.001
BMI (kg/mz) (med, IQR) 22.34 (4.37) 25.16 (5.27) 5.58 <0.001
SMI (kg/mz) (med, IQR) 5.30 (1.59) 6.79 (1.78) 8.74 <0.001
Male-SMI (kg/mz) (med, IQR) 6.55 (0.56) 7.82(0.77) 8.64 <0.001
Female-SMI (kg/m?) (med, IQR) 5.00 (0.54) 6.17 (0.72) 9.74 <0.001
SMM (kg) (med, IQR) 33.77 (10.74) 41.60 (15.25) 6.42 <0.001
UpSMM (kg) (med, IQR) 3.41 (1.50) 4.50 (2.06) 6.76 <0.001
LowSMM (kg) (med, IQR) 10.27 (4.11) 13.00 (5.06) 7.31 <0.001
ALM (kg) (med, IQR) 13.49 (5.92) 17.42 (7.08) 742 <0.001
T2DM(%) 18 (22.50) 49 (24.75) 0.16 0.692
Hyperthyroidism (%) 16 (20.00) 23 (11.62) 3.32 0.068
Malignant tumor (%) 5(6.25) 5(2.53) 2.28 0.131
Hypertension (%) 11 (13.75) 39 (19.70) 1.37 0.242
Rheumatic immune disease (%) 4 (5.00) 7 (3.53) 0.32 0.571
Dyslipidemia®(%) 9(11.25) 19 (9.60) 0.17 0.678
Smoking (%) 30 (37.50) 73 (36.87) 0.01 0.921
Alcohol consumption (%) 31 (38.75) 85 (42.93) 0.41 0.522
Cardiac measurements
LA (mm) (med, IQR) 31.00 (3.80) 32.00 (4.00) 2.33 0.020
AO (mm) (med, IQR) 20.00 (2.00) 21.00 (2.0) 1.62 0.106
LVDd (mm) (med, IQR) 45.50 (3.00) 46.00 (4.00) 1.35 0.178
IVSTd (mm) (med, IQR) 8.00 (1.00) 9.00 (2.00) 5.08 <0.001
LVPWTd (mm) (med, IQR) 8.00 (1.00) 9.00 (2.00) 433 <0.001
RV (mm) (med, IQR) 20.50 (1.00) 21.00 (2.00) 1.37 0.172
AAO (mm) (med, IQR) 29.50 (4.00) 31.00 (5.00) 3.00 0.003
MPA (mm) (med, IQR) 20.00 (1.00) 21.00 (2.00) 2.33 0.020

(Continued on the following page)
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TABLE 1 (Continued) The comparison of variables between the Study group and the control group.

Variable Study group (n = 80) Control group (n = 198) ‘ t/z/x? ‘ P
EF (%) (med, IQR) 60.00 (2.00) 58.00 (3.00) 1.93 0.053
FS® (%) (med, IQR) 31.00 (2.00) 30.00 (1.30) 2.10 0.036

LVM (g) (med, IQR) 118.67 (25.52) 137.48 (40.40) 4.54 <0.001

SMLI, skeletal muscle index; SMM, skeletal muscle mass; UpSMM, up limb skeletal muscle mass; LowSMM, lower limb skeletal muscle mass; BMI, body mass index; LA, left atrial diameter; AO,
aortic root diameter; LVDd, Left Ventricular End-Diastolic Diameter; IVSTd, Interventricular Septal Thickness at End-Diastole; LVPWTd, Left Ventricular Posterior Wall Thickness at
End-Diastole; RV, right ventricular diameter; AAO, ascending aortic diameter; MPA, main pulmonary artery diameter; EF, ejection fraction; FS, fractional shortening; LVM, left ventricular
mass; T2DM, Type 2 Diabetes Mellitus.

“Due to missing specific lipid data such as total cholesterol and triglycerides for 67 participants, with only previous history records available, we only recorded whether blood lipids

were abnormal.

PFor two participants with missing and unrecorded FS (Fractional Shortening) values, the median value was used to impute the data.

TABLE 2 Ridge regression results of skeletal muscle mass variables and LVM.

Variable B Standard error t P 95%CI
Const 135.11 1.45 92.92 <0.001 132.24-137.93
Age 4.54 1.68 271 0.007 1.23-7.85
Gender —-0.63 2.51 -0.25 0.803 —5.58-4.32
SMI 547 4.82 1.14 0.258 —4.03-14.97
SMM -8.03 4.69 -1.71 0.088 —-17.28-1.21
ALM 16.82 7.08 2.38 0.018 2.87-30.77
BMI 1.78 1.95 0.91 0.362 -2.07-5.63
T2DM -3.14 1.64 -1.92 0.057 —6.36-0.09
Hyperthyroidism -0.96 1.63 -0.59 0.556 —4.16-2.25
Malignant tumor 1.14 1.51 0.76 0.451 —1.84-4.12
Hypertension -0.77 1.54 -0.50 0.617 -3.80-2.26
Rheumatic immune disease 2.87 1.51 1.90 0.059 -0.11-5.85
Dyslipidemia 0.629 1.58 0.40 0.691 —2.48-3.74
Smoking -3.95 2.59 -1.52 0.129 -9.07-1.16
Alcohol consumption 2.76 2.70 1.02 0.308 —-2.56-8.08

SMI, skeletal muscle index; SMM, skeletal muscle mass; UpSMM, up limb skeletal muscle mass; LowSMM, lower limb skeletal muscle mass; BMI, body mass index; LVM, left ventricular mass;
T2DM, Type 2 Diabetes Mellitus.

Figure Figure4 LVM Correlation with Body Composition Metrics: ~ and SMI) and cardiac structure indicators (such as LVM) may
Age Gradient Analysis; Figure Figure5 Age-Related Trends in SMI  be influenced by the correlations among independent variables.
and LVM by LOWESS). This can lead to instability and unreliability in the coeflicient
estimates of classical linear regression, particularly when there is

high multicollinearity among the independent variables, which

4 Discussion results in larger variance and reduced predictive performance of
the model (Alin, 2010). Additionally, linear regression models often

Previous studies primarily employed linear regression analysis ~ demonstrate certain limitations when facing skewed distribution
(Keng et al., 2019; Pela et al., 2020; Tinti et al., 2022). However, data, particularly when the data do not conform to normality
the relationship between muscle quality indicators (such as ALM  assumptions, which can lead to misinterpretation of the true
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TABLE 3 Bayesian Multivariate Skewed Regression results of skeletal muscle mass variables and LVM.

Variable B(Mean) Standard error 95%ClI
Age -14.78 17.03 —42.28-22.70
Gender 8.89 21.30 —35.73-46.80
SMI 22.22 9.62 2.41-39.07
SMM -2.41 13.61 —-33.33-20.16
ALM 22.20 18.13 —-11.45-52.75
BMI -12.76 11.38 —-33.80-9.03
T2DM -22.96 20.67 —60.32-19.41
Hyperthyroidism 2.42 22.30 —-36.47-38.00
Malignant tumor -2.18 25.92 —52.46-42.89
Hypertension 23.76 18.25 —-12.82-55.98
Rheumatic immune disease -3.93 19.13 -39.85-23.68
Dyslipidemia 20.72 14.36 ~7.00-44.80
Smoking 16.37 14.99 —8.86-48.08
Alcohol consumption 3.30 23.29 —48.56-44.89
Sigma 49,143.01 29,059.01 10,286.22-112,265.00
Alpha 0.00004 0.01 -0.02-0.02

SMI, skeletal muscle index; SMM, skeletal muscle mass; UpSMM, up limb skeletal muscle mass; LowSMM, lower limb skeletal muscle mass; BMI, body mass index; LVM, left ventricular mass;

T2DM, Type 2 Diabetes Mellitus.

relationships, especially when addressing complex variables. Ridge
regression is a commonly used extension of linear regression
designed to address multicollinearity issues. By incorporating
an L2 regularization term, ridge regression effectively shrinks
the regression coefficients, thereby mitigating the impact of
multicollinearity. This shrinkage enhances the stability of the
model in the presence of multicollinearity and provides more
reliable coefficient estimates with lower prediction error (Schreiber-
Gregory, 2018). In our study, ridge regression results indicated a
positive correlation between ALM and LVM, which is consistent
with previous studies (Keng et al, 2019; Pela et al, 2020;
Tinti et al., 2022), supporting the notion of a strong relationship
between skeletal muscle quality and cardiac health. This finding
suggests that maintaining higher limb muscle quality may positively
influence cardiac structural characteristics. Despite its advantages
in managing strong correlations among independent variables,
ridge regression does not require data to strictly adhere to normal
distribution assumptions. However, due to the introduction of the
L2 regularization term, ridge regression may shrink the regression
coefficients, potentially underestimating the actual effects of certain
variables, especially in cases where relationships among variables
are complex. Furthermore, ridge regression does not perform
variable selection, which may increase model complexity and hinder
interpretability (Wu, 2021). Consequently, we further introduced
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Bayesian Multivariate Skewed Regression Analysis in this study,
which not only better accommodates the skewed nature of the
data but also effectively addresses the impact of heavy-tailed
distributions. Through Bayesian Multivariate Skewed Regression
Analysis, we observed that the relationship between SMI and LVM
was significantly stronger than that between ALM and LVM. This
finding suggests that while ALM may be related to LVM to some
extent, SMI, as a more comprehensive measure of muscle quality,
more effectively reflects its close association with cardiac health.
Moreover, compared to earlier studies, our sample encompassed a
broader age range (18-91 years), enhancing the generalizability and
clinical relevance of the results, and enabling us to better assess the
impact of muscle quality on cardiac health.

When assessing an individual's muscle quality, the SMI is
widely recognized as a significant biomarker, particularly in the
diagnosis and study of sarcopenia, as it effectively reflects the level
of skeletal muscle quality in individuals (Liu et al.,, 2024b). This
study employed ridge regression analysis to explore the relationship
between SMI and LVM, revealing no significant correlation between
the two. However, the use of LOWESS analysis indicated a
discernible upward trend between SMI and LVM, while Bayesian
Multivariate Skewed Regression further demonstrated a positive
correlation between SMI and LVM. The discrepancies observed
between the ridge regression and Bayesian multivariate skewed
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TABLE 4 Gelman-rubin diagnostic coefficients for each parameter.

Variable R

Age 1.786
Gender 1.701
SMI 1.808
SMM 1.884
ALM 1.721
BMI 1.920
T2DM 1.748
Hyperthyroidism 2.176
Malignant tumor 2.010
Hypertension 1.818
Rheumatic immune disease 1.880
Dyslipidemia 2.037
Smoking 1.768
Alcohol consumption 2.099
Sigma 1.521
Alpha 1.000

SMI, skeletal muscle index; SMM, skeletal muscle mass; UpSMM, up limb skeletal muscle
mass; LowSMM, lower limb skeletal muscle mass; BMI, body mass index; LVM, left
ventricular mass; T2DM, Type 2 Diabetes Mellitus.

regression results may stem from the differing assumptions and
model structures inherent to these statistical methods. As previously
mentioned, ridge regression aims to address multicollinearity
issues by introducing regularization techniques to enhance model
stability and interpretability, whereas Bayesian multivariate skewed
regression considers the distribution characteristics of the data
during modeling, thereby more effectively capturing nonlinear
relationships and complex interactions. Consequently, the Bayesian
approach can provide a more nuanced understanding of the
potential correlations between SMI and LVM. These corroborative
results suggest that under specific physiological or pathological
conditions, the impact of SMI on LVM may indeed exist.

When exploring the potential mechanisms linking SMI and
LVM, it is pertinent to consider the regulatory role of various
physiological factors. With advancing age, the elevation of chronic
inflammation and oxidative stress levels is recognized as a critical
factor affecting muscle quality and cardiac health (Angelaki et al.,
2021; Loh et al., 2022). Specifically, increased levels of inflammatory
markers such as interleukin-1f (IL-1p) and tumor necrosis factor-
alpha (TNF-a) not only activate multiple intracellular signaling
pathways that disrupt normal muscle metabolism and promote
muscle protein degradation, ultimately leading to muscle atrophy
(Teixeira et al, 2021; Meng and Yu, 2010), but also inflict
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damage on cardiomyocytes, thereby impacting cardiac structure and
function, potentially leading to cardiac remodeling and dysfunction
(Chang et al,, 2023; Wu et al., 2023). Moreover, oxidative stress
plays a vital role in this process. As individuals age, the increase
in Reactive Oxygen Species (ROS) and the decline in antioxidant
defense capacity further exacerbate oxidative stress levels (Loh et al.,
2022; Shen et al, 2015). Oxidative stress contributes not only
to cellular membrane damage and mitochondrial dysfunction
but also promotes apoptosis and autophagy dysregulation in
muscle cells by influencing key signaling pathways such as
AMPK and mTOR (Wang et al., 2015). The intricate interplay
between oxidative stress and inflammation may lead to declines
in muscle quality and deterioration of cardiac function, creating
a vicious cycle that can impact the relationship between SMI and
LVM. In summary, the interaction between SMI and LVM may be
jointly influenced by a multitude of physiological and pathological
factors, which potentially modulate the relationship between muscle
quality and cardiac structure under varying conditions.

Studies by Pela et al. (2020) and Tinti et al. (2022) have
reported significant associations between limb SMM and LVM,
suggesting that skeletal muscle quality in the limbs may play a
crucial role in maintaining cardiac function. Compared to previous
research, this study encompasses a broader sample range, including
individuals aged 18-91 years, which enhances the generalizability
and applicability of the findings. The metabolic activity of muscle
is closely linked to vascular relaxation, and metabolically active
load-bearing skeletal muscle enhances the synthesis of nitric oxide
(NO) catalyzed by neuronal nitric oxide synthase (nNOS) in muscle
cells and endothelial n(NOS through the adenosine monophosphate-
activated protein kinase (AMPK) signaling pathway. Moreover,
post-exercise, both insulin and AMPK can activate endothelial nitric
oxide synthase (eNOS) in vascular cells, further promoting nNOS
activation and regulating metabolism. Thus, lower limb muscle
training can, to some extent, improve cardiovascular function
(Linke et al., 2001; Clark et al., 2003; Umbrello et al., 2013;
Jie et al., 2009). Sasaki et al. (2017) developed a cardiac cycle-
synchronized electrical stimulation device for the lower limbs,
which highlighted the significant role of lower limb muscle in
alleviating cardiac workload. This device facilitates the flow of
hypoxic blood toward the heart and promotes capillary dilation
and filling, thereby enhancing the heart’s pumping capacity. This
indicates that lower limb muscles may assist with cardiac pumping.
Additionally, research by Parissis et al. (2015) demonstrated that
lower limb electrical stimulation therapy, which induces muscle
contractions, could effectively improve flow-mediated dilation in
patients with chronic heart failure. These findings together suggest
that limb muscle quality may have a significant impact on cardiac
structure; however, existing studies have insufficiently addressed the
role of upper limb muscles. This underscores the need for further
exploration of the potential effects of upper limb musculature on
cardiac function and structure in future research.

In this study, ridge regression and Bayesian multivariate skew
regression yielded differing results, indicating that ALM and SMI
hold distinct positions as correlating factors. This discrepancy
may arise from the differing approaches these methods take
in addressing multicollinearity and assumptions regarding data
distribution. To address this discrepancy, future research should
consider increasing sample size and employing techniques such
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as cross-validation to assess the robustness of the models, thereby
ensuring the reliability of the results. Additionally, conducting
multicenter large-scale studies will be beneficial in validating the
actual associations of ALM and SMI across diverse populations and
exploring their combined effects on cardiac function and muscle
health. Furthermore, developing appropriate statistical analysis
strategies tailored to different data characteristics will provide
valuable guidance for future investigations.

Age is a significant factor influencing sarcopenia, the decline in
skeletal muscle mass is closely associated with aging (Liu et al.,
2024b). The aging process leads to the depletion of skeletal
muscle cells, DNA damage, endoplasmic reticulum stress,
mitochondrial dysfunction, contractile impairment, hypertrophic
growth, and the development of an age-related secretory phenotype
in cardiomyocytes. These changes collectively contribute to
detrimental alterations in cardiac structure and function, potentially
leading to heart failure and other cardiovascular diseases. These
alterations can provoke negative changes in cardiac anatomy and
function, ultimately contributing to cardiac aging, dysfunction,
and heart failure, while increasing the risk of cardiovascular
disease incidence and progression (Tang et al., 2020; Parissis et al.,
2015). Cardiomyocytes, which comprise 20%-25% of the total
number of cardiac cells, account for 76% of the overall volume
of the heart. Most cardiomyocytes quickly lose their proliferative
capacity after birth, and with advancing age, these cells undergo
hypertrophic growth (Chakravarty et al., 2021; Zeitz and Smyth,
2020). Hypertrophic growth serves as an adaptive mechanism in
the adult heart; however, when cardiomyocytes are damaged or
lost, the heart undergoes remodeling characterized by hypertrophy
of both the cardiomyocytes and the ventricular walls, known as
cardiac hypertrophy. This hypertrophy can enhance the heart’s
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contractile force to cope with increased workload. Thus, the
depletion of cardiomyocytes is considered a potential precursor
to adaptive hypertrophy, yet this change may ultimately lead to
the onset of heart failure (Angelaki et al., 2021; Loh et al., 2022;
Chakravarty et al., 2021; Zeitz and Smyth, 2020; Pangonyte et al.,
2008). In summary, the potential mechanisms underlying the
significant positive impact of age on LVM include the depletion
of cardiomyocytes and hypertrophic growth, which may ultimately
result in adverse changes in cardiac structure and function. In this
study, the LOWESS method was employed to analyze the SMI in
participants aged 60 and above, revealing a significant decrease that
aligns with existing literature indicating the widespread prevalence
of sarcopenia in the elderly population, with risk exacerbating
with advancing age (Larsson et al, 2019). Sarcopenia not only
affects an individual’s mobility and quality of life but may also
have detrimental effects on cardiac health. The reduction in muscle
mass can lead to decreased cardiac output and increased cardiac
workload, thereby exacerbating structural and functional changes
in the heart (von Haehling, 2018). Interestingly, in participants
under 60 years of age, the trend in SMI changes was not significant,
suggesting that skeletal muscle mass tends to remain relatively stable
in this age group. This phenomenon may be attributed to higher
metabolic function and hormone levels and levels of physical activity
among younger individuals (Cruz-Jentoft et al., 2019; Mitchell et al.,
2012). The present study conducted a comparative analysis of cardiac
and muscle health between participants aged below and above 60,
while exploring the impact of age on LVM. The findings indicated
that, in participants under 60, changes in left ventricular mass
with advancing age were not significant, whereas, in those aged
60 and above, a rising trend in left ventricular mass was observed.
Research by Gardin etal. (Gardin et al., 1997) also indicated a
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lack of significant association between age and LVM in individuals
aged 65 and older. In participants under 60, the increase in left
ventricular mass may reflect a favorable adaptation of the heart to
physical demands during the growth and development phase, during
which the heart typically responds effectively to heightened bodily
requirements, promoting myocardial growth and development
(Agbaje, 2023; Urbina et al., 1995). However, upon reaching the
age of 60 and beyond, changes in left ventricular mass may be
closely associated with various factors, including cardiovascular
diseases, hypertension, alterations in cardiac structure, and declines
in metabolic function (Nakou et al., 2016). Therefore, understanding
the interplay among these factors is crucial for developing effective
intervention strategies aimed at improving cardiac and muscle
health in the elderly population. These changes not only affect
muscle function but may also have profound implications for
cardiac health.

Despite the absence of significant correlations, the associations
of smoking and alcohol history with left ventricular mass (LVM)
should not be overlooked. It is well established that smoking causes
vascular constriction, which may increase the workload on the heart.
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Previous studies have demonstrated that even in relatively young
populations, smoking adversely affects left ventricular structure,
with smokers exhibiting significantly higher LVM compared to
non-smokers (Park et al., 2021; Markus et al., 2013). Furthermore,
chronic alcohol consumption has also been associated with an
increased burden of LVM (Yang et al., 2017). Additionally, a higher
body mass index (BMI) is often linked to obesity, which can trigger
a range of metabolic issues and cardiovascular diseases, potentially
leading to an increase in LVM (Heiskanen et al., 2021). Physical
activity is another important factor influencing heart function and
structure, and it is closely related to sarcopenia (Zytnick et al.,
2021). However, due to the insufficient collection of participants’
daily physical activity information in this study, this aspect remains
unaddressed. Thus, the role of these factors in the correlation
between skeletal muscle and LVM warrants further investigation.
In addition to hyperthyroidism and type 2 diabetes mellitus
(T2DM), which have been confirmed to be associated with
secondary sarcopenia (Liu et al.,, 2024b; Zou et al., 2024), other
conditions such as cirrhosis are also commonly regarded as triggers
for muscle wasting (Ztniga Gonzalez and Roco-Videla, 2023).
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However, as our study failed to collect complete data on patients
with cirrhosis, we are unable to effectively assess and validate this
association. Moreover, the relatively small number of participants
diagnosed with tumors and autoimmune diseases in this study
also somewhat limits the generalizability and representativeness
of the findings, potentially impacting the final assessment results.
Additionally, some long-term medications, such as metformin, are
known to modulate the physiological functions of muscle and heart
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(Zhu et al., 2023; Zullo et al., 2017) and may play a significant role
in the interaction between these two systems. However, the usage of
these medications was not systematically recorded and analyzed in
our study, preventing us from evaluating their potential influence on
the study outcomes.

In this study, we observed that the FS in the low muscle mass
group was significantly higher than that in the normal skeletal
muscle mass group. We hypothesize that this elevation in FS
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within the low muscle mass group may be attributed to potential
compensatory mechanisms; however, the specific mechanisms
underlying this phenomenon warrant further investigation. Due
to limitations in manuscript length, we are unable to elaborate
on these discussions in the current study. Therefore, we plan to
conduct further research to explore the relationship between low
muscle mass and left ventricular function, including an analysis of
potential influencing factors and underlying mechanisms, with the
aim of providing a more comprehensive understanding of cardiac
health.
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This study employed a retrospective design, which may lead
to selection bias and information bias, potentially affecting the
reliability of the results. Furthermore, the research was conducted at
a single center, which may limit the generalizability of the findings
to other healthcare facilities or populations. The minimum age of
participants was 18 years, which may further restrict the applicability
of the results across different age groups, particularly regarding the
elderly population.

In this study, considering the skewed distribution and heavy-
tailed characteristics of the data, we employed Bayesian multivariate
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skew regression analysis for data analysis. This method is capable
of flexibly handling non-normally distributed data by incorporating
skewness and heavy-tailed distributions, thus allowing for a more
effective approach to asymmetry and thick-tail characteristics in
multivariate regression analysis. It not only establishes asymmetric
relationships between the response variable and predictor variables
but also effectively captures the skewness of the data and the
dependencies among components. Compared to traditional models,
Bayesian multivariate skew regression offers a more comprehensive
data modeling capability, thereby enhancing the credibility of
the results. Additionally, the Bayesian approach allows for the
quantification of uncertainty in parameter estimates, enabling
researchers to gain a more holistic understanding of the reliability
of the results and to consider uncertainty in the decision-making
process, providing a more robust solution for small sample sizes
and missing data scenarios (Ferreira and Steel, 2004). Through
these advantages, our study is better able to accurately reflect the
relationship between limb muscle quality and cardiac structure.
However, despite the aforementioned advantages of Bayesian
multivariate skew regression, this study does have some limitations.
First, due to its retrospective design, there may be selection bias and
information bias. Second, although we included 278 participants,
the sample size remains limited, which may affect the robustness
of the results. Furthermore, while we have made efforts to control
for potential confounding factors, unidentified factors may still
influence the outcomes. Lastly, in this study, the root mean square
error (RMSE) and mean absolute error (MAE) of the Bayesian
multivariate skewed regression model indicate that there are still
some predictive errors within the model. Therefore, this linear trend
suggests that we need to further improve the model, for example, by
considering the inclusion of additional variables or more complex
nonlinear relationships to enhance the predictive performance and
overall accuracy of the model. This finding provides potential
directions for optimizing the model in future research. Considering
the limitations imposed by the same dataset and sample size,
we did not opt to incorporate prior distributions and did not
use ridge regression as prior information, but rather conducted a
comparative analysis. To address these limitations, future research
should consider adopting a prospective study design to better
control for confounding factors and reduce biases. Moreover,
multi-center studies and larger sample sizes would enhance the
generalizability and robustness of the findings. Long-term follow-up
studies are also recommended to observe the dynamic interactions
between skeletal muscle quality and LVM over time. Additionally,
further investigation into the impact of upper limb musculature
on cardiac function and structure is warranted to provide a more
comprehensive understanding of these relationships.

5 Conclusion

In this study, we employed ridge regression and Bayesian
multivariate skewed regression analyses. The results indicated
that ALM has a significant positive association with LVM, while
SMI also exhibited a notable association. These findings suggest
an association between improved muscle mass, particularly in
the limbs, and a potential beneficial effect on cardiovascular
health. This evidence provides important theoretical support for
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the health management and intervention strategies for elderly
patients with sarcopenia, particularly concerning the maintenance
and enhancement of heart health. Future research should focus
on prospective, multicenter studies to further validate the causal
relationship between skeletal muscle quality and left ventricular
mass, as well as to explore other potential influencing factors, in
order to gain a more comprehensive understanding of the impact
of muscle quality on cardiovascular health.
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