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Introduction:Understanding the hemodynamics of blood circulation is crucial to
reveal the processes contributing to stenosis and atherosclerosis development.

Method: Computational fluid dynamics (CFD) facilitates this understanding by
simulating blood flow patterns in coronary arteries. Nevertheless, applying CFD in
fast-response scenarios presents challenge due to the high computational costs. To
overcome this challenge, we integrate a deep learning (DL) method to improve
efficiency and responsiveness. This study presents a DL approach for predicting
Time-Averaged Wall Shear Stress (TAWSS) values in coronary arteries’ bifurcation.

Results: To prepare the dataset, 1800 idealized models with varying
morphological parameters are created. Afterward, we design a CNN-based U-
net architecture to predict TAWSS by the point cloud of the geometries.
Moreover, this architecture is implemented using TensorFlow 2.3.0. Our
results indicate that the proposed algorithms can generate results in less than
one second, showcasing their suitability for applications in terms of
computational efficiency.

Discussion: Furthermore, the DL-based predictions demonstrate strong
agreement with results from CFD simulations, with a normalized mean
absolute error of only 2.53% across various cases.
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1 Introduction

Despite significant advancements in medical therapy and the availability of both
invasive and noninvasive diagnostic tests, cardiovascular disease continues to persist as
the leading cause of mortality globally (Maurovich-Horvat et al., 2014; Benvidi and
Firoozabadi, 2024). It is widely acknowledged that coronary artery hemodynamics and
vessel geometry play a crucial role in the development and diagnosis of coronary artery
disease (CAD) (Pinho et al., 2019; Eslami et al., 2020a). Due to the presence of turbulence in
the flow, the frictional force exerted on the vessel wall, known as wall shear stress (WSS), can
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initiate plaque formation at regions of flow separation (Dong et al.,
2015; Temov and Sun, 2016).

The left coronary artery and its bifurcations, specifically the left
anterior descending (LAD) and left circumflex (LCX), are
susceptible to the development of atherosclerosis (Zhang and
Dou, 2015; Edrisnia et al., 2024). Additionally, bifurcations pose
a heightened risk for restenosis and stent thrombosis (Chaichana
et al., 2011; Beier et al., 2016; Freidoonimehr et al., 2021a;
Freidoonimehr et al., 2021b). Hence, in clinical practice, it is
imperative to assess these regions to identify high-risk patients
who may have CAD at an early stage (Hoque et al., 2021).
Parameters based on WSS, such as time-averaged wall shear
stress (TAWSS) play a fundamental role in the progression of
atherosclerosis, particularly in transient studies (Arzani et al.,
2021). Studies have shown that a wider bifurcation angle is
associated with lower wall shear stress and higher oscillatory
shear index (OSI), which can contribute to the stimulation of
atherosclerosis (Sun and Chaichana, 2016; Sun and Chaichana,
2017; Liu et al., 2019). Moreover, precise characterization of
blood rheology, which involves the application of non-Newtonian
models, is particularly crucial in these instances (Pinto and Campos,
2016; Sandeep and Shine, 2021).

Due to the shear thinning behavior of blood in small arteries,
CFD is becoming increasingly essential in hemodynamics’
calculations. The accuracy of input data, such as vessel geometry
information, appropriate boundary conditions, and material
models, significantly influences the reliability and precision of
CFD results (Gijsen et al., 2019; Rabbi et al., 2020; Edrisnia and
Sharbatdar, 2024). However, the CFD technique is not well-suited
for fast-response applications due to the inherent delay and
relatively high computational costs involved. As a result, there is
a need for an alternative approach to overcome this limitation.

Many state-of-the-art machine learning (ML) techniques, such
as Convolutional Neural Networks (CNNs) and Multi-Layer
Perceptrons (MLPs), are widely utilized for various applications,
including 2D image segmentation and 3D point cloud segmentation
(Bello et al., 2020; Hirzi et al., 2022; Sabet et al., 2022). Inspired by
these algorithms, there is significant potential for employing them in
hemodynamic parameter prediction. However, in scenarios with
limited data availability, deep learningmodels, such as convolutional
and recurrent neural networks, often lack robustness and fail to
guarantee convergence. Therefore, ensuring access to sufficient and
high-quality data is crucial for achieving reliable and accurate
results. One promising approach to address data limitations is
the use of idealized models in biomedical applications, which can
simulate conditions with acceptable agreement to patient-specific
cases. These enriched datasets improve algorithm training,
enhancing their robustness and performance in real-world
applications.

In fluid dynamics applications involving direct calculation of the
flow field, ML, and deep learning (DL) approaches have been
employed to address computational challenges. These techniques
offer promising solutions for expediting computations and enabling
fast-response simulations. For instance, Jordanski et al. (Jordanski
et al., 2018) have utilized ML techniques to predict the WSS
distribution in carotid bifurcation and abdominal aortic
aneurysms. Liang et al. (Liang et al., 2017) have deployed a ML
approach to establish the connections between shape features and

the rupture risk of ascending aortic aneurysms as predicted by finite
element analysis (FEA). Furthermore, Liang et al. (Liang et al., 2018;
2020) have developed a DL model, including deep neural networks,
to directly estimate the stress distributions in the aorta. Madani et al.
(2018) have created data-efficient DL classifiers for cardiology
prediction tasks, with a particular emphasis on relevant
structures using pipeline-supervised models. Additionally, Madani
et al. (2018) have investigated the connection between ML and finite
element modeling for WSS prediction of arterial in the context of
atherosclerosis. Farnoud et al. (2023) have employed random forest
and gradient boosting models for ML analysis of drug delivery to
nasal epithelium.

Similar studies are summarized in Table 1. The application of
ML or DL to predict hemodynamic parameters, such as Fractional
Flow Reserve, FFR, and forecast flow field patterns has remained
limited (Itu et al. (2016)). However, there has been an
implementation of a reduced-order model, which is highly
specialized but has limited applicability. In other investigations,
many researchers have employed the Point Net architecture to
predict hemodynamic parameters in cardiovascular geometries. Li
et al. (2021a) have developed a DL approach to predict the
hemodynamics of different cerebral aneurysms before and after
the insertion of a flow diverter (FD) stent. Moreover, Li et al. (2021b)
have created cardiovascular hemodynamic point datasets and a dual
sample channel DL network, capable of analyzing and reproducing
the relationship between cardiovascular geometry and internal
hemodynamics. The PointNet algorithm, originally proposed for
hemodynamic prediction, is also tested in this study to compare its
performance with the proposed model, as shown in Table 1.

Studies on PointNet consistently highlight its strength in
capturing global geometric variations but reveal its limitations
in addressing local variations. To overcome this, researchers often
train separate PointNet models for pre-treatment and post-
treatment simulations. In contrast, Su et al. (2020) proposed an
alternative approach using idealized geometries with varying
stenosis diameters and locations, employing multivariable
linear regression (MLR), multi-layer perceptrons (MLPs), and
convolutional neural networks (CNNs) as substitutes for
computational fluid dynamics (CFD) to compute wall shear
stress (WSS) during medical examinations. Although previous
study (Su et al., 2020) described their input in Table 1 as a “fixed
number of vessel’s centerline coordinates,” they effectively
utilized point cloud data in a different coordinate system.
Specifically, their input features included the centerline
coordinates in the XY plane, along with the distance and angle
relative to the centerline. Their study focused on a single coronary
artery, varying morphological parameters such as vessel diameter,
stenosis, and curvature.

To the best of our knowledge, researchers have proposed DL
algorithm for predicting the TAWSS of bifurcations. However, no
research has investigated DL-driven prediction on the cases varying
in diameters and angulations using U-net structure. For this
purpose, point cloud datasets are developed based on CFD
simulations of ideal coronary bifurcations, including its
hemodynamic parameters. Additionally, a CNN-based U-net is
developed to generate the point cloud input for predicting
TAWSS at each point. Finally, the effectiveness of the DL
approach is assessed by evaluating the prediction errors in TAWSS.
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TABLE 1 Comparison of ML- and DL-based methods on hemodynamic prediction.

Methodology Output Model Input Data
set

Performance

Proposed model TAWSS Coronary artery bifurcation Fixed number of point cloud 1800 MRE <11.3%
NAME <2.5%

Point Net TAWSS Coronary artery bifurcation Fixed number of point cloud 1800 MRE <24%
NAME < −

Neural network approach
Itu et al. (Itu et al., 2016)

FFR
value

Coronary artery Geometric parameter 12,000 Error = 0.03%

U-net architecture
Su et al. (2020)

WSS Coronary artery Fixed number of vessel’s centerline
coordination

2000 MAE <11.7
NAME <2.5%

Point net
Li et al. (2021a)

Pressure,
velocity

idealized cerebral aneurysm Flexible point cloud 500 MRE <13%
NAME <6.5%

Point net
Wang et al. (2023a)

Pressure,
velocity

Clinical geometry with carotid artery
stenosis

High resolution point cloud 1,000 MRE <12.5%
NAME <7.5%

FIGURE 1
(A) An example of an idealized geometry depicting a 3D bifurcation, (B) pressure wave for LAD and LCx outlets, (C) flow velocity for LM inlet, and (D)
verification of the results. Comparison between peak inlet pressure at LM in the proposed model and Jahromi et al. study (Jahromi et al., 2019).
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2 Material and method

2.1 Dataset generation: creation of models
and CFD simulation

To generate the dataset, various healthy coronary artery
bifurcation geometries across a broad demographic with transient
boundary conditions are simulated using the finite volume method.
A 3D parametric model is first established to efficiently create
diverse artery geometries as shown in Figure 1A. Furthermore,
five morphological parameters, namely, the diameters of the left
main coronary artery (DLM), left circumflex artery (DLCx), and left
anterior descending (DLAD), along with the angles between LM and
LAD (ɣ) and between LAD and LCx (α), are selected. A total of
1800 bifurcation models were generated with scripting option in
ANSYS workbench using values selected from a reasonable range,
with detailed parameter values shown in Table 2 and corresponding
references provided in Supplementary Tables S3, 4. Additionally,
Supplementary Figure S2 presents a visualization of a number of
generated idealized geometries with varying morphological features.

To create the computational fluid domain, ANSYS meshing
software is utilized and a mesh is applied with tetrahedral control
volumes in the geometry. Seven prismatic layers with a growth rate
of 1.2 are deployed to minimize computational errors near the wall.
Moreover, grid independence is studied using the geometry with
the largest diameters by evaluating TAWSS values at 6 points on
the wall shown in Supplementary Figure S1, across three different
mesh resolutions with precise TAWSS values comparison provided
in Supplementary Table S2. Therefore, applying this process in a
geometry with largest diameters is more effective way than
including a larger subset of the 1800 geometries because fine
mesh in this case would be extra fine for smaller
bifurcation models.

The results of this comparison are presented in Table 3. As
depicted, using the medium mesh can provide us with accurate
simulations and hence is chosen for its balance between accuracy
and computational cost. The difference error with fine mesh, 0.8%, is
almost negligible.

The boundary conditions are representative of a general healthy
population obtained from 20 healthy subjects in the Davies et al.
study (Davies et al., 2006). They showed that inlet and outlet BCs
consist of predominant waves that follow a similar pattern across all
subjects during each cardiac cycle. Although the intensity and

timing of individual waves varied between the subjects, the wave
remained consistently similar in the left coronary arteries.
Consequently, this consistency justifies the selection of following
conditions for the 1800 geometries studied. For the outlets in the
LCx and LAD coronaries are pressure waves throughout a cardiac
cycle provided in Figure 1B, while for the inlet in the LM is fully-
developed time-varying flow velocity wave shown in Figure 1C.
Consequently, considering the mass flow rate, the BCs do not
depend on the morphological parameters and mass flow rate can
adjust itself in different geometries. To verify CFD models, two
diagrams are compared in Figure 1D from the current simulation
and data obtained from Jahromi et al. study (Jahromi et al., 2019).
The comparison contains the maximum pressure at the inlet in LM.

Each numerical model is extended at inlet to seven times their
diameters for fully developed profile and numerical stability, then a
flat velocity boundary condition is applied at the inlet (Numata et al.,
2017; Su et al., 2020). Furthermore, based on the time step
dependency analysis shown in Supplementary Table S1, a time
step size of 0.0025 [s] is selected for the simulations.
Additionally, the simulations are run over three cardiac cycles to
ensure repetitive steady state, as the difference in TAWSS values at
the points shown in Supplementary Figure S2 between the third and
fourth cycles is only 0.61%, confirming the convergence and periodic
consistency of the results. The continuity and Navier-Stokes
equations (Equations 1, 2), respectively) governing the blood flow
are solved using the CFD software ANSYS-CFX 20.1 (ANSYS Inc.,
PA, USA):

∇. �u � 0 (1)
ρ
∂ �u

∂t
+ ρ �u.∇( ) �u + ∇p − μΔ �u � 0 (2)

where �u, ρ, p and μ represent fluid velocity vector, density, pressure,
and dynamic viscosity, respectively.

In the CFD simulation, a high-resolution advection scheme is
employed alongside the second-order backward Euler method for
time-stepping, achieving a balance between precision and
computational efficiency in transient simulations. Convergence is
meticulously managed with up to 500 coefficient loops per time step
and an RMS residual target of 1E-5 to ensure both accuracy and
reliability of the results.

The blood is considered to be an incompressible, laminar fluid
with a density of 1,060 kg /m3 and assumed to be a non-Newtonian
fluid modeled by the Carreau-Yasuda viscosity model (Equation 3).

TABLE 2 The range of morphological parameters.

Parameter DLM (mm) DLCx (mm) DLAD (mm) ɣ (degree) α (degree)

Range 2.18–4.18 1.5–3.5 1.5–3.5 112.75–172.75 15–130

TABLE 3 Numerical sensitivity study.

Mesh type Cells number Node number Prismatic layer Error (%)

Coarse 1,554,000 531,000 7 3.58

Medium 2,392,000 794,000 7 0.8

Fine 3,342,000 1,085,000 7
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In this model, μ represents the viscosity, �γ is the shear rate and a is
the Yasuda exponent. Additionally, the parameters
m, μ0, μ∞ and λCY represent the Carreau–Yasuda power law
index, zero shear viscosity, infinite shear viscosity and time
constant, respectively. These parameters are investigated by
Sandeep et al. (Sandeep and Shine, 2021) and depicted in
Table 4. The equation is provided below:

μ � μ0 − μ∞( ) 1 + λCY �γ( )a( ) m−1( )/a + μ∞ (3)

TAWSS over a cardiac cycle, is calculated to reach a meaningful
conclusion and is extracted from each model to be utilized in the DL
algorithm. The formula for computing TAWSS is given by Equation
4 as:

TAWSS � 1
T
∫T

0
WSS t( )��������→∣∣∣∣∣∣ ∣∣∣∣∣∣dt (4)

Previous studies show different instant WSS values but similar
TAWSS values in rigid and fluid-structure interaction (FSI) models
(Zeng et al., 2003; Eslami et al., 2020b). Therefore, the coronary
artery is assumed to be rigid during the simulations due to
computational efficiency.

2.2 DL model

2.2.1 Supervised learning
Supervised learning is a ML approach where a model is trained

on labeled input-output pairs to learn patterns and predict outcomes
on new, unseen data. The process involves minimizing the error
between predicted outputs and ground truth labels using various
algorithms such as linear regression, support vector machines, and
deep neural networks (Rashidi et al., 2019). As TAWSS is
continuous, regression algorithms are utilized to predict TAWSS
in bifurcation models. In this section, we introduce the input and
output of the DL algorithm, followed by the introduction of U-net
architecture, tailored for predicting TAWSS in diverse bifurcation

models. For this purpose, out of the 1800 models, 60 models are
randomly selected in each batch of 300 models, resulting in a total of
360 models used for testing. Additionally, 10% of the remaining
1440 models are chosen for validation from the training set.

2.2.2 Input and output variables
ML algorithms often struggle with unstructured data. To address

this, an interpolation step is applied during post-processing to map
the TAWSS values onto a structured surface mesh (4,096 × 3),
ensuring that each simulation result is in a structured format. The
input of the DL is a point cloud data (mesh nodes coordinates)
extracted from CFD-based results with a uniform distribution,
representing the geometry of the bifurcation model and the
output is the TAWSS at each point. Figure 2 illustrates the
structure of the input and output components, designed to
replace the function of CFD simulation in fast-response
applications. As discussed previously, all geometries have
4,096 nodes, the input includes 3 components of each node
(xi, yi, zi), and dimensions of the input and the output are
4,096 × 3 and 4,096 × 1, respectively. The proposed architecture
consists of two main parts: encoder and decoder as it is depicted in
Figure 2. In the encoder part main features of point clouds are
extracted. After which, these features are transformed to the TAWSS
values using decoder section.

2.2.3 DL model
U-Net is a CNN structure developed for segmenting biomedical

images, specifically for tasks requiring detailed segmentation, it
comprises a contracting and expanding path formed a U-shape
(Arvind et al., 2023). The contracting path uses convolutional and
pooling layers to reduce image dimensions and enhance feature
extraction. Meanwhile, the expanding path employs upsampling and
concatenation to recover spatial resolution and refine segmentation.
Notably, U-Net incorporates skip connections to preserve spatial
information, aiding accurate segmentation. Widely adopted, U-Net’s
simplicity and adaptability have made it popular in various computer
vision applications, including satellite imagery (Alsabhan and Alotaiby,
2022) and road segmentation (Wang R. et al., 2023).

The architecture used to derive TAWSS from the point clouds of
geometry is a modified U-net structure, as shown in Figure 3.
Initially, the resolution of the input geometry increases from
4,096 × 3 to 4,096 × 8 after two neural network layers. Then it is

TABLE 4 Parameters of Carreau-Yasuda blood viscosity model.

μ∞ λCY n a μ0

0.0035Pa.s 1.902 s 0.22 1.25 0.056Pa.s

FIGURE 2
Concept of proposed model.
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reshaped to a dimension of 64 × 64 × 8, followed by the application
of a convolutional layer with same depth to 64 × 64 × 8. Another
convolutional layer is then applied, maintaining the same
dimensions. In the encoder section, four max-pooling operations
progressively halve the spatial dimensions. For instance, the first
max-pooling layer reduces the dimensions from 64 × 64 × 8 to 32 ×
32 × 8. After each max-pooling step, two convolutional layers are
applied while keeping the same dimensions. Once the final max-
pooling is completed, the encoded data passes through four
additional convolutional layers.

In the decoder section, four transposed convolution layers are used
to progressively restore the spatial dimensions. For example, the first
transposed layer expands the dimensions from 4 × 4 × 8 to 8 × 8 × 8,
followed by a skip connection that merges the corresponding feature
maps from the encoder path. As shown in Figure 3, two additional
convolutional layers with dimensions of 8 × 8 × 8 are applied. This
process is repeated for the subsequent transposed layers. To mitigate
overfitting during training, an initial learning rate of 0.001 is used, with
exponential decay applied every 2000 steps. Additionally, batch
normalization is implemented after each convolutional layer and
before the ReLU activation, except for the output layer, where it is
deemed unnecessary for regression operations. Moreover, all
convolutional layers utilize a 3 × 3 kernel size.

To quantitatively assess the discrepancy between the outcomes
predicted by the DL and CFD simulations, we referenced previous
studies (Li et al. (2021a), Li et al. (2021b), Wang et al. (2023a)) and
employed the mean radial error (MRE) and normalized mean
absolute error (NAME). These metrics were used to evaluate the
error magnitude at individual mesh points (Li et al., 2021a; Wang S.
et al., 2023). MRE quantifies the difference between the predicted DL
values and the corresponding actual values across all points within
the model. In contrast, NAME measures the deviation of the

DL-derived results from the actual values across the entire flow
field represented by CFD results. The precise formulations of MRE
and NAME are provided in Equations 5, 6.

MRE y, ŷ( ) � 1
N

∑N
i�1

��������
yi − ŷi( )2√
��
y2
i

√ × 100% (5)

NAME y, ŷ( ) � 1
N

∑N
i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣
Max y

∣∣∣∣ ∣∣∣∣ −Min y
∣∣∣∣ ∣∣∣∣ × 100% (6)

where yi and ŷi denote the ith values of TAWSS obtained by DL-
predicted and CFD-simulated results, respectively. i is the point
spatial sequence, N is the total number of nodes, || denotes the
absolute value. NAME measures the absolute error for each
individual data point after normalizing it by the peak value, and
then calculates the average. It is essential to emphasize that max{y}
represents the highest value obtained from these 1800 models.

To optimize the DL model, an additional study of the network
layers is provided in the Supplementary Material. Supplementary
Table S5 investigates the effect of encoding/decoding sessions,
revealing that increasing the number of sessions enhances
prediction performance. Supplementary Table S6 demonstrates
that utilizing four convolutional layers in the final encoding
section yields the best prediction accuracy. Additionally,
Supplementary Table S7 highlights the significant impact of skip
connections, showing that they can reduce the MRE by half, further
improving prediction performance.

This investigation is carried out on a Windows 10 workstation
featuring a 3.4 GHz CPU and 128 GB of RAM. CFD simulations are
performed using ANSYS-CFX 20.1 (ANSYS Inc., PA, USA). The
computational time varies, usually below the 50 minutes for most
cases, with an average duration of approximately 45 min. We
implement the DL models using TensorFlow 2.0 and expedited

FIGURE 3
The proposedmodel features a CNN layer structured in a U-Net architecture, where each encoded and decoded layer is color-coded for clarity. The
skip connections transfer encoded data to their corresponding decoded layers for concatenation.
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the training process with a 12G TITAN Xp GPU. The training phase
for the proposed model, with 27,339 parameters, lasted
approximately 2 hours. The dataset preparation, which involves
simulating 1800 idealized models, required about 1350 h.
Nevertheless, all neural networks demonstrated the ability to
generate a TAWSS map in less than 1 s during testing.

3 Results

Ordering point clouds is crucial, particularly in CNN
architectures, as it helps extract local features. Principal
Component Analysis (PCA) ordering is used which is one of the
simplest methods for imposing order. This approach aligns the point

cloud with its principal axes by computing eigenvectors of the
covariance matrix. The points are then sorted based on their
projections along the principal eigenvector, which corresponds to
the direction of maximum variance. To assess its functionality, this
ordering technique is compared with x, y, and z ordering points. As
it is concluded from the Table 5, the MRE and NAME for ordering
in canonical order is much better, 11.3 and 2.5, respectively.

As shown in Figure 3, one of the steps in the process involves
reshaping 4,096 points into a 64 × 64 format. Specifically, the points
are grouped into 64 clusters, each containing 64 points. After
applying ordering to the point clouds, the grouping is
schematically illustrated in Supplementary Figure S3.

In this study, our primary focus is on examining the
hemodynamic parameter known as TAWSS, a metric previously
investigated in studies related to coronary arteries (Eshtehardi et al.,
2012; Su et al., 2020). Figure 4 compares the TAWSS values obtained
from the CFD and DL models across two perspectives. Due to the
curved geometry of the LAD and LCx in the idealized model, the
TAWSS distribution is asymmetrical between the front and back
views. Notably, the TAWSS values in the front view, as shown in
Figures 4A, C, are almost 25% higher than those in the back views
depicted in Figures 4B, D. In Figure 4A, left and right branches
correspond to the LAD and LCx arteries, respectively. Although the
values demonstrate good predictive capabilities in the LM and LAD
vessels, the exact TAWSS values distribution from the CFD

TABLE 5 Result of training the proposed U-net with ordering points in x, y,
z-directions, and PCA ordering.

Order MRE NAME

x-ordering 34 ± 8.3 3 ± 1.2

y-ordering 29.1 ± 7.5 3.6 ± 1.1

z-ordering 27.6 ± 3 3.7 ± 1.8

Principle axes ordering 11.3 ± 5.5 2.5 ± 0.6

FIGURE 4
TAWSS distribution. Comparison between CFD results (A, B) and proposed DL model results (C, D) in one case in two different views, (A, C) TAWSS
contours in front view, (B, D) TAWSS contours in back view.
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simulation (Figures 4A, B) has higher values in the bifurcation and
LCx artery in this case.

Figure 5 depicts the comparison of TAWSS distribution between
CFD and DL models along three lines on the wall within a
bifurcation, representing specific paths of interest on the walls of
LM, LAD, and LCx arteries. Each line consists of ten points, evenly
spaced in the same direction as indicated by the arrow, to report the
TAWSS value. This analysis evaluates the DL model’s ability to
approximate the TAWSS distribution compared to the CFD
approach from simulation. Generally, trends agree quite well in
the models, however, in some points the absolute error is higher
compared to other regions. For instance, in Figure 5C, it can be
observed that in TAWSS graph along the LAD, in one point the
difference reaches 20%.

Notably, the TAWSS value line graph for the LM artery in
Figure 5B reduces from more than 15 [Pa] to 5 [Pa] at the outlet,
with the DL model accurately predicting this trend. Moreover,
TAWSS values along the LAD artery in Figure 5C remain
relatively constant, fluctuating between 10 [Pa] and less than
12 [Pa] from the CFD and DL models, respectively. Additionally,
there was a slight increase in TAWSS values along the line on the
wall of LCx artery in the CFD model shown in Figure 5D, from 8 to
10 [Pa], with a less than 0.5 [Pa] difference in the DL model.

Figure 6 presents the results of TAWSS distribution obtained
from CFD simulations (depicted in Figures 6A–C and the DL
predictions (illustrated in Figures 6D–F, showing three different
models with varying morphological parameters and associated
errors. In all models, the left and right branches correspond to
the LCx and LAD arteries, respectively. In branch region, the DL
model tends to underestimate TAWSS values in LCx in Figure 6F).

Nevertheless, it is evident that it is capable of capturing the overall
pattern and values of TAWSS distribution.

Figure 7 presents a line graph comparing the TAWSS
distribution in a region of interest on the LCx for varying α
angles in two models. The TAWSS values are averaged across the
region’s points, and the comparison is made between CFD and DL
model outputs. The results show that the DL model accurately
captures the overall increasing trend of TAWSS as the angle widens.
Beyond 110°, TAWSS values plateau, although the DL model
introduces minor variations. At smaller angles (below 70°), the
differences between the models are minimal, remaining under
1.6 Pa, with the DL model closely matching the rising trend.
However, at 75 and 105°, the model shows larger deviations, with
discrepancies of 1.5 Pa and 1.1 Pa, respectively. While the DL model
generally performs well in predicting TAWSS, fluctuating patterns
in DL model suggest that further refinement is needed to improve
its accuracy.

4 Discussion

Su et al. (2020) achieved real-time 2D WSS prediction by
creating numerous idealized blood vessel models derived from a
limited clinical dataset and utilizing a CNN. It is shown in this study
that CNN works better than MLP and MLR. However, their study
does not include more complex geometries like bifurcations.
Moreover, in their input they utilized 2D information of
geometry which is much more straightforward than using a point
cloud as an input. The Point Net structure, on the other hand,
provides a significant advantage for geometries before and after

FIGURE 5
TAWSS distribution comparison between CFD and proposed DLmodels along three paths in a bifurcation, (A) schematic of selected paths along the
vessels in the bifurcation geometry, (B–D) comparison between TAWSS values in DL and CFD results along the selected paths.
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treatment. Li et al. (2021a) andWang et al. (2023b) applied the same
structure for idealized geometry with cerebral aneurysm and
patient-specific carotid artery geometries with stenosis,
respectively. Despite its benefit that is robust to the number of
input models, Point Net faces a prominent challenge in terms of

variation in geometry features. As in the previous investigation, the
Point Net model was trained separately for carotid arteries with and
without stenosis (Wang S. et al., 2023).

However, in the proposed model not only the model is trained to
predict data varying in the most crucial parameters like diameters

FIGURE 6
TAWSS distribution. Comparison between TAWSS values from CFD results (A–C) and proposed DL model results (D–F) in three cases with varying
morphological parameters.

FIGURE 7
TAWSS prediction in the region of interest varying in the α angle between LCx and LAD arteries.
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and angels of bifurcation, but also it utilizes a point cloud as the
input. The error function results for TAWSS at each mesh point,
evaluated across the testing set models using the MRE Equation 5
and NAME Equation 6, were 11.39 ± 5.5 and 2.5 ± 0.56, respectively.
It is important to note that the model was not previously trained on
the testing set, which comprised 360 bifurcation models.

Due to the high dimensions of input data, CNN is a great tool
for encoding the point cloud since it reduces trainable parameters
rather than using MLP. In CNNs, each neuron in a layer is linked
to a small region of the previous layer, known as the receptive field.
This sparse connectivity minimizes redundancy, allowing the
network to focus on local patterns. In the case study of
Gharleghi et al. (Samarasinghe, 2020), they used CNN structure
to predict the TAWSS in bifurcations, however, they used
unfolding techniques to make 3D point clouds to 2D data. In
case of bifurcation there is a complex relation between points in the
center of geometry. Unfolding point clouds leads not to consider
the relation between points where CNNs solely rely on local data.
As a result, this structure cannot predict wide ranges of
characteristics.

The proposed DL model for predicting TAWSS in coronary
artery bifurcations offers substantial advantages for medical
applications, particularly in real-time diagnostics and treatment
planning. Traditional CFD simulations, though accurate, are
computationally intensive and impractical for fast-response
scenarios in clinical settings. Our DL-based approach, which
predicts TAWSS with a normalized mean absolute error of 2.53%
in under one second, overcomes this challenge by drastically
enhancing computational efficiency without compromising
accuracy. This advancement facilitates rapid, patient-specific
assessments of hemodynamic factors linked to atherosclerosis
and stenosis, enabling timely decision-making for both surgical
and non-invasive interventions. Additionally, the model’s
versatility across various coronary geometries further increases its
clinical applicability, presenting a promising tool for personalized
cardiovascular care.

5 Limitations and future remarks

A limitation we faced was the lack of patient-specific
bifurcation models. To address this, we generated artificial
bifurcation datasets for DL model, incorporating morphological
parameters as substitutes for real-world data. Consequently, the
optimal network parameters derived from the training samples
deviated from actual clinical scenarios. Furthermore, during the
CFD simulation process, we applied generic boundary conditions
instead of tailored, patient-specific ones. Nevertheless, this
approach is consistent with previous simulation studies (Davies
et al., 2006; Jahromi et al., 2019). Another limitation was the use of
a fixed number of point cloud as a input of the model, which could
vary depending on the complexity of DL networks. Additionally,
since our DL model’s input consisted of a uniform and fixed
number of point cloud points across the geometries, some
transitions in TAWSS values may have been overlooked in
certain regions. Despite these constraints, we present a DL
method that takes into account various restrictions, including
dynamic flow boundary conditions. The DL model achieved an

MRE value of 11.39 on the test dataset, successfully capturing the
overall trend. However, a point-by-point analysis along the three
vessels in Figure 5 reveals that the absolute relative error at one
point reaches 20%. This result shows a limitation of the DL model,
which could be addressed in future studies. Other parameters, such
as velocity and pressure, are vector quantities, requiring
predictions in three directions at each point. Additionally,
velocity and pressure are defined for the fluid domain, making
their complexity different from TAWSS, which is only defined on
the wall. These aspects can be explored in future studies.

As a proof of concept, this study demonstrates the feasibility of
using a DL-based approach for fast and accurate TAWSS prediction.
The model achieved a NAME of only 2.5% and generate predictions
in less than one second, underscoring its potential for rapid clinical
applications. The efficiency gains, along with the strong correlation
to CFD results, represent valuable contributions to the field.

6 Conclusion

In this study, we introduced a simulation-based framework
for the first time to achieve Unet-based prediction of TAWSS in
coronary arteries bifurcation with varied diameters and angels.
Through the generation of high-quality point cloud datasets and
the utilization of U-net, we demonstrated that the DL-based
approach yields highly accurate predictions closely aligning
with CFD simulations. Importantly, this achievement is
accompanied by a notable reduction in computational costs.
This emphasizes the potential and viability of the DL-based
strategy for rapid and precise forecasting of TAWSS in coronary
arteries bifurcation.
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