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Introduction: Ovarian diseases, including Polycystic Ovary Syndrome (PCO)
and Dominant Follicle irregularities, present significant diagnostic challenges in
clinical practice. Traditional diagnostic methods, reliant on subjective ultrasound
interpretation, often lead to variability in accuracy. Recent advancements in
artificial intelligence (AI) and transfer learning offer promising opportunities to
improve diagnostic consistency and accuracy in ovarian disease detection.

Methods: We introduced a new, publicly available dataset of ultrasound
images representing three ovarian conditions: Normal, PCO, and Dominant
Follicle. Using transfer learning, we applied four CNN models—AlexNet,
DenseNet121, ResNet18, and ResNet34—to evaluate their performance in
multiclass classification of these conditions. The models were assessed using
macro and micro metrics, including accuracy, F1 score, precision, and recall, to
determine their effectiveness in classifying ovarian conditions.

Results: The results showed that ResNet18 demonstrated the highest
performance across all metrics, particularly excelling in the classification of
Normal and PCOS conditions. ResNet18 achieved the best performance,
with an accuracy of 76.2% and a macro F1-score of 78.2%, demonstrating
its effectiveness in distinguishing ovarian conditions. AlexNet also delivered
strong results, achieving near-perfect precision in PCOS classification. However,
DenseNet121 showed less competitive performance in classifying Dominant
Follicle, although it still benefited from transfer learning. The overall results
suggest that transfer learning enhances the classification accuracy of CNN
models in ovarian disease diagnosis.

Discussion: The application of transfer learning in this study significantly
improved the performance of CNN models, especially for Normal and PCOS
classifications. The introduction of a publicly available dataset serves as an
important contribution to the field, facilitating further research in AI-driven
diagnostics. These findings highlight the potential of AI to revolutionize ovarian
disease diagnosis by providingmore reliable and accurate results, reinforcing the
importance of AI in early detection and diagnosis.

Conclusion: This study demonstrates the significant potential of CNN models,
enhanced by transfer learning, in improving the diagnostic accuracy of ovarian
conditions. The publicly available dataset introduced here will serve as a valuable
resource for future research, advancing AI-based medical diagnosis. Further
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work on refining model architectures and applying these methods in clinical
practice is necessary to ensure their reliability and broader applicability.

KEYWORDS

ovarian disease diagnosis, transfer learning, CNN, ultrasound imaging, AI-driven
diagnostics, multiclass classification

1 Introduction

The accurate diagnosis of ovarian conditions is critical for
timely and effective medical interventions, particularly when
distinguishing between normal ovarian states and pathologies
such as dominant follicles and polycystic ovary syndrome (PCO).
Ovarian health plays a central role in female reproductive
systems, and disorders such as PCOS can lead to significant
complications, including infertility, metabolic disorders, and an
increased risk of endometrial cancer. The differentiation between
normal ovarian conditions and these pathologies is essential, yet
challenging due to the variability in ovarian morphology, especially
in ultrasound imaging.

Ultrasonography is the most commonly used imaging modality
for evaluating ovarian health due to its non-invasive nature,
accessibility, and cost-effectiveness. However, manual interpretation
of these images can be time-consuming and subject to human error,
particularly in distinguishing between normal and pathological
ovaries. Subtle differences between conditions like Dominant
Follicle and PCOS require a high level of expertise and consistency,
which is often difficult to achieve in routine clinical practice. As
a result, there is an increasing interest in developing automated
methods for ovarian classification.

Recent advancements in deep learning have shown immense
potential in medical image analysis. Convolutional neural networks
(CNNs), in particular, have demonstrated their ability to outperform
traditional methods in a variety of classification tasks. Deep learning
models can automatically extract relevant features from imaging
data, providing more accurate and consistent classifications. The
application of such models in ovarian classification tasks has
the potential to significantly improve diagnostic accuracy while
reducing the burden on radiologists.

In this study, we aim to leverage CNN methods to classify
ovarian conditions into three distinct categories: Normal, Dominant
Follicle, and PCO. These categories represent important clinical
states that require different management approaches. Normal
ovaries reflect healthy reproductive function, whereas dominant
follicles are associated with ovulatory cycles. On the other hand,
PCOS is characterized by the presence of multiple small cysts and is
a key feature of polycystic ovary syndrome, a condition that affects
a significant percentage of women of reproductive age.

Given the complexity of distinguishing between these classes,
we have employed a range of CNN models, including AlexNet,
DenseNet121, ResNet18, andResNet34, to perform the classification
task. Each of these models offers unique strengths in feature
extraction and learning capacity, making them suitable for different
aspects of this problem. Our dataset consists of ultrasound images
with labeled classes, and we have trained these models to identify
the subtle features that distinguish between Normal, Dominant
Follicle, and PCO.

This paper presents the results of our CNN-based approach,
comparing the performance of different models and evaluating their
effectiveness in classifying ovarian conditions. By doing so, we hope
to provide a valuable tool that can assist clinicians in diagnosing
ovarian health more accurately and efficiently, ultimately improving
patient outcomes.

2 Related works

Several studies have explored the use of deep learning (DL)
models to improve ovarian condition diagnosis, showing promising
advancements in both accuracy and applicability (Wang et al.,
2023). developed a deep learning model based on U-net++
architecture to differentiate between borderline ovarian tumors
(BOT) and epithelial ovarian cancer (EOC) using MR images. The
model achieved a higher accuracy (83.7%) than radiologists in
distinguishing between the two conditions, proving the potential of
DL methods to outperform traditional medical assessments.

(Fan et al., 2023) focused on diagnosing ovarian cysts
through ultrasound imaging, a prevalent method due to its non-
invasiveness. The authors introduced Ocys-Net, a lightweight
network incorporating advanced feature extraction techniques,
achieving a high classification accuracy of 95.93%. The study
demonstrates the effectiveness of DL in reducing the workload of
physicians by enabling rapid and accurate ovarian cyst classification.

In a comprehensive effort (Cho et al., 2024), developed a
deep learning model to classify benign and malignant ovarian
cysts by integrating ultrasound images with clinical data such as
patient age and tumor markers (CA-125 levels). By using ResNet50
and DenseNet121 architectures, the model significantly improved
diagnostic accuracy, achieving AUCs of up to 0.96 when clinical
and imaging data were combined. The study highlights the value of
combining multimodal data for improved ovarian cancer detection.

A systematic review analyzing 96 DL-driven studies on ovarian
cancer diagnostics revealed several important trends (Hira et al.,
2023). Most studies (71%) focused on detection and diagnosis,
with limited emphasis on prediction or prevention. The review
also found a lack of model validation using diverse datasets and
minimal consideration of AI assurance (AIA). The results highlight
the need for more robust and generalizable DL models in ovarian
cancer research.

In another study, a convolutional autoencoder (CNN-
CAE) was employed to classify ovarian tumors using 1,613
ultrasound images (Jung et al., 2022). The CNN-CAE model
effectively removed extraneous elements from images and achieved
impressive results, including 97.2% accuracy in classifying ovarian
tumors and distinguishing malignant conditions with an AUC of
0.94. The study demonstrates the robustness of CNN models in
ovarian tumor classification.
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A retrospective, multicenter study collected pelvic ultrasound
images from ten hospitals to develop a deep convolutional neural
network (DCNN) for ovarian cancer diagnosis (Gao et al., 2022).
The model showed improved diagnostic accuracy compared to
radiologists, with an AUC of 0.911 in internal datasets and
even higher results when the DCNN-assisted diagnosis was
employed. This demonstrates the capability of DL models to
augment medical expertise, improving accuracy in diagnosing
ovarian cancer.

In a similar study (Jan et al., 2023), integrated CT image-
based radiomics and DL features to classify benign and malignant
ovarian tumors. The best-performing ensemble model combined
these features and outperformed junior radiologists, increasing
diagnostic accuracy from 66% to 82%. This approach highlights the
potential for DL-assisted radiomics to enhance the performance of
less-experienced practitioners.

Ziyambe et al. (2023) leveraged CNN models trained on
histopathological images to tackle the challenge of diagnosing
ovarian cancer, achieving a high accuracy of 94%. The model
significantly reduced inter-observer variability and extended
analysis times associated with traditional diagnostics, offering
a faster, more reliable alternative for predicting ovarian cancer
progression.

Expanding the application of DL, a pioneering approach
employed transfer learning techniques to detect ovarian cancer and
related conditions using histopathological images (Kumar et al.,
2024). The study utilized various CNN architectures,
including AlexNet2 and EfficientNet, achieving an
impressive accuracy of 99.74%, showcasing the potential
of advanced segmentation techniques to refine diagnostic
precision.

A fuzzy rule-based CNN model was introduced in another
study to automate the detection of ovarian cysts using
ultrasound images (Ravishankar et al., 2023). This system (OCD-
FCNN) achieved an accuracy of 98.37% on benchmark datasets,
providing an effective tool for early ovarian cyst detection, essential
for timely intervention.

In another study (Chen et al., 2022), developed deep learning
algorithms for the automated classification of benign and malignant
ovarian tumors using multimodal ultrasound (US) images. Two
fusion strategies, feature fusion (DLfeature) and decision fusion
(DLdecision), were employed to compare their performance with
the Ovarian-Adnexal Reporting and Data System (O-RADS) and
expert assessments. DLfeature achieved an AUC of 0.93, which was
comparable to the AUC of O-RADS and expert assessment. Both
DL models, alongside O-RADS and expert evaluations, reached
sensitivities of over 90% for malignancy detection. This study
underscores the potential of DL algorithms to match or surpass
traditional diagnostic methods in ovarian tumor classification using
US imaging.

In another study, deep learning algorithms were developed
using multimodal ultrasound (US) images to classify benign
and malignant ovarian tumors (Wang et al., 2024). This
multimodal approach outperformed single- and dual-modality
models, achieving an accuracy of 93.80%, highlighting
the value of combining US images with clinical data in
ovarian tumor classification.

TABLE 1 Distribution of ultrasound images in the dataset across three
classes: Normal, Dominant Follicle, and Polycystic Ovary
Syndrome (PCO).

Class Number of images

Normal 41

Dominant Follicle 144

PCO 116

Total 301

3 Methods

3.1 Dataset

The dataset used in this study was collected from Fatemieh
Hospital of Hamedan University of Medical Science during the
years 2023 and 2024. It consists of ultrasound images, each with
a resolution of 1,024 × 1,024 pixels, capturing various ovarian
conditions. The dataset is organized into three distinct classes:
Normal, Dominant Follicle, and Polycystic Ovary Syndrome (PCO).
These classes represent crucial clinical states requiring different
management approaches, with Normal indicating healthy ovarian
function, Dominant Follicle associated with ovulatory cycles, and
PCOS characterized by the presence of multiple small cysts, a key
feature of polycystic ovary syndrome.

To provide further context, the dataset consists of 301
transvaginal ultrasound images, each corresponding to a unique
patient, resulting in a total of 301 women aged between 20 and
45 years. All ultrasound scans were performed using a Philips
Affiniti 50 system (Philips, Netherlands). To ensure consistency and
clinical accuracy, all imageswere captured by a single board-certified
obstetrician-gynecologist with fellowship training in infertility.

The dataset includes a total of 301 labeled ultrasound images,
as shown in Table 1, with 41 images classified as Normal, 144 as
Dominant Follicle, and 116 as PCO. The labeling was performed
by experienced radiologists, ensuring high-quality ground truth for
model training and evaluation.

Additionally, Figure 1 below presents a sample of ultrasound
images from each of the three classes, demonstrating the visual
differences between the conditions and the challenges involved in
classification.

3.2 Data preprocessing

Before training the models, all ultrasound images underwent
a standardized preprocessing pipeline to ensure compatibility with
the input requirements of the pre-trained CNN architectures.
Each grayscale image was first resized to a resolution of 256
× 256 pixels to match the expected input dimensions of the
networks. Since the pre-trained models on ImageNet expect three-
channel (RGB) input, the single-channel ultrasound images were
duplicated across the three channels.
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FIGURE 1
Sample ultrasound images from the dataset, representing the three classes: (a) Normal, (b) Dominant Follicle, and (c) Polycystic Ovary Syndrome
(PCO). These examples highlight the visual differences between the classes used for muticlass classification.

Normalization was applied using the mean and standard
deviation values of the ImageNet dataset to align the input
distributions with those of the original pretraining environment.
This step helps stabilize training and improves convergence.
Specifically, pixel values were normalized using the following
parameters: mean = [0.485, 0.456, 0.406] and standard deviation =
[0.229, 0.224, 0.225].

To improve model generalization and mitigate overfitting,
we applied data augmentation techniques during training. These
included random horizontal flipping and random brightness
adjustments. No additional filtering or denoising techniques
were applied, as the raw ultrasound images were deemed
sufficiently clean by the expert radiologists who curated
the dataset.

3.3 Convolutional neural networks models

In this study, we aimed to address a multi-class classification
problem,where the goalwas to categorize ovarian ultrasound images
into one of three distinct classes: Normal, Dominant Follicle, or
Polycystic Ovary Syndrome (PCO). To achieve this, we utilized four
well-knownCNN architectures—AlexNet, DenseNet121, ResNet18,
andResNet34—each combinedwith transfer learning.Thesemodels
were selected for their proven effectiveness in image classification
tasks and their adaptability to medical imaging applications with
limited data.

3.3.1 AlexNet
AlexNet was one of the pioneering architectures in deep

learning, winning the ImageNet competition in 2012. It consists
of five convolutional layers, followed by three fully connected
layers, and employs the ReLU activation function to introduce non-
linearity. The model’s success was partly due to its use of Rectified
Linear Units (ReLU) instead of traditional activation functions like

Sigmoid or Tanh, enabling faster training. Additionally, AlexNet
uses max-pooling to reduce the spatial dimensions of feature maps,
making it computationally efficient. Dropout is applied in the fully
connected layers to prevent overfitting, which was a novel approach
at the time.

AlexNet is known for its ability to handle large-scale datasets
and is well-suited for image classification tasks. In your case,
AlexNet can be beneficial due to its relatively simple structure
and ability to capture spatial hierarchies within ovarian images.
The model’s convolutional layers can extract essential features
from the ovarian images, such as textures or shapes indicative
of abnormalities, and the fully connected layers can perform
the classification based on these features. Despite being an older
model, AlexNet remains a solid choice for baseline performance
(Krizhevsky et al., 2012).

3.3.2 DenseNet 121
DenseNet 121 belongs to the family of densely connected

convolutional networks (DenseNets). One of the key innovations
of DenseNet is its dense connectivity pattern, where each layer
receives input from all preceding layers.This structure helps alleviate
the vanishing gradient problem and promotes feature reuse, as the
network can access features from previous layers without the need
for duplication. DenseNet 121, specifically, is a lighter variant of
the original DenseNet, making it computationally efficient while
maintaining high accuracy.

DenseNet 121 is well-suited for medical image analysis tasks
because its dense connections allow for better feature propagation,
which is critical for identifying subtle variations in ovarian tissue
morphology. In ovarian tumor classification, for instance, DenseNet
121s ability to access a richer variety of features could help themodel
discern between benign and malignant tumors more effectively.
Additionally, its use of fewer parameters makes it less prone to
overfitting, which is essential when dealing with medical datasets of
limited size (Huang et al., 2018).
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TABLE 2 Macro performance metrics for all models.

Metric AlexNet DenseNet121 ResNet18 ResNet34

Accuracy 0.747 0.659 0.76 0.688

F1 Score 0.758 0.681 0.782 0.719

Precision 0.817 0.724 0.822 0.776

Recall 0.747 0.659 0.76 0.688

3.3.3 ResNet18
ResNet18 is one of the simpler architectures within the ResNet

(Residual Networks) family, which introduced residual connections
to mitigate the vanishing gradient problem in very deep networks.
The core idea behind ResNet is the use of identity shortcuts, allowing
the model to bypass certain layers, thus enabling it to train deeper
networks without performance degradation. ResNet18 consists of 18
layers, primarily built from convolutional blocks, and utilizes these
residual connections to ease the training of deeper networks.

In the context of ovarian classification, ResNet18’s relatively
shallow structure compared to deeper ResNets (like ResNet50)
is a suitable balance between complexity and performance.
Its residual connections help the network learn meaningful
features without losing vital information during the training
process. ResNet18 can be particularly useful in detecting specific
patterns, such as distinguishing normal ovarian tissue from
cystic or polycystic regions, due to its efficient feature learning
capabilities (He et al., 2015).

3.3.4 ResNet34
ResNet34 is a deeper version of the ResNet18 architecture,

consisting of 34 layers. It shares the same fundamental design
principles, using residual connections to allow information to flow
more freely across layers and prevent issues such as vanishing
gradients. With its additional layers, ResNet34 can learn more
complex features compared to ResNet18, making it better suited for
tasks that require a more nuanced understanding of the image data.

For ovarian classification, the deeper structure of ResNet34 may
prove advantageous when the task involves differentiating between
subtle and complex patterns in ovarian tumors. By being able to
process more layers, ResNet34 has the potential to capture deeper
hierarchical representations of the input data, which can result
in higher accuracy for challenging cases, such as distinguishing
between closely related ovarian conditions (He et al., 2015).

Table 2 provides a comparative overview of the CNN models
used in this study, highlighting key architectural differences, training
efficiency, and their potential to handle small datasets in the task of
ovarian classification.

3.3.5 Transfer learning
In this study, we utilized transfer learning to increase the

strengths of pre-trained models, enabling efficient training on our
limited ovarian ultrasound dataset. Transfer learning allows models
pre-trained on large-scale datasets like ImageNet to retain useful
low-level features, such as edge detection and textures, which are
then fine-tuned for the specific task of ovarian classification. By

initializing our models—AlexNet, DenseNet121, ResNet18, and
ResNet34—we were able to facilitate the learning process and
improve the models’ performance on our three-class problem:
Normal, Dominant Follicle, and PCO. Fine-tuning the higher layers
allowed the models to adapt to domain-specific features while
maintaining general visual patterns learned from the large, diverse
dataset. This approach not only reduces the risk of overfitting on
small datasets but also increases the models’ ability to capture subtle
differences between the ovarian conditions.

To implement this approach, we first removed the original
fully connected classification layers from each pre-trained model
and replaced them with a new structure consisting of a global
average pooling layer, two dense layers (with 128 and 64 neurons,
respectively), and a final Softmax output layer with three units
corresponding to our target classes. Initially, the convolutional
base was frozen to preserve generic image features learned from
ImageNet. After training the new classifier layers for several epochs,
we unfroze the final convolutional block of each architecture for
fine-tuning, allowing themodels to better adapt to ultrasound image
characteristics.

All ultrasound images were resized to 256 × 256 pixels and
normalized using ImageNet statistics.We applied data augmentation
during training, including random horizontal flipping and
brightness adjustments, to enhance generalization. The dataset was
randomly split into 70% training, 15% validation, and 15% test sets.

Each model was trained for up to 25 epochs with early stopping
(patience = 5), using a batch size of 16.We used the Adam optimizer
with a learning rate of 0.0001 and employed cross-entropy loss.
Softmax activationwas applied to the final output layer formulticlass
prediction.

Given the class imbalance in the dataset, class weights
were incorporated during training to ensure fair treatment of
underrepresented classes. All models were implemented using
PyTorch 1.13, and training was conducted on a system equipped
with an NVIDIA RTX 3060 GPU.

4 Results

The models’ performance in distinguishing between the three
ovarian conditions—Normal, Dominant Follicle, and Polycystic
Ovary Syndrome (PCO)—was evaluated using several classification
metrics, including accuracy, precision, recall, F1 score, and AUC-
ROC. These metrics provide a comprehensive overview of each
model’s capabilities, focusing on both overall performance and the
balance between sensitivity and specificity.
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4.1 Classification metrics

The performance of the models in distinguishing between
images are as follows.

4.1.1 Accuracy
This metric is defined as the ratio of correctly classified images

to the total number of images and gauges the overall correctness of
predictions and is defined as the ratio of correctly classified images
to the total number of images. This metric is expressed as:

Accuracy = TP+TN
TP+TN+ FP+ FN

Where TP is true positives, TN is true negatives, FP is false
positive, and FN is false negatives.

4.1.2 Precision
Precision calculates the accuracy of positive predictions and is

defined as the ratio of true positives to the sum of true positives and
false positives:

Precision = TP
TP+ FP

4.1.3 Recall
Recall, also known as sensitivity or true positive rate, calculates

the proportion of actual positives that are correctly identified:

Recall = TP
TP+ FN

4.1.4 F1 score
The F1 score is the harmonic mean of precision and recall,

providing a balance between the two metrics:

F1 = 2× Precision×Recall
Precision+Recall

4.2 Classification results

This section evaluates the performance of the four
models—AlexNet, DenseNet121, ResNet18, and ResNet34—across
three ovarian conditions: Normal, PCO, and Dominant Follicle.
The models were assessed using key metrics such as accuracy,
F1 score, precision, and recall. The results are presented in terms
of both macro-averaged and micro-averaged metrics to offer a
comprehensive understanding of each model’s performance across
all classes.

4.2.1 Macro analysis of model performance
Table 2 presents the macro-averaged performance metrics,

where each class is given equal importance.These metrics reflect the
models’ abilities to balance the classification performance across all
three ovarian conditions.

ResNet18 achieved the highest performance, with an accuracy
of 0.760 and an F1 score of 0.782, making it the most balanced
model. AlexNet also performed well, with an accuracy of 0.747 and

an F1 score of 0.758. In contrast, DenseNet121 struggled the most,
showing the lowest accuracy (0.659) and F1 score (0.681).

ResNet34 provided moderate performance, with an accuracy of
0.688 and an F1 score of 0.719, suggesting it can handle complex data
but does not outperform ResNet18.

4.2.2 Micro analysis of model performance
Table 3 provides the micro-averaged metrics, which aggregate

the results over all individual instances, without weighting by class.
These metrics highlight each model’s overall ability to classify
correctly across the entire dataset.

As seen in the macro analysis, ResNet18 maintained the best
performance, with an accuracy of 0.762 and an F1 score of 0.784.
AlexNet followed closely with an accuracy of 0.749 and an F1 score
of 0.760. DenseNet121 again underperformed, showing an accuracy
of 0.662 and an F1 score of 0.684.

ResNet34 showed intermediate results, with an accuracy of 0.690
and an F1 score of 0.721.

4.2.3 Class-specific performance
This section presents the class-specific performance of the

four models—AlexNet, DenseNet121, ResNet18, and ResNet34—in
classifying the three ovarian conditions: Normal, PCO, and
Dominant Follicle. Tables 3–5 provide the accuracy, F1 score,
precision, and recall for each model and class.

Table 4 shows the performance of each model when classifying
Normal ovaries. ResNet18 demonstrated the best performance for
this class, achieving the highest F1 score of 0.783 and an accuracy
of 0.780. AlexNet followed closely with an F1 score of 0.756 and
similar accuracy. ResNet34 showed slightly lower performance, with
an F1 score of 0.769 and accuracy of 0.736. DenseNet121 struggled
the most, with the lowest accuracy of 0.703 and an F1 score of 0.743.

Table 5 presents the performance of the models in classifying
PCO. All models performed relatively well for this class. AlexNet
and ResNet18 both achieved an F1 score of 0.833 and an
accuracy of 0.956, reflecting their ability to precisely identify this
condition. ResNet34 also performed well, with similar metrics.
DenseNet121 lagged slightly behind, with an F1 score of 0.800 and
an accuracy of 0.945.

Table 6 summarizes the performance for Dominant Follicle,
which proved to be the most difficult class for all models. ResNet18
achieved the best results, with an F1 score of 0.684 and an accuracy
of 0.736. AlexNet showed comparable performance with the same
F1 score but a lower precision of 0.565. Both DenseNet121 and
ResNet34 struggled more with this class, achieving lower F1 scores
of 0.500 and 0.556, respectively.

The class-specific analysis highlights the strengths and
weaknesses of each model. ResNet18 consistently delivered the best
overall performance, excelling in the classification of Normal and
Dominant Follicle, while maintaining strong precision and recall
for PCO. AlexNet also performed well across all classes, especially
for PCO, making it a reliable alternative. DenseNet121, however,
struggledmost with the classification of Dominant Follicle, resulting
in lower F1 scores and accuracy. ResNet34 showed moderate
performance across all classes, balancing precision and recall but
falling short compared to ResNet18. These findings emphasize that
deeper models like ResNet18 are better suited for handling the
complexity of ovarian condition classification.
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TABLE 3 Micro performance metrics for all models.

Metric AlexNet DenseNet121 ResNet18 ResNet34

Accuracy 0.749 0.662 0.762 0.69

F1 Score 0.76 0.684 0.784 0.721

Precision 0.82 0.726 0.824 0.778

Recall 0.749 0.662 0.762 0.69

TABLE 4 Performance for normal (class 0).

Model Accuracy F1 score Precision Recall

AlexNet 0.78 0.756 0.886 0.78

DenseNet121 0.703 0.743 0.672 0.83

ResNet18 0.78 0.783 0.8 0.78

ResNet34 0.736 0.769 0.702 0.736

TABLE 5 Performance for PCOS (class 1).

Model Accuracy F1 score Precision Recall

AlexNet 0.956 0.833 1 0.956

DenseNet121 0.945 0.8 0.909 0.714

ResNet18 0.956 0.833 1 0.956

ResNet34 0.956 0.833 1 0.956

TABLE 6 Performance for dominant follicle (class 2).

Model Accuracy F1 score Precision Recall

AlexNet 0.736 0.684 0.565 0.736

DenseNet121 0.714 0.5 0.591 0.433

ResNet18 0.736 0.684 0.565 0.736

ResNet34 0.736 0.556 0.625 0.736

To further enhance interpretability, we selected one
representative test image from each class—Normal, PCO, and
Dominant Follicle—and analyzed the predicted class probabilities
output by eachmodel. Alongside each sample image, we also provide
its corresponding Grad-CAM saliency map based on the best-
performing model (ResNet18), which highlights the image regions
that influenced the model’s decision. Table 7 presents these results,
showing the image, its saliency visualization, and the predicted
probabilities assigned by each model. This multimodal view helps

illustrate how confidently and consistently each model responds to
different ovarian conditions.

5 Discussion

Ovarian diseases, including conditions such as PCOS (Polycystic
Ovary), Dominant Follicle irregularities, and other ovarian
abnormalities, represent a significant challenge in women’s
reproductive health (Ndefo et al., 2013). Early diagnosis is crucial for
timely intervention, yet the detection of these conditions through
medical imaging, such as ultrasound, can be complex and prone to
human error (Serafino et al., 2022). Traditional diagnostic methods
often rely on subjective interpretation of ultrasound images, leading
to variability in diagnostic accuracy (Pinto et al., 2013). The use
of artificial intelligence (AI) and transfer learning in deep learning
models has emerged as a promising approach to improving the
consistency and accuracy of ovarian disease diagnosis.

In this study, we leveraged transfer learning to evaluate
the performance of four CNN models—AlexNet, DenseNet121,
ResNet18, and ResNet34—in classifying three ovarian conditions:
Normal, PCO, and Dominant Follicle. Our results show that
ResNet18, enhanced by transfer learning, consistently outperformed
the other models, achieving the highest overall accuracy and F1
scores in both macro and micro metrics. AlexNet, another model
fine-tuned using transfer learning, also performed well, particularly
in the classification of PCO,where it achieved near-perfect precision.
However, DenseNet121 struggled, particularly with the Dominant
Follicle class, underscoring the challenges of transfer learning in
handling subtle differences in medical images.

The use of transfer learning in medical AI applications
raises important ethical considerations (Waisberg et al.,
2023). While transfer learning enables AI models to
leverage pre-trained knowledge from large-scale datasets, it
also introduces concerns regarding data privacy and bias
(Jeyaraman et al., 2023;Mennella et al., 2024).Medical imaging data,
particularly ultrasound images used in reproductive health, must be
handled in compliance with strict privacy regulations to ensure that
sensitive patient information is protected. Moreover, models trained
on general datasets may not always perform well in specialized
medical contexts, potentially leading to biased outcomes if the
pre-trained model does not adequately represent all conditions.

In clinical practice, AI models using transfer learning should
be integrated as support tools rather than standalone diagnostic
systems. While AI can enhance diagnostic precision, particularly
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in resource-constrained settings, the accountability for diagnoses
must remain with healthcare professionals. Transfer learning allows
models to be adapted to specific clinical tasks, but clinicians must
be aware of the limitations, especially in complex or ambiguous
cases, such as Dominant Follicle classification, where the model’s
performance was less reliable.

Theperformance variability observed in this study highlights the
need for regulatory frameworks to ensure that AI models, including
those based on transfer learning, are robust and reliable before being
deployed in clinical settings. Transfer learning, though powerful,
must be applied carefully in healthcare, ensuring that the models
are sufficiently trained and validated on medical data to avoid
discrepancies in patient care.

Although the use of transfer learning improved the overall
performance of the models, this study underscores the need for
further research in this field. The variability in model performance,
particularly for the Dominant Follicle class, suggests that additional
training on larger, more diverse medical datasets is needed
to enhance the model’s ability to generalize across all ovarian
conditions.

One area that warrants future study is the explainability of
transfer learning models in medical applications. While transfer
learning can accelerate model training and improve performance,
it often operates as a “black box,” offering limited insight into
the decision-making process. Additionally, although we used
standard ImageNet-based normalization in this study to align with
common practice in transfer learning, we recognize that using
dataset-specific normalization—based on the statistical properties
of ultrasound images—could potentially yield more clinically
grounded results. Future work should explore both explainable
AI (XAI) techniques to improve model interpretability and
ultrasound-specific preprocessing strategies to further enhance
model robustness and reliability.

Moreover, model robustness remains a key challenge when
applying transfer learning in clinical environments. While transfer
learning allows models to leverage knowledge from large-scale
datasets, these models may still face issues when applied to different
imaging modalities or varying clinical settings. Further studies
should explore the use of domain adaptation techniques to refine
pre-trained models for specific clinical applications, ensuring they
perform well in diverse healthcare environments.

To support model interpretability, we incorporated Grad-
CAM visualizations using the best-performing architecture
(ResNet18). These visual explanations highlight the specific regions
of ultrasound images that influenced the model’s predictions,
helping clinicians understand the basis of the classification. By
providing visual cues linked to diagnostic decisions, such methods
can improve trust in AI systems and facilitate their integration into
clinical workflows. As shown in Table 7, combining probability
outputs with saliency maps offers a more transparent view of model
behavior across different ovarian conditions.

The integration of AI and transfer learning in ovarian disease
diagnosis holds significant promise for improving diagnostic
accuracy and providing faster, more accessible care. By enabling
models to transfer knowledge from general datasets to specialized
tasks, transfer learning reduces the need for extensive labeled
medical data, making it a valuable tool for advancing healthcare AI.
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However, to realize the full potential of AI-driven diagnosis,
standardized protocols for model development and validation
are needed. Collaboration between data scientists, clinicians, and
regulatory bodies will be essential to ensure that AI models
trained with transfer learning meet rigorous clinical standards.
Additionally, the cost-effectiveness and scalability of these AI
models must be evaluated, particularly for deployment in resource-
limited settings.

6 Conclusion

In this study, we introduced a new dataset of ultrasound
images representing three ovarian conditions—Normal, PCO, and
Dominant Follicle—and made it publicly available for the broader
research community. We utilized transfer learning to evaluate
the performance of four CNN models: AlexNet, DenseNet121,
ResNet18, and ResNet34. Our results demonstrated that ResNet18
consistently outperformed the other models in both macro and
micro metrics, particularly excelling in the classification of Normal
and PCOS conditions. AlexNet also showed strong performance,
especially in PCOS classification, with near-perfect precision.
However, the classification of Dominant Follicle proved challenging
for DenseNet121, highlighting the limitations of transfer learning in
handling subtle variations in medical images.

The introduction of this new, publicly available dataset offers
a valuable resource for further research in ovarian condition
classification. Our findings suggest that combining deep learning
models with transfer learning has significant potential to enhance
diagnostic accuracy in clinical settings. However, the variability
in model performance across different conditions underscores the
need for further refinement, particularly in improving models’
ability to detect more complex conditions like Dominant Follicle.

Future studies should focus on expanding this dataset, exploring
new model architectures, and integrating explainable AI (XAI)
techniques to provide clinicians with greater transparency into the
decision-making process. These advancements will help bridge the
gap between AI models and clinical practice, ensuring that AI-
assisted diagnosis is both reliable and interpretable.

In conclusion, while this study marks an important step toward
improving ovarian condition classification using AI, additional
research is needed to refine these models and enhance their
applicability in real-world healthcare environments. The publicly
available dataset introduced here will contribute to ongoing
developments in this critical area of medical research.
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