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Artificial intelligence optimizes
the standardized diagnosis and
treatment of chronic sinusitis

Yang-Yang Liu, Shao-Peng Jiang and Ying-Bin Wang*

Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China

Background: Standardised management of chronic sinusitis (CRS) is a
challenging but vital area of research. Not only is accurate diagnosis
and individualised treatment plans required, but post-treatment chronic
disease management is also indispensable. With the development of artificial
intelligence (AI), more “AI + medical” application models are emerging. Many
AI-assisted systems have been applied to the diagnosis and treatment of CRS,
providing valuable solutions for clinical practice.

Objective: This study summarises the research progress of various AI-assisted
systems applied to the clinical diagnosis and treatment of CRS, focusing on
their role in imaging and pathological diagnosis and prognostic prediction and
treatment.

Methods:We used PubMed, Web of Science, and other Internet search engines
with “artificial intelligence”、“machine learning” and “chronic sinusitis” as the
keywords to conduct a literature search for studies from the last 7 years. We
included literature eligible for AI application to CRS diagnosis and treatment in
our study, excluded literature outside this scope, and categorized it according
to its clinical application to CRS diagnosis, treatment, and prognosis prediction.
We provide an overview and summary of current advances in AI to optimize
the diagnosis and treatment of CRS, as well as difficulties and challenges in
promoting standardization of clinical diagnosis and treatment in this area.

Results: Through applications in CRS imaging and pathology diagnosis,
personalised medicine and prognosis prediction, AI can significantly reduce
turnaround times, lower diagnostic costs and accurately predict disease
outcomes. However, a number of challenges remain. These include a lack of
AI product standards, standardised data, difficulties in collaboration between
different healthcare providers, and the non-interpretability of AI systems. There
may also be data privacy issues involved. Therefore, more research and
improvements are needed to realise the full potential of AI in the diagnosis and
treatment of CRS.

Conclusion: Our findings inform the clinical diagnosis and treatment of CRS
and the development of AI-assisted clinical diagnosis and treatment systems.
We provide recommendations for AI to drive standardisation of CRS diagnosis
and treatment.
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artificial intelligence, machine learning, deep learning, chronic sinusitis, diagnosis,
treatment
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1 Introduction

Rhinosinusitis is an inflammatory disease that affects the
nasal mucosa and sinus mucosa mainly caused by viral and
bacterial infections, and is mainly manifested by symptoms such
as nasal congestion, runny nose, postnasal drip, loss of smell,
head and face pain or pressure (Bleier and Paz-Lansberg, 2021).
Acute rhinosinusitis (ARS) lasts less than 12 weeks and becomes
chronic rhinosinusitis (CRS) when it lasts longer than 12 weeks
(Fokkens et al., 2012). CRS is a common disease worldwide, with
an incidence rate of about 8% in China, 2.1%–13.8% in the United
States, and 6.9%–27.1% in Europe (Liu et al., 2020; Orlandi et al.,
2021). Nasal symptoms, reduced sleep quality and fatigue caused
by CRS seriously affect the quality of life of patients and impose a
heavy burden on society and the economy (Van Crombruggen et al.,
2011). CRS develops in all age groups and has a complex etiology
that is the result of a combination of factors. Patients with CRS can
get relief from their symptoms with medication, but most patients
with CRS cannot be cured with medication, and surgery is currently
an important treatment for chronic sinusitis (Ghogomu and Kern,
2017). The key to the surgical treatment of chronic sinusitis is
to repair the normal structure and function of the nasal mucosa,
and the implementation of surgery can not only play a therapeutic
role, but also restore the morphology of the sinus mucosa and
reconstruct sinus ventilation and drainage through limited or small-
scale surgery, so that most patients with sinusitis can be treated,
and the clinical application value is high (Chandra et al., 2016). But
surgical treatment still has a high recurrence rate (DeConde et al.,
2017),and the treatment protocols for surgical treatment of chronic
sinusitis have not yet been standardised.

With the development and innovation of artificial intelligence
(AI) in recent years, the “AI + medical” model has gradually
emerged, and AI has been well applied in various medical
aspects such as disease prediction (Shu et al., 2021), disease
diagnosis and treatment (Huang et al., 2023), and new drug
development (Vatansever et al., 2021). Similarly, AI is widely used
in otolaryngology head and neck surgery (Alter et al., 2024). This
review focuses on the current state of research on AI in chronic
rhinosinusitis by presenting its prospects for clinical applications
in the diagnosis, treatment and prognostic assessment of chronic
rhinosinusitis and discussing how to optimise the standardised
diagnosis and treatment of chronic rhinosinusitis through AI.

2 Artificial intelligence technology

AI is a modern approach based on computer science that
develops programmes and algorithms to enable devices to
intelligently and efficiently perform tasks that would normally
require skilled human operation (Manickam et al., 2022) (Figure 1).
Machine learning (ML) is the most widely used AI method.
According to the algorithm structure and learning method, ML can
be further classified into supervised learning (SL), semi-supervised
learning (sSL), unsupervised learning (uSL) and intensive learning
(IL) (Mohammed et al., 2016) (Figure 1B).In SL, algorithms are
trained using input data and machine learning algorithms learn
from the training and can be used to predict possible future
events (Han et al., 2022). USL methods can identify patterns in

each dataset, even if the data is not correctly classified or labelled
(Han et al., 2022). This is widely used for extracting generative
features, identifying meaningful trends and structures, grouping
results, and exploratory purposes. SSL is in between ‘unsupervised’
and ‘supervised’ learning, as it works on both labelled and unlabelled
data (Han et al., 2022). Therefore, its ultimate goal is to provide
better predictions than those produced using only labelled data in
the model. IL is a powerful tool used to train AI models that can
help improve the operational efficiency of automating or optimising
complex systems (Kaelbling et al., 1996). Deep learning (DL) is
part of a broader family of representation learning ML methods
based on artificial neural networks (ANN) (Han et al., 2022).
DL provides a computational architecture by combining multiple
processing layers (e.g., input, hidden, and output layers) to learn
from data. The main advantage of deep learning over traditional
machine learning methods is that it offers better performance in
a number of situations, especially learning from large datasets
(Sarker et al., 2020). Convolutional neural networks (CNN) augment
standard ANNs designed to process data with a grid-like structure
(e.g., images) (Valueva et al., 2020). Although ANNs have a
greater computational burden, they do not require any human
intervention, and they have the advantage of automatically detecting
important features, so CNNs are considered more powerful than
traditional ANNs.

3 Artificial intelligence in chronic
sinusitis

3.1 Artificial intelligence-assisted diagnosis
of chronic sinusitis

3.1.1 Application of artificial intelligence in
imaging diagnosis of chronic sinusitis

Imaging is one of the main means of clinical diagnosis
of CRS, and the Lund-MacKay score and the global osteitis
scoring scale (GOSS), which is commonly used in clinical practice
to assess the bony changes in the sinuses, both require CT
examination (Georgalas et al., 2010). However, there was a clear
inconsistency between the imaging reports and the clinical care
concerns, with significant differences between reports fromdifferent
radiologists. Moreover, current scoring systems can only achieve
semi-quantitative assessment, and detailed preoperative assessment
is time-consuming. Therefore, an automatic quantitative assessment
system that is objective and rapid needs to be developed. With
the development of AI, most scholars based on AI to assist the
diagnosis through the big data of imaging data (e.g., sinus X-ray film,
sinus CT) (Table 1).

Sinuses often overlap with other craniofacial bones on
radiographs, leading to a high rate of false-negative diagnoses
(Hagiwara et al., 2022). To address this issue, in 2019 Kim et al.
(Kim Y. et al., 2019) trained a ResNet model to diagnose maxillary
sinusitis on Vaishnavian position X-rays, and the area under the
curve (AUC) on the time-validated and place-validated sets was
0.93 and 0.88, respectively, which was significantly higher than that
of radiologists. In the same year Kim et al. (Kim HG. et al., 2019)
trained various models such as VGG-16,VGG-19 and ResNet-
101 to classify the Vaishnavite bit radiographs respectively and
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FIGURE 1
Artificial intelligence related technologies. (A) Schematic representation of relation between artificial intelligence, natural language processing,
meachine learning, and deep learning. (B) Various types of machine learning techniques.

TABLE 1 Application of artificial intelligence in the imaging diagnosis of chronic sinusitis.

Researcher Year System Function AI Ref

Kim 2019 ResNet Diagnosis of the maxillary sinusitis on Waters’
view radiographs

DL Kim et al. (2019a)

Kim 2019 VGG-16
VGG-19 ResNet-101

Identification of the maxillary sinus on paranasal
sinus X-ray images

DL Kim et al. (2019b)

Jeon 2021 Detector (Mdet)
Classifier (Mcls)

Diagnosis of frontal sinusitis, ethmoid sinusitis,
and maxillary sinusitis on Waters and Cardwell
views

DL Jeon et al. (2021)

Chowdhury 2019 Inception-V3 Automated classification of OMC inflammation CNN Chowdhury et al. (2019)

Massey 2022 CNN Model Automated CT analysis for quantitative sinus
opacity

DL Massey et al. (2022)

Qi 2021 Leaky ReLU Improves the performance of maxillary sinus
segmentation

CNN Qi et al. (2021)

Choi 2022 U-Net Fully automated segmentation of the maxillary
sinuses for more accurate results

DL Choi et al. (2022)

Morgan 2022 3D U-Net Automatically segment and create a 3D virtual
model of the maxillary sinus from CBCT images

CNN Morgan et al. (2022)

Whangbo 2024 Normal/Dense/Residual/Residual-Dense 3D
U-Net

Multi-class segmentation of sinuses in patients
with sinusitis

CNN Whangbo et al. (2024)

DL, deep learning; CNN, convolutional neural network; OMC, osteomeatal complex; CBCT, cone-beam computed tomographic.
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finally diagnosed them using majority decision algorithm, which
showed a validation set accuracy of 94.12% with an AUC of 0.942.
In 2021, Jeon et al. (Jeon et al., 2021) used a multi-view CNN,
fusing information from Vaishnavian and Koch’s position X-rays
for classification, and their AUCs for the diagnosis of sieve sinusitis
and maxillary sinusitis were 0.78 and 0.88, respectively, which were
higher than that of radiologists.

In 2019 Chowdhury et al. (Chowdhury et al., 2019) explored
the feasibility of using a CNN to automatically identify clinically
relevant information from sinus CT scans, and classified sinonasal
complexes from coronal CT images of the paranasal sinuses of 239
patients with chronic rhinosinusitis, achieving an 85% accuracy rate
in classifying sinonasal complexes as either ‘open’ An accuracy of 85
per cent was achieved in classifying the sinonasal complex as ‘open’
or ‘obstructed’. This is the first neural network model based on a DL
algorithm to identify sinus CTs.It is not clear whether this image
classification is predictive of clinical outcomes, but standardisation
of image reporting and improved accuracy are valuable in their own
right. 2022 Massey et al. (Massey et al., 2022) established that a
CNN-based sinus CT assessment method was able to provide rapid
and automated quantitative assessment of sinus turbidity and that
this AI technique achieved good performance compared to current
standard visual assessment systems. Segmentation of the sinuses is
necessary as they are complex anatomical structures with highly
variable shape and size, and their morphological and volumetric
data can be used for diagnosis, surgical planning and simulation.
However, when lesions such as pus, bone destruction, and Onodi’s
airspace are present in the sinuses, their boundaries cannot be clearly
visualised and segmentation is difficult. Therefore, in 2021 Qi et al.
(Qi et al., 2021) proposed a CNN-based adaptive region localisation
level set method that can be used for segmentation of diseased
maxillary sinus. Compared with the methods of fast level set (FLS)
and conditional random field - fully convolutional network (CRF-
FCN), their Dice similarity coefficients (DSC) on average 0.25 and
0.12, respectively, obtaining significant improvements. In 2022, Choi
et al. (Choi et al., 2022) trained a U-Net model to segment the
maxillary sinus. The segmentation results were refined using post-
processing techniques to isolate and eliminate disconnected false
positives. The DSC value of the trained model was 0.90 ± 0.19
before post-processing and 0.90 ± 0.19 after post-processing. In the
same year Morgan et al. (Morgan et al., 2022) trained two U-Net
models to segment the maxillary sinus. The first model suggested
the use of a crop frame in the original image of the maxillary sinus,
which was used to train the second part of the model to produce
high resolution segmentation results. The final segmentation results
showed a DSC score of 0.98 for the first model and 0.99 for the
second model. Both methods showed adequate performance for
clinical applications. However, the aim of these two studies was
limited to binary segmentation of the maxillary sinus. In 2024
Whangbo et al. (Whangbo et al., 2024) introduced a multi-class
CNN segmentation model by comparing four 3D U-Net variants
(normal, residual, dense and residual-dense). Data were normalised
and trained on 40 patients (20 normal, 20 abnormal) using 5-fold
cross-validation. In the normal test set, the model performance
was in the range of 0.843–0.785 with a mean F1 score of 0.805.
In the abnormal test set, the model performance was in the range
of 0.793–0.740 with a mean F1 score of 0.755. True positivity was
higher for the pterygoid and maxillary sinuses in both groups.

The enhanced segmentation of abnormal sinuses by this algorithm
suggests potential clinical applications.

In medical imaging diagnosis, ResNet supports ultra-deep
networks with high classification accuracy, which is more
suitable for high-precision classification tasks (such as disease
classification), but it needs to set up additional decoders to
perform segmentation tasks (He et al., 2016; Voinea et al., 2024).
U-Net has high segmentation accuracy and is irreplaceable in
segmentation tasks, but it is not suitable for classification tasks
(Siddique et al., 2021). However, traditional CNNs are gradually
replaced by more complex models due to their difficulty in
capturing complex features and poor segmentation of medical
images (Nirthika et al., 2022). In practical applications, multi-
task collaboration is often achieved through model fusion
(e.g., ResNet + U-Net) or improved structures (e.g., 3D U-
Net) to promote the development of precision medicine
(Ge et al., 2022; Alsaleh et al., 2024).

3.1.2 Application of artificial intelligence in the
pathological analysis of chronic sinusitis

CRS is a prevalent chronic inflammatory disease of the
upper respiratory tract that affects individuals of all ages.
The 2012 European Position Paper on Rhinosinusitis and
Nasal Polyposis (EPOS) guidelines divided CRS into two main
phenotypes, CRS with nasal polyps (CRSwNP) and CRS without
nasal polyps (CRSsNP) (Fokkens et al., 2012), but the 2020
New EPOS guidelines divide primary CRS into type 2 and
non-type 2 (Fokkens et al., 2020), namely, eosinophilic CRS
(eCRS) and non-eosinophilic CRS (non-eCRS). The classification
is based on the main inflammatory cell types observed in
histopathological analyses.

Currently, the traditional approach to detecting endotypes relies
heavily on pathological biopsies, which are often considered the
baselinemethod.Manual identification and labelling ofmicrovessels
is labour-intensive and can be error-prone. Therefore, automated
and accurate detection and quantification methods are essential
(Table 2). In 2020 Wu et al. (Wu et al., 2020) used DL algorithms
to build an artificial intelligence evaluation platform (AI CRS
Evaluation Platform [AICEP]), which was used to diagnose nasal
polyp pathology types by whole slide imaging (WSI) with high
sensitivity and AUC values. However, AICEP 1.0 could only
differentiate between eCRSwNP and non-eCRSwNP andwas unable
to obtain the proportion of each inflammatory cell on the WSI.
In 2021, Wu et al. (Wu et al., 2021) established another AI
Chronic Sinusitis Evaluation Platform 2.0 (AICEP 2.0), which
extends the previous AICEP 1.0 b y further analysing the cellular
phenotypes of nasal polyps, and allows the distribution of the
concentration of the four types of inflammatory cells in the
WSI to be predicted by heat maps with different prognoses. In
addition, this method demonstrated for the first time that the
percentage of peripheral blood eosinophils positively correlates
with the percentage of eosinophils in polyp tissue on WSI and
predicts whether a patient is an eCRSwNP. 2022 Liu et al. (Liu et al.,
2022) used a fully convolutional neural network (FCN) model
to detect and quantify microvessels in the human nasal mucosa,
and the quantification of microvessels in type 2 and non-type 2
CRS showed considerable differences, with higher expression in
type 2 CRS.
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TABLE 2 The role of artificial intelligence in the pathological analysis of chronic sinusitis.

Researcher Year System Function AI Ref

Wu 2020 Inception V3 To diagnose eCRSwNP rapidly and accurately via WSI DL Wu et al. (2020)

Wu 2021 EfficientNet B5 Cellular phenotyping diagnosis of nasal polyps by WSI based on the proportions of
inflammatory cells

DL Wu et al. (2021)

Liu 2022 FCN To explore the tissue quantification of microvessels and their potential association with
inflammation in CRS

CNN Liu et al. (2022)

CRS, chronic sinusitis; eCRSwNP, eosinophilic chronic sinusitis with nasal polyps; WSI, whole slide imaging; DL, deep learning; FCN, fully convolutional neural network; CNN, convolutional
neural network.

3.2 Artificial intelligence in the treatment
of chronic sinusitis

The current treatment of CRS mainly includes medication
and surgery, and immunotherapy also has a very good prospect
of application. In the field of clinical practice, it has been
observed that different endotypes exhibit different diagnostic and
therapeutic approaches, with surgical treatment playing a crucial
role. Functional endoscopic sinus surgery (FESS) prioritises the
preservation of mucosal tissue and is considered more suitable
for non-eCRS cases, with eCRS having a recurrence rate of up
to 98.5% (Cardell et al., 2020). However, surgical procedures for
eCRS patients with significant inflammatory load require more
mucosal management to reduce the inflammatory burden, such as
extended endoscopic sinus surgery and Draf III surgery, which has
a wider surgical area than non-eCRS surgery (McHugh et al., 2018;
Bachert et al., 2020). It highlights the need for accurate diagnosis
of CRS endotypes to facilitate the development of personalised and
targeted therapies. However, clinical acquisition of CRS pathological
endotypes usually occurs in the postoperative period and it is
not possible to identify inflammation and determine endotypes
during the surgical and perioperative period. Therefore, accurate
identification of CRS endotypes prior to surgical intervention
can assist clinicians in developing appropriate surgical strategies
to reduce postoperative recurrence rates, which is essential for
individualised treatment of chronic rhinosinusitis (Table 3).

In 2021, Thorwarth et al. (Thorwarth et al., 2021) developed
a logistic regression (LR) and artificial neural network (ANN)
machine learningmodel to predict eCRS by inputting variables such
as peripheral eosinophil counts, urinary leukotriene E4 (uLTE4)
levels, and polyp status, and the AUCs for the logistic regression
model were 0.882 and 0.945. The AUCs for the ANN model were
0.918 and 0.956, respectively. The logistic regression and ANN
models were not statistically different when compared. It is possible
to predict eCRS with high sensitivity and specificity in this patient
population.

In 2024, Xiong (Xiong et al., 2024) and others developed a
prediction model for eCRS based on patient clinical parameters
using algorithms such as logistic regressionwith lasso regularisation,
random forest (RF), gradient-enhanced decision tree (GBDT), and
deep neural network (DNN), which identified the peripheral blood
eosinophil ratio, absolute peripheral blood eosinophil value, and
the sieve bone/maxillary sinus density ratio (E/M) on CT as key
predictors of eCRS.

The predictive models provide a valuable tool for identifying
eCRS without resorting to histological biopsy, thus enhancing
clinical decision-making. However, the variables entered into these
models still require invasivemanoeuvres to obtain blood specimens,
so reliable non-invasive methods to identify endotypes of CRSwNP
are needed, and imaging histology is also of good value in
this regard.

2023 Hua et al. (Hua et al., 2023) who constructed a prediction
model for CRS endophenotypes based on sinus CT images using
U-net and other neural networks, had good accuracy in predicting
image endophenotypes and patient endophenotypes with AUC
values of 0.762 and 0.853, respectively. In 2024 Du et al. (Du et al.,
2024)who first used ResNet-18 to construct a deep learning model
to differentiate and predict the intrinsic type of CRSwNP, which
predicted all patients with CRSwNP with an AUC of 0.962,and
had good predictive performance in patients with eCRSwNP and
non-eCRSwNP, with AUCs of 0.960 and 0.964. In the same year
Zou et al. (Zou et al., 2024) proposed a multi-view DL fusion
classification model for the diagnosis of CRSwNP endotypes
using sinus CT scans. The multi-view perspective model improves
performance by integrating sinus CT axial, coronal and sagittal
image data to effectively utilise the information.Themodel achieved
a maximum accuracy of 96.54% on the test set and an AUC
value of 0.991.

Also due to the complexity and individual variation of the
anatomical region of the paranasal sinuses, there are many
important anatomical structures in the paranasal sinuses and
surrounding tissues, and there is much variation in these structures,
and the identification of clinically important structures in sinus
surgery is essential to reduce surgical complications. In 2020, Huang
et al. (Huang et al., 2020) used a CNN algorithm to differentiate the
location of the anterior sieve artery in sinus computed tomography
with an overall accuracy of 82.7% and an AUC value of 0.86. In
the same year Parmar et al. (Parmar et al., 2020) trained a CNN
algorithm appeared to be successful in identifying pneumatisation
of the middle turbinate with high accuracy. The diagnostic
accuracy was 81% (95% confidence interval: 73.0%–89.0%)
with an AUC of 0.93. These two models provide a good
application idea for clinical AI to identify important anatomical
variants in rhinology to guide sinus surgery to reduce surgical
complications.

The integration of AI with navigation systems has revolutionised
the way surgeons conduct surgery. Traditional navigation relies
on static pre-operative images that may not accurately represent
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TABLE 3 Application of artificial intelligence in predicting endotypes of chronic sinusitis.

Researcher Year Model Input Function AI Ref

Thorwarth 2021 LR,ANN PEC,uLTE4, polyp status Diagnosis of eCRS ML Thorwarth et al. (2021)

Xiong 2024 LR with lasso regression,RF,
GBDT,DNN

peripheral blood eosinophil
ratio, absolute peripheral
blood eosinophil, E/M

Prediction of eCRS ML Xiong et al. (2024)

Hua 2023 U-net,Deeplabv3,
efficientnet-b0, ResNet-50,
Inception-ResNet-
v2,Xception

Preprocessed axial spiral CT
images

Differentiation of eCRS and
non-eCRS on preoperative
CT

DL Hua et al. (2023)

Du 2024 ResNet-18 PNS CT Prediction of CRSwNP
endotypes

DL Du et al. (2024)

Zou 2024 ResNet mini three-view pictures of sinus
CT scans

CRSwNP endotype
identification

DL Zou et al. (2024)

LR, logistic regression; ANN, artificial neural network; PEC, peripheral eosinophil count; uLTE4, urinary leukotriene E4; ML, meachine learning; eCRS, eosinophilic chronic sinusitis; RF,
random forest; GBDT, gradient-boosted decision tree; DNN, deep neural network; DL, deep learning; E/M, the ethmoidal/maxillary sinus density ratio; non-eCRS, non-eosinophilic chronic
sinusitis; PNS, paranasal sinus; CRSwNP, chronic rhinosinusitis with nasal polyps.

intraoperative changes, which can lead to discrepancies between
planned and actual surgical paths. Physicians often need to
manually update conventional navigation systems when a patient’s
positioning or anatomy changes. This can be time-consuming
and may introduce errors. Traditional navigation provides mainly
spatial guidance and lacks real-time dynamic information about key
structures and their relationships. AI-based navigation integrates
advanced machine learning, deep learning algorithms, and real-
time data processing (Neves et al., 2021). The AI algorithms
analyse intraoperative images and sensor data to provide dynamic
guidance throughout the procedure. AI-based navigation has the
advantage of real-time adaptation. AI algorithms continuously
analyse intraoperative images, provide real-time updates and adapt
to changes in the surgical field. This dynamic adaptation improves
accuracy and reduces the risk of error. AI algorithms can alert
physicians to potential complications, such as excessive tissue
manipulation or the proximity of instruments to sensitive areas,
so that corrective action can be taken in a timely manner
(Sekhar et al., 2020).

Type 2 inflammation is associated with comorbidities such
as asthma, leading to increased disease severity and morbidity
compared to non-type 2 inflammation, and therefore patients with
type 2 inflammation requiremore surgical procedures and extensive
medical interventions. To address CRS with uncontrolled type
2 inflammation, new biologics, such as monoclonal antibodies,
are available. However, the lack of tests to assess molecular
biomarkers hinders personalised medicine for patients with CRS.
The prescribing criteria for biologically targeted therapies in
patients with CRSwNP are largely dependent on clinical and
histological/blood test results (Fokkens et al., 2020).2024 Federico
Sireci et al. (Sireci et al., 2024)assessed the concordance between
ChatGPT and the Rhinology Committee’s recommendations for the
use of biologic therapies for the treatment of patients with CRSwNP.
Observations highlighted the potential of ChatGPT in guiding the
optimal choice of biologic therapy, with a percentage of concordance
was 68% and a Kappa coefficient was 0.69 (CI95% [0.50; 0.75]). In

particular, the concordance was 79.6% in the dupliyuzumab group,
respectively.

3.3 Application of artificial intelligence in
determining the prognosis of chronic
sinusitis

Although CRS after endoscopic sinus surgery usually has a
high initial success rate, its postoperative recurrence has always
been a headache for rhinologists and patients (Hopkins et al.,
2009). The success rate of ESS ranges from 76% to 98%,
which is usually associated with ESS Common failure factors
include inappropriate surgical technique, poor surgical area or
visualisation, and inadequate postoperative care (Chang et al.,
2014). According to a large prospective cohort study, approximately
20% of patients are dissatisfied with their surgical response and
require revision during the 5-year follow-up period. In this study,
20.6% of patients with polyps had undergone revision surgery
within the past 5 years, compared with 15.5% of patients with
CRS alone (Hopkins et al., 2009).

In 2021, Wang et al. (Wang et al., 2021)scholarly study
explored the combined effect of non-invasive clinical markers
on the recurrence of CRSwNP, using a ML algorithm to assess
the predictive value of a history of asthma and percentage of
blood eosinophils, and the results showed that For patients
with CRSwNP with asthma, the critical value of percentage of
blood eosinophils was 3.7%. However, for CRSwNP patients
without asthma, the critical value of blood eosinophil percentage
was high at 6.9%. It was confirmed that the combination of
history of asthma and blood eosinophil percentage predicted
CRSwNP recurrence, whereas history of asthma lowered the
threshold of blood eosinophil percentage to predict CRSwNP
recurrence. In 2022 Yu et al. (Yu and Kim, 2022) constructed
3 ML prediction models, decision tree (DT), random forest
(RF) and support vector machine (SVM), and the validation

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1522090
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Liu et al. 10.3389/fphys.2025.1522090

analysis showed that the RF algorithm had the highest F1 scores
and AUC. The model demonstrated that increased neutrophilic
inflammation in patients with refractory CRSwNP, and an increase
in neutrophils in the subepithelial region was associated with
the patients with CRSwNP with poor surgical outcomes. 2022
Nuutinen et al. (Nuutinen et al., 2022) identified individual-level
risk factors associated with revision of the ESS in patients with
CRS by building a predictive model using machine learning
algorithms. Type 2 hyperresponsive disorders (CRSwNP, asthma
and non-steroidal anti-inflammatory drugs (NSAIDs) aggravated
by respiratory disease NERDs), a high frequency of clinical visits,
short intervals between baseline clinic visits and ESS, and immune
deficiency or suspected immune deficiency increased the likelihood
of individual-level revision of the ESS. and immunodeficiency or
suspected immunodeficiency increase the likelihood of ESS revision
at the individual level.

4 Deficiencies and recommendations
for artificial intelligence in current
research

Previous studies have shown that CRS is a chronic disease
with a high degree of individual variation. For patients, the
severity and staging of the disease vary, as do the corresponding
treatment options and prognosis. For physicians, imbalances in
healthcare resources and differences in understanding of disease
may also affect the choice of treatment options, leading to variations
in patient outcomes. Standardised treatment protocols for CRS
are usually based on clinical practice guidelines and clinical
best practice to provide a uniform and standardised approach
to the treatment of patients with CRS. Therefore, optimising
standardised CRS care is a very challenging and significant area
of research.

In recent years, with the development of AI, its research in
the diagnosis, treatment and prognosis of CRS has been increasing
with good results. AI is able to analyse and process massive
amounts of data and train algorithmic models with this processed
information to accurately identify the information detected and
arrive at a clinically appropriate diagnosis. This can, to a certain
extent, solve the problem of different diagnostic conclusions due
to differences in the level of different diagnostic doctors, and can
greatly improve the efficiency of diagnostic doctors. At the same
time, AI can assist rhinologists in making clinical decisions and
developing personalised treatment plans. In a sense, AI extends
the human organ, deepens human knowledge and understanding
of chronic sinusitis, and provides new ideas for future treatment
modalities of CRS.

Although AI has shown great potential in healthcare, to use it
to optimize the standardization of CRS diagnosis and treatment,
it is important to validate the safety and efficacy of AI models
in the clinic from a real-world testing and regulatory approval
perspective. Most current studies of AI applied to CRS are single-
center retrospective studies. The data used in these studies lacked
standardization and were less reproducible. Moreover, there are
differences in differentAImodels, resulting in similar data of varying
quality. At the same time, it is difficult to share data because of the
relative independence of each healthcare organization. The variable

quality of data can affect the accuracy of model interpretation
results, leading to a decrease in diagnostic accuracy (Wang et al.,
2024). Therefore, it is necessary to establish a systematic and
comprehensive standardized database to train AI models. The
database needs to cover different regions, populations and devices
collecting data to avoid insufficient model generalization capability
due to data bias. Screening and constructing effective datasets,
building a mature data sharing platform, and establishing a perfect
data standard system to ensure data security and maximum sharing.
Meanwhile, it is necessary to supplement the insufficiency of
retrospective studies, conduct prospective randomized controlled
trials (RCTs), verify the generalizability of the model through cross-
institutional collaboration, further improve the performance of the
AI model, and adhere to long-term follow-up to verify the actual
clinical benefits.

The clinical acceptance of AI is also a matter of great concern.
Many AI models (such as ML) are “black box” models, resulting
in the unexplainability of their internal operations, making it
difficult for doctors and patients to understand their decision-
making process, difficult to ensure the credibility and safety of
results, and reducing the trust and acceptance of AI system models
by doctors and patients. In view of this, research in recent years has
focused on the development of new explainable artificial intelligence
(XAI) technologies (van der Velden et al., 2022; Zhang et al., 2022;
Liu et al., 2024; Sarkar et al., 2024), such as lime, SHAP (Rahimi et al.,
2023; Yagin et al., 2023), etc.,. XAI can capture the results and
outputs of ML/DL algorithms, provide model decision-making and
interpretation to overcome the limitations of the black-box nature
of artificial intelligence, and show great promise in diagnostics and
drug discovery and development prediction (Zhang et al., 2022;
Ali et al., 2023; Kırboğa et al., 2023). However, at present, XAI
technology is still in the stage of exploration and development,
and has not been effectively and comprehensively standardized and
evaluated.

We also have to continually evaluate AI systems to ensure
that they work as intended, remain accurate over time, and
are reliable for medical purposes. Medical knowledge is rapidly
updated. Therefore continuous monitoring and evaluation of AI
algorithms is essential to maintain their effectiveness, accuracy,
and reliability (Kalpathy-Cramer et al., 2021). AI models need
to learn continuously to adapt to real-world dynamics (e.g., the
evolution of disease profiles or the introduction of new detection
technologies) to avoid “model degradation”. This requires that AI
algorithms are also up-to-date, and therefore algorithmic models
should be regularly evaluated to check the accuracy of the generated
content and to ensure that the information remains up-to-date and
consistent with current medical knowledge (Knopp et al., 2023). In
addition,monitoring the performance of the algorithm can also help
to identify any potential biases or unintended consequences that
may arise during its use (Larson et al., 2021).

Similarly, the ethical and patient safety issues raised byAI cannot
be ignored. The establishment of specialized ethics committees
is essential to proactively address any ethical issues that may
arise when applying AI in healthcare (McKay et al., 2023). Ethics
committees play a critical role in emphasizing the importance of
regulatory compliance and reviewing potential ethical challenges,
including privacy issues, fairness and transparency (Abràmoff et al.,
2022). The use of data needs to comply with relevant information
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FIGURE 2
Artificial intelligence in the diagnosis, treatment and prediction of prognosis of chronic sinusitis. Inputting image pictures and pathology results to the
AI system yields an accurate diagnosis, guiding doctors to formulate individualized treatment plans for patients, and at the same time, the prognosis
predicted by the AI-assisted system can assist doctors in making decisions about the management of patients’ conditions.

security protection regulations, protect patient privacy, ensure
compliant use of data, and an adverse reaction reporting system
needs to be set up to dynamically regulate AI models once they
are on the market. In addition to the regulatory aspects, the role of
ethics committees involves legal issues that extend into the realm
of liability, as well as the impact of AI decision-making, especially
when problems arise (Vidalis, 2021). Currently, AI is used as an
auxiliary tool, and the diagnostic results need to be reviewed by
a physician, for example, the artificial intelligence cervical cancer
screening (AICCS) system requires the screener to compare the
results with the AI results, and in case of conflict, the pathologist will
adjudicate to ensure that the responsibility for the final decision is
clear. If the AImakes autonomous decisions in the future, legislation
is needed to clarify the division of responsibility (Wang et al., 2024).
At the same time, organizations must be vigilant, informed and
compliant with regulations and standards when integrating AI into
healthcare (Schulz et al., 2019). These organizations should keep
abreast of healthcare data protection laws and ensure that AI systems
comply with these regulations (Stanfill and Marc, 2019). Regular
updates and compliance checks should be conducted to adapt to
changes in the law in order to maintain legal and ethical integrity
in the use of AI in healthcare (Wolf, 2020).

To verify the clinical applicability of AI models, it is necessary to
build a “data-test-regulation” closed loop, ensure model robustness
through real-world testing, balance innovation and risk through
dynamic regulation of models, and ultimately realize the transition
from an assistive tool to a credible decision-making role. In the
future, the focus needs to be on issues such as defining responsibility
and algorithmic transparency to drive AI models from research to
real-world clinical applications.

The application of AI technology to the management of
CRS is of great significance, but this does not mean that AI
will replace clinicians. On the contrary, it is a new model that
integrates artificial intelligence and human beings. This new
model can effectively promote the intelligence, standardisation
and standardisation of chronic sinusitis diagnosis and treatment.
Although the application of existing AI technology in healthcare
is still immature, and most of the current research is in the area
of diagnosis. However, we need to work together with relevant
technicians to create a better blueprint for the future ‘AI +
Healthcare’ model (Figure 2).

5 Conclusion

With the continuous development of AI,it is gradually playing
an increasingly important role in healthcare. AI can significantly
improve the accuracy of disease diagnosis, the level of personalized
treatment, and the efficiency of medical resource utilization.
The diagnosis and treatment mode of disease is also changing
from the traditional diagnosis and treatment mode to the mode
of ‘AI + medicine’. There are more and more studies on the
application of AI to CRS, but there are also many challenges.
Issues such as data quality, privacy, ethics, regulations, technical
limitations, and clinical acceptance still need to be addressed.
Nevertheless, AI has already proved its excellence in the medical
field through continuous development. It is expected that with the
advancement of technology and the improvement of regulations in
the future, artificial intelligence can bring more surprises to doctors
and patients.
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