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Introduction: Ethylene oxide (EO) exposure has been associated with various
health conditions, such as cancer and cardiovascular diseases. However, its
potential relationships with kidney function and lipid profiles require further
investigation.

Methods:This study analyzed data from3,500US adults participating inNHANES
2013–2020. EO exposurewas assessed using hemoglobin adducts of EO (HbEO)
as a biomarker. Associations with kidney and lipid parameters were evaluated
using multivariate linear regression models. Mediation analysis was performed
to explore the role of high-density lipoprotein (HDL) in these associations.

Results: Higher HbEO levels were significantly associated with decreased
albumin (Alb) (β = −0.79, 95% CI: −1.15, −0.43) and increased blood urea nitrogen
in the second and third quartiles (Q2: (β = 0.79, 95% CI: 0.34, 1.24; Q3: (β = 0.81,
95% CI: 0.35, 1.27). Uric acid (UA) showed an inverse association with the highest
quartile of HbEO (β = −0.23, 95% CI: −0.36, −0.09). Log10-transformed HbEO
levels were negatively associated with Alb, UA, and the UA/serum creatinine
ratio. Regarding lipids, no significant associations were found with triglycerides,
total cholesterol, or LDL. However, EO exposure was negatively associated with
HDL levels (β = −3.57, 95% CI: −5.18, −1.96). Mediation analysis revealed that HDL
mediated 6.51% of the association between EO and Alb, 12.44%with UA (inverse),
and 11.01% with urinary creatinine.

Discussion: EO exposure is significantly associated with alterations in kidney
function and HDL levels. HDL's mediating role suggests a potential mechanism
linking EO to renal biomarkers, warranting further mechanistic investigation.
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Introduction

Ethylene oxide (EO), a highly toxic industrial compound,
is widely used as a chemical precursor and in sterilization,
fumigation, cosmetics, and tobacco processing (Chemical agents
and related occupations, 2012; Jain, 2020). Animal studies have
demonstrated that high concentrations of EO can significantly
increase tumor incidence (Kirman et al., 2021). Epidemiological
investigations have further suggested that prolonged exposure to
EO may contribute to the development of chronic diseases such
as diabetes, hypertension, cardiovascular disorders, neurological
impairments, and various cancers (Guo et al., 2021; Estrin et al.,
1987; Steenland et al., 2004; Sun et al., 2025). However, findings from
large-scale human studies remain inconsistent, with some research
reporting no clear association between EO exposure and increased
cancer risk (Jain, 2020). These findings highlight the need for more
comprehensive studies on EO’s health impacts.

Moreover, individuals are exposed to EO through various
pathways, including endogenous production via bacterial activity
in the gastrointestinal tract or systemic synthesis in the liver
(Swenberg et al., 2011); metabolism of exogenous ethylene sources,
including vehicle exhaust, fires, and cigarette smoke (Filser et al.,
2013); and inhalation of high EO concentrations near industrial or
sterilization facilities (Olaguer et al., 2019). Given these findings,
it is essential to understand the effects of EO on the human body
and to devise effective public health interventions. Due to EO’s
multifaceted exposure pathways, a robust biomarker is required
to assess cumulative internal exposure. Hemoglobin adducts of
ethylene oxide (HbEO) serve as a biomarker for assessing long-term
EO exposure in humans (Zhou C. et al., 2024).

Several studies have reported associations between ethylene
oxide (EO) exposure and adverse renal outcomes, with elevated
HbEO levels positively correlating with an increased risk of kidney
stones, chronic kidney disease, and proteinuria (Song et al., 2023;
Wu et al., 2024; Zhou W. et al., 2024). However, the association
between EO and kidney function remains unclear. Given that blood
urea nitrogen (BUN), uric acid (UA), serum creatinine (Scr), serum
albumin (Alb), urinary creatinine (Ucr), andurinary albumin (Ualb)
are well-validated biomarkers of kidney function, these parameters
were systematically analyzed in the present study (Sanders et al.,
2019; Zhang et al., 2023; Ji et al., 2022). Additionally, the ratio of UA
to Scr (UA/Scr) has emerged as a novel biomarker that provides a
more accurate reflection of endogenous UA levels and assists in the
evaluation of renal function (Gu et al., 2017).

The impact of EO on lipid metabolism is equally significant,
as dysregulated lipid levels play a crucial role in the onset of
cardiovascular diseases (CVDs) and various other health conditions
(White-Al Habeeb et al., 2023). Zeng et al. (Zeng et al., 2021)
established a positive link between EO exposure and an increased
prevalence of CVDs, which are strongly linked to serum total

Abbreviations: AIP, Atherogenic index of plasma; Alb, Serum albumin; BMI,
Body mass index; BUN, Blood urea nitrogen; CVD, Cardiovascular disease;
EO, Ethylene oxide; HbEO, Hemoglobin adducts of ethylene oxide; HDL,
High-density lipoprotein; LDL, Low-density lipoprotein; NHANES, National
Health and Nutrition Examination Survey; PIR, Poverty income ratio; RCS,
Restricted cubic spline; Scr, Serum creatinine; TC, Total cholesterol; TG,
Triglycerides; UA, Uric acid; Ualb, Urinary albumin; Ucr, Urinary creatinine.

cholesterol (TC), triglycerides (TG), and low-density lipoprotein
(LDL). High-density lipoprotein (HDL), known for delaying
atherosclerosis progression, cannot induce regression (Zhu et al.,
2022). Additionally, the atherogenic index of plasma (AIP), a novel
and more robust indicator of lipid imbalances, has emerged as a
key predictor of CVD risk, especially in populations with metabolic
abnormalities (Min et al., 2024).

HDL levels are closely linked to kidney disease (Vaziri, 2016)
and may mediate the relationship between lipid parameters and
renal function (Sun et al., 2015). While the role of HDL in kidney
disease has been extensively characterized, its potential mediating
role in the association between EO exposure and changes in
kidney function remains unclear. Investigating this mediation may
offer novel mechanistic insights into how EO affects physiological
processes, particularly cardiovascular and renal health.

The underlying pathophysiology of EO-mediated organ toxicity
has been primarily characterized in animal models, while their
human implications require further investigation. This study
systematically evaluated the potential nephrotoxic and dyslipidemic
effects of EO exposure in human populations, hypothesizing that
higher EO exposure is associated with impaired renal markers,
and that this relationship is partially mediated by changes in lipid
metabolism, particularly HDL. Using data from the 2013–2020
National Health andNutrition Examination Survey (NHANES), our
study investigated the relationship between human EO levels and
kidney functionwhile assessing the potentialmediating role ofHDL.

Methods

Study population

This study leveraged data from the NHANES conducted
between 2013 and 2020, as HbEOmeasurements were only available
during this period. Initially, 35,706 participants were enrolled. To
refine the population, we excluded 27,209 individuals with missing
HbEO data, resulting in 8,497 participants. To minimize potential
bias and ensure the study population represented adults with stable
metabolic profiles, individuals under the age of 20 were excluded,
resulting in the removal of an additional 2,396 participants, leaving
6,101 eligible subjects.

Further exclusions were made for participants with incomplete
covariate data, including gender, age, race, Poverty-Income Ratio
(PIR), education level, alcohol consumption, smoking status,
Body Mass Index (BMI), vigorous work activity, diabetes, and
hypertension.This step eliminated 2,601 subjects, resulting in a final
analysis group of 3,500 individuals. Participants without available
data on kidney parameters and lipid profiles were also excluded,
with specific details outlined in Figure 1. The Ethics Review Board
of the National Center for Health Statistics approved the NHANES
study protocol, and all participants provided their written informed
consent (http://www.cdc.gov/nchs/nhanes).

Assessment of ethylene oxide

The assessment of EO exposure was conducted by measuring
hemoglobin adducts, specifically N-terminal valine adducts, using
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FIGURE 1
Study population flowchart. NHANES: National Health and Nutrition Examination Survey; Alb: serum albumin; BUN: blood urea nitrogen; UA: uric acid;
Scr: serum creatinine; Ucr: urinary creatinine; Ualb: urinary albumin; UA/Scr ratio: serum uric acid divided by serum creatinine; HDL: high-density
lipoprotein; TC: total cholesterol; TG: triglycerides; LDL: low-density lipoprotein; AIP: atherogenic index of plasma.

a modified Edman reaction for enhanced sensitivity. Quantification
was performed via high-performance liquid chromatography
coupled with tandem mass spectrometry, allowing for accurate
detection of EO from both exogenous and endogenous sources.
More information is available on the NHANES website (https://
wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/ETHOX-
J-MET-508.pdf).

Kidney parameters and lipid profiles

We assessed kidney parameters, including Alb (g/L), BUN
(mg/dL), UA (mg/dL), Scr (mg/dL), Ucr (mg/dL), Ualb (mg/L),
and the UA/Scr ratio, calculated as serum uric acid (mg/dL)
divided by serum creatinine (mg/dL). Lipid parameters included
HDL (mg/dL), TC (mg/dL), TG (mg/dL), LDL (mg/dL), and AIP,
calculated as log10 (TG/HDL).

Covariates

To reduce confounding bias and ensure the consistency and
comparability of our results, we adjusted for several covariates based
on prior studies, including gender, age, race, PIR, education level,
alcohol consumption, smoking status, BMI, vigorous work activity,
diabetes, and hypertension (Zhou C. et al., 2024; Politis et al., 2021).

Participants were classified into five racial categories: Mexican
American, Other Hispanic, Non-Hispanic White, Non-Hispanic
Black, and Other Race, which includes multi-racial individuals.

Education level was classified into three categories: below high
school, high school, and above high school (Zhu et al., 2022). For
alcohol consumption, data were obtained from the questionnaire
asking the average number of alcoholic drinks per day in the past
12 months. Smoking status was classified according to whether
participants had smoked at least 100 cigarettes in their lifetime
(Zhu et al., 2022). BMIwas categorized into three groups: <25 kg/m2

(normal weight), 25–29.9 kg/m2 (overweight), and ≥30 kg/m2

(obese) for all participants (Li et al., 2024).
Data on vigorous work activity were gathered through

questionnaires, inquiring whether participants’ jobs involved
high-intensity physical activity, such as carrying heavy loads
or construction work, that significantly increased breathing or
heart rate for at least ten continuous minutes. For diabetes and
hypertension, we did not rely solely on direct measurements
of blood glucose and blood pressure, as single measurements
are insufficient for diagnosing these two conditions. Instead,
we included self-reported data, asking whether participants
had ever received a physician diagnosis of diabetes or
hypertension.

Statistical analysis

We applied a log10 transformation to HbEO to account for its
skewed distribution and then categorized the log10-transformed
values into quartiles. Only participants with complete data on all
variables used in the models were included in the analysis, and a
complete-case analysis approach was adopted. To investigate the
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independent associations between HbEO and kidney parameters
as well as lipid profiles, multivariate logistic regression models
were employed, incorporating both continuous log10-transformed
HbEO and quartile categories across three different models: Model
1 with no adjustments, Model 2 adjusted for gender, race, age, and
BMI, and Model 3 with full adjustments for additional covariates.
Multicollinearity among independent variables was assessed using
variance inflation factors, and no significant multicollinearity was
detected (ranged from1.1 to 1.5). Smooth curve fitting and restricted
cubic spline (RCS) regression were utilized to evaluate further the
nonlinear relationships involvingHbEOand the various parameters,
with four knots placed at the 5th, 35th, 65th, and 95th percentiles of
HbEO distribution. Additionally, we conducted mediation analyses
to investigate whether lipid profiles mediate the effect of HbEO on
kidney parameters, aiming to determine the role of lipid levels in
the relationship betweenHbEO and kidney function.Multiple linear
regression and mediation analyses were performed using Empower
version 4.1 (www.empowerstats.com) andR version 4.2.0. Restricted
cubic spline modeling and curve plotting were conducted with R
version 4.4.0 and Zstats 1.0 (www.zstats.net).

Results

Baseline characteristics

Our analytic sample included 3,500 participants.Themedian age
was 47.0 years, and 52.1% of participants were male. The majority
wereNon-HispanicWhite (40.8%) and completed education beyond
high school (61.6%). The median HbEO level was 22.3 pmol/g Hb.
Participantswere categorized byBMI as 27.1%normalweight, 31.8%
overweight, and 41.0% obese. Nearly half of the participants were
smokers (47.4%), with a median alcohol consumption of 2.0 drinks
per week. Additionally, 34.3% had hypertension, and 14.7% had
diabetes. Further details are provided in Table 1.

Association between HbEO and kidney
parameters

Table 2 illustrates the association between HbEO and kidney
parameters. In this analysis, log10-transformed HbEO was
significantly associated with lower Alb levels. In the fully adjusted
model, the highest quartile of HbEO exposure showed a β = −0.79
(95% CI: −1.15, −0.43), p < 0.0001. Continuous log10-transformed
HbEO also demonstrated a significant inverse association (β =
−0.72, 95% CI: −1.00, −0.44, p < 0.0001), further underscoring
the consistent relationship between HbEO exposure and reduced
Alb levels. For BUN, higher HbEO exposure in Q2 and Q3 was
positively associated with increased levels. In Q2, the fully adjusted
model indicated a significant positive relationship with blood urea
nitrogen (BUN) levels, showing a β of 0.79 (95% CI: 0.34, 1.24, p
= 0.0006). The association persisted in Q3, with a β of 0.81 (95%
CI: 0.35, 1.27, p = 0.0006). However, continuous log10-transformed
HbEO exposure revealed a significant inverse associationwith BUN,
demonstrating a β of −0.52 (95% CI: −0.94, −0.10, p = 0.0159),
indicating a complex relationship between HbEO exposure and
BUN levels. Uric acid (UA) levels also exhibited a significant inverse

TABLE 1 Survey-weighted, sociodemographic and health status
characteristics of adult NHANES 2013–2020 participants with available
blood ethylene oxide data (n = 3500).

Variable Median (IQR) or N (%)

Age, years 47.0 (33.0, 61.0)

Gender

Male, % 1825 (52.1%)

Female, % 1675 (47.8%)

Education level, %

Below high school 504 (14.4%)

High school 837 (23.9%)

Above high school 2159 (61.6%)

Race/ethnicity, %

Mexican American 461 (13.1%)

Other Hispanic 339 (9.6%)

Non-Hispanic White 1431 (40.8%)

Non-Hispanic Black 788 (22.5%)

Other race 481 (13.7%)

Poverty, % 594 (17.0%)

Smoking status, % 1661 (47.4%)

Alcohol consumption, % 2.0 (1.0, 3.0)

Body mass index, kg/m2

Normal weight 949 (27.1%)

Overweight 1113 (31.8%)

Obese 1438 (41.0%)

Physical activity, % 852 (24.3%)

Hypertension, % 1203 (34.3%)

Diabetes, % 516 (14.7%)

HbEO, pmol/g Hb 22.3 (15.9, 56.7)

Serum albumin, mg/dL 42.0 (40.0, 45.0)

Urinary albumin, mg/dL 7.8 (4.0, 16.0)

Urinary creatinine, mg/dL 108.0 (60.0, 166.0)

Blood urea nitrogen, mg/dL 13.0 (11.0, 17.0)

Uric acid, mg/dL 5.4 (4.4, 6.3)

Creatinine, refrigerated serum, mg/dL 0.9 (0.7, 1.0)

Serum uric acid/serum creatinine ratio 6.2 (5.2, 7.3)

(Continued on the following page)
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TABLE 1 (Continued) Survey-weighted, sociodemographic and health
status characteristics of adult NHANES 2013–2020 participants with
available blood ethylene oxide data (n = 3500).

Variable Median (IQR) or N (%)

Triglyceride, mg/dL 91.0 (60.0, 136.0)

Total cholesterol, mg/dL 185.0 (159.0, 213.0)

Low-density lipoprotein cholesterol, mg/dL 107.0 (85.0, 132.0)

High-density lipoprotein cholesterol, mg/dL 52.0 (42.0, 63.0)

Plasma atherogenic index, AIP 0.2 (0, 0.5)

Data are presented as median (IQR) or N (%); sampling weights were applied for
calculation of demographic descriptive statistics. N reflects the study sample, whereas
percentages reflect the survey-weighted data.

association with HbEO exposure. In the fully adjusted model, the
highest quartile (Q4) showed a β of −0.23 (95% CI: −0.36, −0.09,
p = 0.0009). Additionally, continuous log10-transformed HbEO
demonstrated a significant inverse correlation with UA levels (β =
−0.27, 95%CI: −0.38, −0.17, p < 0.0001).TheUA/Scr ratio displayed
a similar trend, with Q4 exhibiting a β of −0.32 (95% CI: −0.50,
−0.14, p = 0.0005), and continuous HbEO also showed a significant
relationship (β = −0.35, 95% CI: −0.49, −0.21, p < 0.0001).

Although the association with Ucr was marginally significant,
a potential upward trend was observed (β = 7.91, 95% CI: −0.39,
16.22, p = 0.0619) in the highest exposure quartile. Continuous log10
HbEO also revealed a significant positive relationship with Ucr (β
= 6.43, 95% CI: −0.11, 12.98, p = 0.05). However, no significant
association was observed for Scr, with a β = 0.02 (95% CI: −0.01,
0.05), p = 0.1623.

In addition, the cubic spline analysis (with log10-transformed
HbEO as a continuous variable) demonstrated significant nonlinear
associations between HbEO and multiple kidney parameters,
including BUN (p for nonlinear <0.001), UA (p for nonlinear
= 0.004), UA/Scr (p for nonlinear = 0.032), and Alb (p for
nonlinear = 0.019), as illustrated in Figure 2. These findings
highlight that the relationship between HbEO and these parameters
is nonlinear, indicating a complex dose-response trend rather than
a straightforward linear pattern.

Association between HbEO and lipid
profiles

In the regression analysis shown in Table 3, a significant inverse
relationship between HDL and HbEO exposure was observed
across both log-transformed continuous HbEO and quartiles. In
the unadjusted model, participants in the highest quartile (Q4)
of HbEO exposure demonstrated a β of −3.32 (95% CI: −4.89,
−1.74, p < 0.0001), indicating lower HDL levels. This association
persisted in model 3, with a β of −3.57 (95% CI: −5.18, −1.96, p <
0.0001). Similarly, the continuous log-transformed HbEO variable
was inversely associated with HDL (β = −3.14, 95% CI: −4.41,
−1.87, p < 0.0001), showing a consistent negative relationship
across models.

The associations between HbEO and TC, TG, and LDL
were generally non-significant after adjustments, with no distinct
patterns emerging. Notably, AIP, a novel lipid marker, showed a
statistically significant association with EO in the fully adjusted
model, despite the limited effect size. The β coefficient for the log-
transformed EO and AIP was 0.06 (95% CI: 0.02, 0.10, p = 0.002).
While this effect reached statistical significance, its overall impact
remained moderate.

HDL mediated the association between
HbEO and multiple kidney parameters

We performed a mediation analysis to assess the influence
of HDL on the relationships between HbEO levels and kidney
parameters. As shown in Figure 3 and Table 4, HDL significantly
mediated these relationships, accounting for 6.51% of the variation
in Alb, −12.44% in UA, and 11.01% in Ucr. Although partial
mediation was observed, the negative mediation effect observed
for UA indicates a complex relationship that may require further
exploration. Overall, these findings highlight a modest mediating
effect of HDL in the association between EO levels and kidney
parameters. While this result is correlational, causal relationships
warrant further investigation.

Discussion

Previous research indicates that ethylene oxide exposure exerts
multisystemic effects, with documented impacts on respiratory
function, hematological parameters, endocrine regulation,
and reproductive health (Agency for Toxic Substances and
Disease Registry ATSDR Toxicological Profiles, 2022; Lewis et al.,
1986). Additionally, EO has been linked to tumor development.
A two-year inhalation study demonstrated significant increases
in benign and malignant tumors in B6C3F1 mice exposed to
50 ppm and 100 ppm EO, confirming its carcinogenic potential
(NTP Toxicology and Carcinogenesis Studies, 1987). In the renal
system, researchers reported kidney abnormalities induced by EO
exposure, including enlargement, mild congestion, and cloudy
swelling in the convoluted tubules of both rats and guinea pigs
(Hollingsworth et al., 1956). Furthermore, studies indicate that
repeated EO exposure increases lipid peroxidation and alters
glutathione metabolism in the liver, as evidenced by elevated
malondialdehyde (Katoh et al., 1989). While most EO data derived
from animal studies, recent work focuses on human exposure-
health linkages. For example, Li et al. (2024) reported significant
correlations between elevated HbEO and liver damage markers,
while Huang et al. (2023) observed a J-shaped relationship between
EO exposure and the risk of developing chronic obstructive
pulmonary disease. Moreover, cardiovascular conditions like
angina, heart attacks, and overall CVD have been associated with
EO, and inflammation mediates these effects (Zhou W. et al., 2024;
Zeng et al., 2021; Cheang et al., 2022). Nevertheless, the effects of EO
exposure on renal function and lipid metabolism in general human
populations have not been comprehensively demonstrated.

In this study, HbEO levels were associated with various
kidney parameters. Higher HbEO levels correlated with lower
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TABLE 2 Multiple linear regression associations of HbEO with kidney parameters in adults.

Kidney
parameters

Model Continuous
log10-
transformed EO

Quartile1 Quartile2 Quartile3 Quartile4 p for
trend

β β(95%CI) β(95%CI) β(95%CI)

Ucr(n = 3475)

Model 1 16.68 (10.97, 22.38)∗∗∗ 0.00(Ref.) 2.39 (−5.12, 9.90) 7.05 (−0.46, 14.56) 21.52 (14.00, 29.03)∗∗∗

0.0541Model 2 7.66 (2.16, 13.17)∗∗ 0.00(Ref.) 1.29 (−5.71, 8.30) 4.95 (−2.14, 12.03) 9.32 (2.11, 16.54)∗

Model 3 6.43 (−0.11, 12.98) 0.00(Ref.) 1.45 (−5.60, 8.50) 4.96 (−2.23, 12.15) 7.91 (−0.39, 16.22)

BUN(n = 3433)

Model 1 −1.27 (−1.65, −0.89)∗∗∗ 0.00(Ref.) 0.84 (0.33, 1.34)∗∗∗ 0.56 (0.06, 1.07)∗ −1.11 (−1.62, −0.61)∗∗∗

0.0159Model 2 −0.79 (−1.15, −0.43)∗∗∗ 0.00(Ref.) 0.83 (0.38, 1.29)∗∗∗ 0.87 (0.41, 1.33)∗∗∗ −0.52 (−0.98, −0.05)∗

Model 3 −0.52 (−0.94, −0.10)∗ 0.00(Ref.) 0.79 (0.34, 1.24)∗∗∗ 0.81 (0.35, 1.27)∗∗∗ −0.26 (−0.79, 0.28)

UA (n = 3433)

Model 1 −0.12 (−0.22, −0.01)∗ 0.00(Ref.) 0.10 (−0.04, 0.23) 0.09 (−0.05, 0.22) −0.02 (−0.16, 0.11)

<0.0001Model 2 −0.16 (−0.26, −0.07)∗∗∗ 0.00(Ref.) 0.03 (−0.09, 0.14) 0.06 (−0.06, 0.17) −0.12 (−0.24, 0.00)

Model 3 −0.27 (−0.38, −0.17)∗∗∗ 0.00(Ref.) 0.05 (−0.06, 0.17) 0.06 (−0.05, 0.18) −0.23 (−0.36, −0.09)∗∗∗

Scr(n = 3433)

Model 1 0.04 (0.01, 0.06)∗∗∗ 0.00(Ref.) 0.02 (−0.01, 0.05) 0.02 (−0.01, 0.05) 0.05 (0.02, 0.08)∗∗∗

0.2342Model 2 0.00 (−0.02, 0.02) 0.00(Ref.) 0.01 (−0.01, 0.04) 0.02 (−0.01, 0.04) 0.01 (−0.02, 0.04)

Model 3 0.01 (−0.01, 0.04) 0.00(Ref.) 0.01 (−0.01, 0.04) 0.02 (−0.01, 0.04) 0.02 (−0.01, 0.05)

UA/Scr(n = 1622)

Model 1 −0.36 (−0.48, −0.24)∗∗∗ 0.00(Ref.) 0.02 (−0.14, 0.18) 0.03 (−0.13, 0.19) −0.31 (−0.47, −0.15)∗∗∗

<0.0001Model 2 −0.17 (−0.29, −0.05)∗∗ 0.00(Ref.) −0.03 (−0.18, 0.12) −0.01 (−0.16, 0.15) −0.13 (−0.29, 0.02)

Model 3 −0.35 (−0.49, −0.21)∗∗∗ 0.00(Ref.) −0.01 (−0.16, 0.14) −0.01 (−0.16, 0.15) −0.32 (−0.50, −0.14)∗∗∗

Alb(n = 3433)

Model 1 −0.42 (−0.67, −0.17)∗∗ 0.00(Ref.) −0.43 (−0.76, −0.09)∗ −0.30 (−0.63, 0.04) −0.53 (−0.86, −0.19)∗∗

<0.0001
Model 2 −0.81 (−1.05, −0.57)∗∗∗ 0.00(Ref.) −0.46 (−0.76,

−0.16)∗∗
−0.36 (−0.66, −0.05)∗ −0.97 (−1.28, −0.66)∗∗∗

Model 3 −0.72 (−1.00, −0.44)∗∗∗ 0.00(Ref.) −0.46 (−0.76,
−0.16)∗∗

−0.34 (−0.65, −0.03)∗ −0.79 (−1.15, −0.43)∗∗∗

Ualb (n = 3475)

Model 1 6.87 (−13.99, 27.74) 0.00(Ref.) 4.27 (−23.21, 31.76) 32.89 (5.43, 60.36)∗ 7.33 (−20.18, 34.83)

0.8118Model 2 10.44 (−11.24, 32.12) 0.00(Ref.) 1.07 (−26.49, 28.64) 32.60 (4.73, 60.46)∗ 9.53 (−18.84, 37.89)

Model 3 3.10 (−22.39, 28.59) 0.00(Ref.) −0.98 (−28.43, 26.47) 22.95 (−5.03, 50.93) −3.34 (−35.65, 28.97)

Model 1 was not adjusted.
Model 2 was adjusted for age, gender, race, and BMI.
Model 3 was adjusted as Model 2 plus education level, PIR, vigorous work activity, smoking status, alcohol consumption, diabetes, and hypertension.
Ucr: Urinary creatinine; BUN: blood urea nitrogen; UA: uric acid; Scr: serum creatinine; UA/Scr: UA/Scr ratio; Alb: serum albumin; Ualb: urinary albumin; Ref: reference; ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001.

Alb. BUN showed negative associations with log10-transformed
HbEO but positive associations in lower quartiles. Both the
highest quartile of HbEO and continuous log10-transformed values
demonstrated an inverse relationship with uric acid. The UA/Scr
ratio displayed a similar pattern. RCS analysis indicated nonlinear
relationships between HbEO and BUN, UA, UA/Scr, and Alb.
Higher HbEO exposure was also associated with lower HDL levels.
Mediation analysis found that HDL contributed to 6.51% of the
Alb reduction, −12.44% of the UA decline, and 11.01% of the Ucr
elevation.

The inverse association between HbEO and Alb observed
in our study aligns with prior reports of EO-induced renal
impairment in CKD populations (Wu et al., 2024). This consistency
is further reinforced by existing evidence demonstrating EO-
related albuminuria risk elevation (Zhou W. et al., 2024), providing
a potential explanatory framework for the Alb findings in this
study. The observed lipid disturbances gain biological plausibility
from established literature documenting EO’s disruptive effects on
metabolic pathways, particularly lipid metabolism (Sun et al., 2025;
Cheang et al., 2022; Zhao et al., 2024). Published mechanistic
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FIGURE 2
Restricted cubic spline (RCS) plots showing the association of HbEO levels with (A) BUN, (B) UA, (C) UA/Scr ratio, and (D) Alb. All models were adjusted
for age, gender, education level, race, PIR, vigorous work activity, BMI, smoking status, alcohol consumption, diabetes, and hypertension.

studies support HDL’s renoprotective role during systemic toxic
exposures (Sun et al., 2015; Wang et al., 2024), suggesting
its potential mediation in EO-related renal effects. Interestingly,
we observed inverse associations between HbEO levels and
certain conventional renal markers (BUN and UA)—parameters
that typically increase with renal dysfunction (Heuchel et al.,
2023; Johnson et al., 2013; Kanbay et al., 2010). This contrasts
with the well-documented association between EO exposure and
elevated CKD risk (Wu et al., 2024).

Notably, while prior CKD research focused on clinically
confirmed cases with manifest renal dysfunction, this population-
based study reveals early-stage adaptive responses to EO exposure.
A plausible explanation for the reduced UA and BUN levels is
that, akin to certain environmental toxins (Orr and Bridges, 2017;
Petejova et al., 2019), EO might induce compensatory mechanisms
(e.g., enhanced renal excretion) during early or high-exposure
phases, thereby leading to reduced UA and BUN levels. It has been
suggested that EO can react with amino acid residues, such as
cysteine and methionine, potentially leading to protein degradation
through adduct formation with Alb (Funatsu et al., 2019). Given the
observed association between HbEO levels and reduced Alb in our
study, future research could explore whether the formation of such
adducts plays a role in altering Alb levels.

Moreover, EO exposure has been linked to DNA damage
in various tissues, including the kidneys (Zhang et al., 1997).
Specifically, repeated EO exposure in animal studies has resulted
in the accumulation of DNA adducts like HEtVal and 7-HEG in
multiple organs (Walker et al., 1993; Rusyn et al., 2005). Future
studies could examine if these adduct-mediated genomic alterations
mechanistically underlie the renal biomarker changes in EO-
exposed humans. EO has also been reported to form adducts with
hemoglobin, raising questions about its long-term effects on the
hematological system (Walker et al., 1993).

Inflammatory pathways may represent another mechanism
linking EO exposure to renal dysfunction. Multiple studies have
highlighted the role of inflammation in EO-related kidney damage
and proteinuria (Wu et al., 2024; Zhou W. et al., 2024). However, its
mediating role between EO exposure and kidney function markers
has yet to be fully explored. Inflammatory processes are known to
affect kidney markers (Chang et al., 2022; Graterol Torres et al.,
2022). For example, UA has been implicated in both acute
kidney injury and chronic kidney disease, with inflammation
driving increased UA levels (Jung et al., 2020; Kang et al., 2005).
Nevertheless, the potential involvement of inflammatory mediators
in the observed association between EO exposure and alterations in
early renal biomarkers necessitates additional mechanistic studies.
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TABLE 3 Multiple linear regression associations of HbEO with lipid profiles in adults.

Lipid profiles Model Continuous
log10-
transformed EO

Quartile1 Quartile2 Quartile3 Quartile4 p for
trend

β β(95%CI) β(95%CI) β(95%CI)

HDL (n = 3444)

Model1 −2.26 (−3.46, −1.07)∗∗∗ 0.00(Ref.) −1.96 (−3.54, −0.39)∗ −2.16 (−3.73, −0.58)∗∗ −3.32 (−4.89, −1.74)∗∗∗

<0.0001Model2 −3.33 (−4.43, −2.24)∗∗∗ 0.00(Ref.) −1.31 (−2.70, 0.08) −2.37 (−3.78, −0.96)∗∗ −3.91 (−5.34, −2.48)∗∗∗

Model3 −3.14 (−4.41, −1.87)∗∗∗ 0.00(Ref.) −0.82 (−2.19, 0.55) −1.53 (−2.92, −0.13)∗ −3.57 (−5.18, −1.96)∗∗∗

TC (n = 3444)

Model1 −4.28 (−7.21, −1.36)∗ 0.00(Ref.) −1.61 (−5.46, 2.24) −1.05 (−4.90, 2.80) −4.41 (−8.27, −0.56)∗

0.5704Model2 −1.03 (−4.03, 1.97) 0.00(Ref.) −1.86 (−5.68, 1.95) −0.78 (−4.65, 3.08) −0.58 (−4.51, 3.34)

Model3 −1.02 (−4.55, 2.51) 0.00(Ref.) −1.29 (−5.09, 2.50) 0.51 (−3.37, 4.38) −0.19 (−4.66, 4.28)

TG (n = 1622)

Model1 −5.57 (−17.18, 6.04) 0.00(Ref.) −5.91 (−21.32, 9.50) −0.20 (−15.66, 15.27) −7.72 (−23.20, 7.77)

0.4424Model2 5.59 (−6.27, 17.46) 0.00(Ref.) −6.03 (−21.06, 9.00) 4.80 (−10.53, 20.14) 4.68 (−11.06, 20.43)

Model3 5.46 (−8.48, 19.40) 0.00(Ref.) −7.45 (−22.58, 7.67) 3.20 (−12.34, 18.74) 3.90 (−13.91, 21.71)

LDL (n = 1607)

Model1 −2.97 (−6.72, 0.78) 0.00(Ref.) −0.65 (−5.65, 4.34) −0.20 (−5.20, 4.81) −2.07 (−7.08, 2.94)

0.9431Model2 −0.61 (−4.53, 3.30) 0.00(Ref.) −0.46 (−5.44, 4.52) 0.58 (−4.49, 5.65) 0.90 (−4.31, 6.10)

Model3 0.17 (−4.39, 4.73) 0.00(Ref.) 0.41 (−4.56, 5.38) 2.06 (−3.04, 7.15) 2.40 (−3.43, 8.23)

AIP(n = 1622)

Model1 0.02 (−0.02, 0.05) 0.00(Ref.) 0.02 (−0.03, 0.06) 0.02 (−0.03, 0.07) 0.02 (−0.03, 0.07)

0.0020Model2 0.08 (0.04, 0.11)∗∗∗ 0.00(Ref.) 0.02 (−0.03, 0.06) 0.05 (0.01, 0.10)∗ 0.09 (0.04, 0.13)∗∗∗

Model3 0.06 (0.02, 0.10)∗∗ 0.00(Ref.) 0.01 (−0.04, 0.05) 0.04 (−0.00, 0.08) 0.07 (0.02, 0.12)∗

Model 1 was not adjusted.
Model 2 was adjusted for age, gender, race, and BMI.
Model 3 was adjusted as Model 2 plus education level, PIR, vigorous work activity, smoking status, alcohol consumption, diabetes, and hypertension.

Alterations in lipid parameters observed in this study may
be related to oxidative stress and inflammation associated with
EO exposure. Numerous animal studies have shown that EO
exposure leads to increased glutathione consumption and enhanced
lipid peroxidation in the liver, both of which can aggravate
oxidative stress (Katoh et al., 1989; Katoh et al., 1988). These
mechanisms plausibly contribute to the HDL reduction observed
in our study. Emerging evidence suggests an association between
EO exposure and lipid alterations mediated through inflammatory
pathways (Zhu et al., 2022). Changes in lipid levels, particularly
increases in TG and decreases in HDL, are often closely linked to
inflammation (Curley et al., 2021). Inflammatory cascade activation
elevates TG and suppresses HDL, thereby disrupting cholesterol
transport (Esteve et al., 2005). Further research is needed to
elucidate the precise mechanisms by which EO may contribute
to reductions in HDL. Beyond its role in lipid metabolism,
HDL has also been proposed to exert protective effects on renal
parenchymal cells through its antioxidant and anti-inflammatory
functions (Zhong et al., 2019). However, the negative indirect
effect of HDL on Alb levels in our mediation analysis indicates
that its role may involve mechanisms beyond renal protection,
warranting further exploration. Although the direct effect of EO
on Ucr demonstrated marginal statistical significance, mediation

analysis was conducted given its unique capacity to reveal
mechanistic pathways that conventional direct association analyses
might overlook.

In conclusion, this study examines the associations between
EO exposure and various kidney and lipid parameters, highlighting
the regulatory role of HDL. Our investigation into the nonlinear
relationships between EO and kidney parameters, including
UA, BUN, UA/Scr, and Alb, offers evidence contributing to the
understanding of the complex biological processes involved. The
findings underscore the importance of lipid markers, particularly
HDL, in mediating EO’s effects on kidney health, providing a
foundation for further exploration into EO’s broader systemic
impacts. Although the observed effect sizes were moderate, they
may still be of clinical concern given the widespread exposure
to EO; further studies are needed to clarify the exposure-
risk threshold. The analysis utilized a large population dataset,
with careful adjustments for multiple potential confounders to
enhance the robustness of the models. However, several limitations
warrant consideration. The cross-sectional design of this study
precludes causal inference, limiting the findings to demonstrated
associations rather than definitive relationships. Additionally,
the specific demographic and environmental characteristics of
the NHANES dataset may restrict the generalizability of results
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FIGURE 3
Mediation analysis of HDL on the interaction between HbEO and kidney parameters. The models were adjusted for gender, age, race, PIR, education
level, alcohol consumption, smoking status, BMI, vigorous work activity, diabetes, and hypertension. Note: I.E., Indirect effect; TE, Total effect; DE,
Direct effect.

TABLE 4 The mediation effects of HDL on the association of log10-transformed HbEO with kidney parameters in adults.

Kidney
parameters

Mediator Indirect
effects

Direct effects Total effects Mediated
proportion (%)

p value

β (95%CI) β (95%CI) β (95%CI)

Alb

HDL

−0.03 (−0.05,
−0.01)∗∗∗

−0.42 (−0.65,
−0.20)∗∗∗

−0.45 (−0.67,
−0.24)∗∗∗

6.51% <0.001

UA 0.01 (0.01, 0.02)∗∗∗ −0.12 (−0.20, −0.03)∗ −0.11 (−0.19, −0.01)∗ −12.44% 0.02

Ucr 0.60 (0.19, 1.18)∗∗ 4.85 (−0.19, 10.06) 5.45 (0.51, 10.61)∗ 11.01% 0.04

Model was adjusted for age, gender, education level, race, PIR, BMI, vigorous work activity, smoking status, alcohol consumption, diabetes, and hypertension.

to broader populations. Furthermore, the use of complete-case
analysis raises potential selection bias if excluded participants
systematically differed from those included in the analysis. Finally,
residual confounding remains possible due to unmeasured or
imperfectly controlled factors, such as genetic predisposition,
socioeconomic status, or environmental co-exposures, that
could influence both exposure and outcomes. Collectively, these
limitations underscore the need for longitudinal studies to

validate the findings and elucidate the underlying biological
mechanisms.

Conclusion

This study demonstrates significant associations between EO
exposure and various markers of kidney function and lipid
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metabolism. The results indicate EO may affect renal physiology
and lipid regulation through mechanisms more complex than direct
toxicity alone. Further research is needed to clarify the underlying
biological pathways and dose-response relationships. These results
underscore the importance of public health vigilance regarding EO
exposure and its potential multi-system effects.
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