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Introduction: Amino acids are fundamental in several metabolic processes, and
their levels can reflect metabolism impairments that contribute to obesity and
related diseases. Our objective was to identify a urinary amino acid fingerprint
in obese and overweight children in prepuberty and to correlate this profile with
cardiometabolic alterations.

Methods: The study included 110 children, boys and girls aged 9–10 years, they
were classified according to their BMI-for-age (Body Mass Index for age) into
three groups: normal weight (NW) (n = 45), overweight (OW) (n = 21), and obese
(OB) (n = 44). The 12-h urine samples were analyzed by LC-MS/MS to quantify
47 amino acids using the Amino Acids Analysis Kit (Zivak®, Turkey), values
were corrected by creatinine concentration. Anthropometric measurements,
cardiovascular parameters, and biochemical profiles were assessed following
standard protocols.

Results: When compared to NW, anthropometric measures, systolic and
diastolic blood pressure, and serum uric acid levels were progressively elevated
in the OW and OB groups. The OB group was characterized by elevated
alpha-aminoadipic acid, asparagine, cystathionine, 1-methyl-histidine, serine,
tryptophan, phenylalanine, and tyrosine. In contrast, the OW group presented
the most expressive levels of glutamine, alpha-diaminopimelic, and sarcosine.

Discussion: Our findings indicate that obese and overweight children
exhibit a particular urinary amino acid fingerprint which is similar
to that reported in studies with plasma. The altered amino acids,
particularly tyrosine, are frequently associated with impairments in glucose
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homeostasis, insulin resistance, and diabetes mellitus type 2. Potential
mechanisms for increasing the levels of these amino acids in excess of weight
may include enhanced protein degradation and impaired oxidative metabolism.
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Introduction

Childhood obesity prevalence has progressively increased
worldwide. Over 340 million children and adolescents
aged 5–19 years were overweight or obese in 2016
(World Health Organization, 2020; Singh et al., 2023). According
to the World Obesity Federation’s 2019 estimates, 206 million
children and adolescents aged 5 to 19 will be obese by 2025,
which is expected to increase to 254 million by 2030. Excessive
fat accumulation in childhood is associated with an increased
risk of the early development of cardiovascular diseases (Stefan,
2020), insulin resistance, diabetes mellitus (Hameed et al., 2020),
and cancers (Di Angelantonio et al., 2016). Discovering biomarkers
of predisposition to obesity and related comorbidities enables early
diagnosis, identifying individuals who better benefit from non-
medical interventions such as physical activity and healthy diet, and
who need early treatment, thus contributing to disease prevention
or better prognostic (Dessì et al., 2014).

Metabolomics is an emerging field recognized as a powerful
tool for discovering the metabolic fingerprint of a given phenotypic
change (Su et al., 2014). The metabolome represents the total
metabolites in a given organism, such as sugars, organic acids,
amino acids, lipids, vitamins, minerals, and other compounds.
Genetic and epigenetic factors, age, environment, nutrition, drugs,
and lifestyle reflect individual metabolome alterations. Moreover,
the metabolites are not inert molecules, they can directly or
indirectly regulate gene and protein expression and participate
in the maintenance of homeostasis (Gerszten and Wang, 2008;
Scalabre et al., 2017). Several metabolites have been correlated
to disease phenotypes, as their presence or concentrations in
biological fluids are directly related to pathogenic mechanisms
(Su et al., 2014; Scalabre et al., 2017). Therefore, metabolomics
enables the identification of biomarkers of exposure or susceptibility
to several diseases, providing remarkable opportunities for better
understanding exposure and predicting potential adverse health
outcomes (Dessì et al., 2014; Handakas et al., 2022).

Obesity is a complex phenotype depending on several genetic
and lifestyle factors. Despite being extensively studied, there
is still no complete elucidation of the mechanisms underlying
its development, particularly in childhood. Recent metabolomic
studies have identified that the concentration of several metabolites
including amino acids, lipids, monosaccharides, organic acids, and
serotonin are altered in patients with obesity, thus being potential
candidates as biomarkers (Hameed et al., 2020; Zhang et al., 2013;
Rangel-Huerta et al., 2019; Szczerbinski et al., 2022). Nonetheless,
there are fewer metabolomic studies targeting childhood obesity,
partly due to methodological and ethical challenges in obtaining
blood samples. These studies also need to be expanded, considering
the bases of obesity, growth, and pubertal hormones.

Human urine is a rich biofluid for metabolomic studies, since it
concentrates a wide range of metabolites that change with age, diet,
nutritional status, and environmental exposure, thus being able to
characterize a given phenotype (Bouatra et al., 2013; Slupsky et al.,
2007; Wahl et al., 2012). Urine production is a constant process
and its collection is easy and non-invasive (Slupsky et al., 2007).
Urine metabolome has been well explored in studies with adults
(Slupsky et al., 2007; Yu et al., 2012; Holmes et al., 2008), but only
a few studies have been conducted with children (Zhang et al.,
2013; Chiu et al., 2016; McCormack et al., 2013). Considering this,
analyzing urine from prepubertal children is very attractive for
metabolomic studies, as it targets themolecular mechanisms behind
childhood obesity and cardiometabolic alterations.

This study aimed to investigate if there is an amino acid
fingerprint in the urine of obese prepubertal children and explore
possible mechanisms through which the altered metabolites can
contribute to obesity and cardiometabolic diseases.

Materials and methods

Participants and ethical aspects

This is a retrospective cross-sectional study conducted with a
sample of 110 pre-pubescent children, both sexes, aged 9–10 years
who participated in previous studies to evaluate cardiovascular
health and nutritional status in children from public and private
elementary schools in Vitória–ES (Brazil) (Batista et al., 2015). All
procedures were according to ethical standards and approved by
the Ethics and Research Committee on Human Experimentation
from the Universidade Federal de São Paulo (register number:
16613619.1.0000.5505). Informed consent was obtained from
parents or legal guardians before enrollment.

Anthropometric measurements

Anthropometric parameters (weight, height, waist, and hip
circumferences) were assessed following WHO recommendations
described by Batista et al. (Batista et al., 2015). Briefly, body weight
was determined using an electronic scale (Toledo® , model 2096,
Brazil) with the participant standing barefoot wearing underwear
only. The height was measured with a stadiometer (Seca® , model
206) attached to a flat wall. Using an anthropometric tape, the waist
circumference wasmeasured in the horizontal plane at themidpoint
between the lowest rib and iliac crest (Sanny® ).

Subjects were divided as normal weight (NW), overweight
(OW), and obese (OB) according to their Body Mass
Index classification for age and sex (BMI-for-age) using free
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AnthroPlus® software based on WHO growth reference
(de Onis et al., 2007). Waist-to-hip (WHiR) (Freedman et al.,
1999) and waist-to-height (WHtR) (Vieira et al., 2017) ratios were
calculated using primary anthropometric data.

Assessment of cardiovascular and
biochemical parameters

Trained researchers conducted examinations in a controlled
environment. Blood samples were collected under fasting
conditions to measure urea, creatinine, uric acid, glucose, total
cholesterol, LDL-cholesterol, HDL-cholesterol, VLDL-cholesterol,
and triglycerides. All analyses were performed using commercial
kits in a single laboratory (Central Laboratory of the Social Service
of Industry, SESI-ES, Brazil). Blood pressure (BP) was measured
in the left arm with an oscillometric device (OMROM®model
HEM-705CP) using cuff size according to the manufacturer’s
recommendations. Children were comfortably seated with their feet
flat on the floor. Three BP readings were taken with 2-min intervals
between each, and the average of the last two measurements was
calculated for systolic BP (SBP), diastolic BP (DBP), and heart
rate (HR) (Batista et al., 2015).

Evaluation of urinary amino acids profile

A 12-h urine sample was collected from each participant
and used for amino acid qualification and quantification. The
concentration of thirty-nine amino acids was determined in urine
samples by using the Amino Acids Analysis Kit (Zivak® , Turkey)
by high-performance liquid chromatography (HPLC) coupled to an
electrospray ionization (ESI) mass spectrometry (MS/MS) system.
Regarding the chromatographic and mass spectrometry conditions,
the analyses were strictly performed following the manufacturer’s
protocol for the Amino Acid Biological Fluids LC-MS/MS Analysis
Kit (Plasma and Serum and Urine and Cerebrospinal Fluid) (Ref:
ZV-3002–0200–10), produced by ZIVAK. A Thermo Scientific (TSQ
QuantumAccessMax)was employedwith aquaternarypump(Accela
600 pump model) with an automatic sampler and a triple quadrupole
mass spectrometer analyzer. The concentration of all amino acids
was corrected by the urinary creatinine concentration. The amino
acids measured were: 3-methyl-histidine (3-MeHIS); 5-Hydroxy-
L-tryptophan (5-HTRP); Alanine (ALA); Alpha-aminoadipic acid
(AAA); Alpha-aminobutyric acid (ABA); Alpha-aminopimelic acid
(APA);Anserine (ANS);Arginine (ARG);Asparagine (ASN);Aspartic
Acid (ASP); Beta alanine (BALA); Beta-aminoisobutyric acid (BAIB);
Carnosine (CAR); Citrulline (CIT); Cystathionine (CTH); Cysteine
(CYS); Cystine (C-C); Gamma-aminobutyric acid (GABA); Glutamic
Acid (GLU); Glutamine (GLN); Glycine (GLY); Histidine (HIS);
Homocystine (HC-HC); Hydroxylysine (HYL); Hydroxyproline
(HYP); Isoleucine (ILEU); Leucine (LEU); Lysine (LYS); 1-methyl-
histidine (1-MeHIS); Ornithine (ORN); Phenylalanine (PHE);
Proline (PRO); Sarcosine (SAR); Serine (SER); Thiaproline (THPR);
Threonine (THR); Tryptophan (TRP); Tyrosine (TYR) and Valine
(VAL). The handling of calibrants, controls, and samples, as well as
the settings of the analytical methods, were carried out following
the manufacturer’s instructions, and data were analyzed using

Xcalibur version 2.0 software (Thermo Fisher Scientific). Amino
acids whose concentrations were below the detection capability of
equipment (such as Homocysteine, Taurine, N-acetyl-L-tyrosine, O-
Phospho-L-serine, Histamine, Methionine, and Serotonin) were not
included in the analysis. The CAS numbers for each amino acid
are listed in Supplementary Table S1.

Statistical analyses

All data are expressed as medians ± SEM (standard error of the
median). Differences between groups were assessed using ANOVA
followed by Tukey’s multiple comparison post hoc test, Kruskal-
Wallis and Dunn’s Test or Mood’s median test, and Pairwise median
test.The tests were chosen considering the variable’s distribution and
variability according to indications in the table legends. Statistical
analyses were performed with R, version 3.6.2 (R Core Team, 2019).
A value of p ≤ 0.05 was considered to be statistically significant.

Raw metabolomic data were imported into the R software
environment for preprocessing. Data normalization was performed
using quotient normalization, and resulting data were log-
transformed to stabilize variance and improve normality.
Missing values were imputed using the k-nearest neighbor
(k-NN) algorithm. Processed data were then analyzed using
MetaboAnalystR (version 4.0) for comprehensive metabolomic
data analysis. A volcano plot was generated to identify significantly
different metabolites between the normal and excess weight (OW
and OB) groups. Metabolites with a fold change (FC) greater than
1.25 and a p-value less than 0.05 were considered significant.

Results

Population characteristics

In this cohort, 54.5% of the participants were male and 45.5%
were female. Regarding the nutritional status of the prepubescents,
40.9% showed normal weight, 19.1% were overweight and 40.0%
were obese. All anthropometric data such as BMI-for-age (percentile
and z-score), waist circumference, hip circumference, WHiR, and
WHtR showed significant differences between the groups. As
expected, there was a progressive increase in these parameters in the
OW andOB groups compared to the NWgroup. Also, the OB group
had higher height and height for age z-scores and percentiles than
the NW group. These results are described in Table 1.

Biochemical test values are described in Table 2, and only the
uric acid levels significantly increased in the OB group compared
to the NW group (4.10 vs. 3.30, p = 0.0013). As expected, the OW
and OB groups have shown higher systolic (109.00 and 110.00 vs.
102.00, p = 0.0001) and diastolic (67.00 and 66.75 vs. 60.00, p <
0.0001) blood pressures; however, no differences were observed in
heart rate.

Urinary amino acids profile

In the amino acid analysis method, the limit of quantification
(LOQ) is defined as the signal-to-noise ratio of 10. The results
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TABLE 1 Anthropometric parameters and growth indicators according to the nutritional status of prepubescent children. Numbers within parentheses
indicate the sample size. kg = kilograms, m = meters, cm = centimeters, BMI = Body Mass Index; WHiR = waist-to-hip ratio; WHtR = waist-to-height
ratio; NS = non-significant. #Mood’s median test and Pairwise median test.∗Kruskal-Wallis and Dunn’s Test. ¨ANOVA and Tukey HSD.B Normal Weight ≠
Obesity;C Overweight ≠ Obesity;D All groups differ from each other.

Parameters/Indicators Normal Weight (NW) Overweight (OW) Obesity (OB) p-value

Sex

Male 20.9% 6.4% 27.3% ∗0,0282C

Female 20.0% 12.7% 12.7% ∗NS

Age (years) 10.00 ± 0.09 9.00 ± 0.14 9.5 ± 0.10 ∗NS

Body Mass (kg) 31.14 ± 0.85 40.40 ± 1.44 50.13 ± 2.04 #< 0.0001D

Height (m) 1.41 ± 0.01 1.44 ± 0.02 1.43 ± 0.01 ¨0.0116B

Percentile Height/a 64.70 ± 5.29 70.60 ± 7.96 84.85 ± 3.93 ∗0.0002B

Z-score Height/a 0.38 ± 0.18 0.54 ± 0.28 1.03 ± 0.16 ¨0.0002B

BMI (kg/m2) 16.27 ± 0.25 19.91 ± 0.23 23.64 ± 0.61 #< 0.0001D

Percentile BMI-for-age 45.40 ± 4.63 92.40 ± 1.13 99.40 ± 020 #< 0.0001D

Z-score BMI-for-age −0.06 ± 0.14 1.44 ± 0.07 2.51 ± 0.10 #< 0.0001D

Waist circumference (cm) 58.00 ± 0.85 69.50 ± 1.41 78.03 ± 1.57 #< 0.0001D

Hip circumference (cm) 71.50 ± 0.90 81.00 ± 1.38 88.05 ± 1.51 #< 0.0001D

WHiR 0.80 ± 0.01 0.84 ± 0.01 0.89 ± 0.01 ∗< 0.0001D

WHtR 0.41 ± 0.01 0.48 ± 0.01 0.55 ± 0.01 # < 0.0001D

obtained for the LOQs showed a linear range of 0.01–0.32 ng mL−1
for AA with correlation coefficients (r) greater than 0.994 which can
be seen in Supplementary Table S2.

Several amino acids showed relevant statistical differences
according to nutritional status, as shown in Figure 1. Briefly, the
concentration of the aromatic amino acids PHE, TRP, and TYR was
significantly increased in the urine of OB group compared to the
NW group (72.08 vs. 43.04, p < 0.05; 109.36 vs. 85.65, p < 0.01 and
140.54 vs. 85.07, p < 0.001, respectively), TYR levels were also higher
in the OW group than NW group (109.74 vs. 85.07, p < 0.05) and
TRP concentrationwas higher inOWgroup compared toNWgroup
(113.55 vs. 85.65, p < 0.05).TheOB group also presented augmented
levels of AAA (61.18 vs. 44.89, p < 0.01), CTH (25.86 vs. 19.55,
p < 0.05) and SER (332.40 vs. 210.97, p < 0.05) compared to NW
group and increased concentration of urinary 1-MeHIS compared
to OW group (190.62 vs. 149.59, p < 0.05). The most expressive
concentrations of the amino acids APA, GLN, and SAR were found
in the OW group. APA levels were higher in OW compared to
NW and OB groups (12.64 vs. 10.45, p < 0.05 and 12.64 vs. 9.17,
p < 0.05). Urinary concentration of GLN was higher in OW than
OB group (1309.16 vs. 1024.30, p < 0.05) while SAR levels were
increased in OW compared to OB group (78.75 vs. 62.36, p < 0.05).
A table evaluating all 39 amino acids according to nutritional status
is provided as supplementary material (Supplementary Table S3).

Figure 2 presents a metabolomic approach to demonstrate the
relationship between the statistical significance of an amino acid
expression and the magnitude of the change in its expression
(considering themean). For this analysis, we considered two groups:
excess weight (OW and OB) and normal weight (NW). Five
metabolites (PHE, CTH, AAA, TYR, and LYS) presented significant
fold change between the groups, being more expressed in the excess
of weight group. The most expressive magnitude of fold change was
observed in the following order: LYS, TYR, AAA, CTH, and PHE.
TYR exhibited the most significant statistical difference between
groups. Supplementary Table S4 shows the fold change of the mean
for the normal weight group compared to the excess weight group
for all amino acids evaluated in the study (Supplementary Table S4).

Regarding Principal Component Analysis (PCA), PC1 accounts
for 78.3% of the variance, while PC2 explains 15.7%. Despite
PC1’s high variance, its loadings cluster near the origin, indicating
no strong driver of separation. Moreover, metabolites furthest
from the origin in PC1 do not align with those statistically
significant in the Volcano Plot, suggesting that separation
arises from minor cumulative changes rather than distinct
metabolic shifts. PC2 captures additional variation but remains
limited. Thus, while statistical differences exist, PCA alone does
not fully capture metabolic shifts, highlighting the need for
complementary analyses (Supplementary Figure S1).
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TABLE 2 Distribution of cardiovascular parameters, and biochemical tests according to nutritional status. “u” = urine sample measurement SBP =
systolic blood pressure; DBP = diastolic blood pressure; HR = heart rate; NS = non-significant. #Mood’s median test and Pairwise median
test.∗Kruskal-Wallis and Dunn’s Test. ANOVA and Tukey HSD. (A) Normal Weight ≠ Overweight; (B) Normal Weight ≠ Obesity; (D) All groups differ from
each other.

Parameter Normal Weight (NW) Overweight (OW) Obesity (OB) p-value

Blood tests

Total cholesterol (mg/dL) 156.00 ± 6.90 173.00 ± 9.14 170.00 ± 6.52 ¨NS

HDL cholesterol (mg/dL) 49.00 ± 2.31 50.00 ± 1.89 43.00 ± 2.05 #NS

LDL cholesterol (mg/dL) 94.00 ± 5.64 102.00 ± 7.09 99.40 ± 4.77 ¨NS

VLDL cholesterol (mg/dL) 12.40 ± 1.32 15.60 ± 3.20 15.90 ± 2.21 #NS

Triglycerides (mg/dL) 59.00 ± 6.24 78.00 ± 16.00 80.00 ± 11.30 #NS

Uric acid (mg/dL) 3.30 ± 0.17 3.60 ± 0.16 4.10 ± 0.20 ∗0.0013B

Urea (mg/dL) 24.00 ± 1.41 24.00 ± 1.50 23.00 ± 1.37 ¨NS

Creatinine (mg/dL) 0.70 ± 0.01 0.70 ± 0.02 0.70 ± 0.02 ∗NS

Glucose (mg/dL) 88.00 ± 1.58 90.00 ± 2.42 90.00 ± 1.79 ∗NS

Urine tests

Sodium u (mEq/L) 110.50 ± 12.84 132.50 ± 22.78 159.00 ± 15.31 ∗NS

Potassium u (mEq/L) 20.15 ± 2.82 21.10 ± 5.10 26.40 ± 4.18 #NS

Creatinine u (mg/dL) 28.55 ± 3.05 20.61 ± 3.70 33.24 ± 3.83 ∗NS

Cardiovascular parameters

SBP (mmHg) 102.00 ± 1.67 109.00 ± 2.52 110.00 ± 1.73 ¨0.0001A,B

Percentile SBP 46.00 ± 4.97 65.00 ± 6.50 73.00 ± 4.56 ∗0.0005A,B

DBP (mmHg) 60.00 ± 1.60 67.00 ± 2.24 66.75 ± 1.40 ∗< 0.0001A,B

Percentile DBP 49.00 ± 3.74 69.00 ± 4.87 66.50 ± 3.82 ∗< 0.0001A,B

HR (bpm) 81.50 ± 2.20 80.50 ± 3.11 79.25 ± 1.91 ∗NS

Discussion

Research groups and health organizations worldwide
are unanimous in warning about the rapid increase in
overweight and obesity prevalence and its consequences for
individuals’ and communities’ health (Vieira et al., 2017; GBD,
2015 Obesity Collaborators et al., 2017; NCD Risk Factor
Collaboration NCD-RisC, 2017). These consequences are directly
related to higher health service costs, a high risk of disease
development, and related mortality (Di Angelantonio et al., 2016;
GBD, 2015 Obesity Collaborators et al., 2017; NCD Risk Factor
Collaboration NCD-RisC, 2017).

Weight and BMI are anthropometric measures that reflect the
quality of nutrition and healthiness of the living environment
during childhood and adolescence. These parameters are good
predictors of health and developmental outcomes throughout life
(Park et al., 2012; Tanner, 1987). As expected, all anthropometric

measurements were progressively increased in the groups OW and
OB, as shown in Table 1.

More important than total body fat, WHtR and WHiR predict
fat distribution in the upper part of the body around the abdomen,
which is associated with metabolic changes. WHiR and WHtR
values of OW (0.84 ± 0.01; 0.48 ± 0.01, p < 0.0001) and OB (0.89 ±
0.01; 0.55 ± 0.01, p < 0.0001) groups, respectively, compared to NW
(0.80 ± 0.01; 0.41 ± 0.01) suggest a progressive increase in abdominal
fat in greater degrees of excess weight. Zeng et al. (Zeng et al., 2010)
looking for biomarkers suggested that the waist-hip ratio, together
with total triglycerides, total cholesterol, high-density lipoprotein,
and low-density lipoprotein are the most critical parameters that
correlate with the metabolic disturbances of childhood obesity
(Lo et al., 2016). In a systematic review of thirty-nine studies, Park
et al. (Park et al., 2012) observed evidence for associations between
childhood BMI and type 2 diabetes, hypertension, and coronary
heart disease, as in other studies (Lo et al., 2016; Libert et al., 2018;
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FIGURE 1
Amino acids which are differentially expressed according to nutritional status. (A) 1-MeHIS concentration in urine (nmol/mg of urinary creatinine)
according to nutritional status. ANOVA (p = 0.047) followed by Tukey HSD (OW ≠ OB). (B) AAA concentration in urine (nmol/mg of urinary creatinine)
according to nutritional status. Kruskal-Wallis (p < 0.01) followed by Benjamini-Hochberg (NW ≠ OB). (C) APA concentration in urine (nmol/mg of
urinary creatinine) according to nutritional status. Mood’s Median Test (p = 0.046) followed by Pairwise median test (NW ≠ OW and OW ≠ OB). (D) ASN
concentration in urine (nmol/mg of urinary creatinine) according to nutritional status. Mood’s Median Test (p = 0.049) followed by Pairwise median test
(OW ≠ OB). (E) CTH concentration in urine (nmol/mg of urinary creatinine) according to nutritional status. Kruskal-Wallis (p = 0.015) followed by
Benjamini-Hochberg (NW ≠ OB). (F) GLN concentration in urine (nmol/mg of urinary creatinine) according to nutritional status. Mood’s Median Test (p
= 0.029) followed by Pairwise median test (NW ≠ OW). (G) PHE concentration in urine (nmol/mg of urinary creatinine) according to nutritional status.
Kruskal-Wallis (p < 0.01) followed by Benjamini-Hochberg (NW ≠ OB). (H) SAR concentration in urine (nmol/mg of urinary creatinine) according to

(Continued)
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FIGURE 1 (Continued)

nutritional status. Mood's Median Test (p = 0.024) followed by Pairwise median test (OW ≠ OB). (I)SER concentration in urine (nmol/mg of urinary
creatinine) according to nutritional status. Kruskal-Wallis (p = 0.049) followed by Benjamini-Hochberg (NW ≠ OB). (J) TRP concentration in urine
(nmol/mg of urinary creatinine) according to nutritional status. Kruskal-Wallis (p < 0.01) followed by Benjamini-Hochberg (NW ≠ OW and NW ≠ OB).
(K) TYR concentration in urine (nmol/mg of urinary creatinine) according to nutritional status. Kruskal-Wallis (p < 0.001) followed by
Benjamini-Hochberg (NW ≠ OW and NW ≠ OB). Post-hoc tests: *p < 0.05, **p < 0.01, and ***p < 0.001. Abbreviations: 1-MeHIS,
1-methyl-histidine; AAA, alpha-aminoadipic acid; APA, alpha-aminopimelic acid; ASN, asparagine, CTH, cystathionine; GLN, glutathione; PHE,
phenylalanine; SAR, sarcosine; SER, serine; TRP, tryptophan; TYR, tyrosine; NW, normal weight; OW, overweight; OB, obesity.

FIGURE 2
Amino Acid Variability Between NW and OW + OB Groups. The Volcano plot highlights amino acids differentially abundant between Normal Weight
(NW) and Excess Weight (Overweight + Obesity; OW + OB) groups, using the NW group as the reference. Amino acids with a log2 fold change (FC) of
less than −2 and a -log10(p) value greater than 1.3 (p-value <0.05) were considered significantly downregulated in the NW group compared to the OW
+ OB group. The amino acids phenylalanine, tyrosine, α-aminoadipic acid, cystathionine, and lysine fall within this category, indicating higher
abundance in the OW + OB group. Blue highlights indicate amino acids with a p-value <0.05. FC: Fold Change.

Juonala et al., 2011; Liu et al., 2021). Moreover, uric acid levels
are substantially increased in obese subjects and proportionally
associated with BMI (Weihrauch-Blüher et al., 2023), as observed
in our results.

Metabolomics has been used to study the metabolic
signature of obesity. It describes differential responses to dietary
interventions, predicts health outcomes, and allows the study
of the effects of specific nutritional patterns on obesity-related
metabolites (Zhang et al., 2013; Rangel-Huerta et al., 2019;
Szczerbinski et al., 2022). These biomarkers can represent
disease diagnostic tools for developing new therapeutic protocols
(Hameed et al., 2020; Zhang et al., 2013).

Investigation of serum metabolite concentrations in obese
children may lead to new insights into biological mechanisms
associated with childhood obesity, for example, branch-
chained amino acids and various lipid metabolites, including
phosphatidylcholines, cholesteryl esters, triglycerides (Zhang et al.,
2013; Szczerbinski et al., 2022). Oberbach et al. (Butte et al.,
2015) identified 163 serum metabolites, 12 of which were
significantly related to obesity. Among those, GLY, GLN, and
glycerophosphatidylcholine 42:0 (PCaa 42:0) serum concentrations
were higher, whereas PCaa 32:0, PCaa 32:1, and PCaa 40:5

were decreased in the obesity group compared to the normal
weight group. Wahl et al. (Wahl et al., 2012) analyzed serum
samples from obese and normal-weight children aged six to 15.
Fourteen metabolites and 69 metabolite ratios were significantly
different in obese children compared to normal-weight children.
Butte et al. (Butte et al., 2015) observed that obese Hispanic
children had increased plasma concentrations of LEU, ILEU,
and VAL but lower ASN, ASP, GLY, and SER concentrations.
Plasma amino acid profile has shown a strong correlation with
nutritional status (McCormack et al., 2013; Butte et al., 2015;
Wu et al., 2024; Morris et al., 2012).

Despite urine being a promising biological fluid for
metabolomics research, few studies have been conducted
with this fluid compared to the numerous studies conducted
with blood samples. However, urinary metabolomics research
focuses on characterizing the metabolic profile present in
urine, providing invaluable insights into both physiological
and pathological processes. This comprehensive analysis
facilitates the discovery of biomarkers for disease diagnosis,
treatment monitoring, and elucidation of metabolic pathways
(Scalabre et al., 2017; Szczerbinski et al., 2022; Bouatra et al., 2013;
Cho et al., 2017; Chavira-Suárez et al., 2020). Detecting metabolites
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in prepubertal urine represents a gap in the existing literature, and
your investigation provides additional insights.

An amino acid signature characteristic of OB group was found
in our study, with elevated levels of AAA, ASN, CTH, 1-MeHIS,
SER, and aromatic amino acids, and reduced concentrations of APA,
and SAR.TheOWgroup presentedmost expressive urinary levels of
APA, GLN, and SAR.

Urinary excretion of 3-MeHIS indicates protein catabolism, as
it comes from skeletal muscle actin and myosin, and is also directly
related tomeat consumption (Cross et al., 2011).The higher levels of
1-MeHIS observed in the OB group may reflect dietary differences
inmeat intake. A controlled feeding study investigated 1-MeHIS and
3-MeHIS as potential biomarkers of meat intake and found a dose-
dependent association betweenmeat intake and urinary excretion of
1- and 3-MeHIS (Cross et al., 2011; Cross et al., 2014).

Our results show increased values of CTH and SER for the
OB group. One-carbon metabolism is a metabolic network driven
by three interrelated metabolic pathways: the folate cycle, the
homocysteine-methionine cycle, and the transsulfuration pathway.
If there is abundant methionine, the transsulfuration pathway
will become active, by which homocysteine reacts with serine to
form cystathionine by cystathionine β-synthase (Zhu et al., 2024;
Dwight, 2020). Due to the inability to quantify homocysteine and
methionine, their contribution to the increased levels of these
other amino acids cannot be directly determined. Nonetheless,
elevated levels of CTH and SER may indicate enhanced methionine
metabolism and, consequently, increased homocysteine production
through cystathionine β-synthase action (Dwight, 2020; Zhang et al.,
2020).On the other hand, Butte et al. (Wu et al., 2024) found reduced
serum levels of SER, which were associated with risk factors for
insulin resistance, hypertriglyceridemia, and hyperuricemia.

Increased levels of AAA were observed in the OB group, as
reported by Libert, Nowacki, and Natowicz (Libert et al., 2018),
who also found elevated levels in adult subjects with obesity and
diabetes. AAA can be generated by LYS metabolism. L-lysine is first
converted to saccharopine by condensation with α-ketoglutarate,
which is then reduced to 2-aminoadipic semialdehyde, releasing
GLU. Subsequently, 2-aminoadipic semialdehyde is interconverted
to AAA (Dwight, 2020). Catabolism of AAA forms 2-ketoadipic
acid, and in TRP catabolism, it also occurs through L-kynurenine
degradation (Dwight, 2020). High values of AAA and TRP, but not
LYS, may suggest changes in these metabolic pathways in the OB
group. Wang et al. (Wang et al., 2013) observed that AAA predicted
the development of diabetes in normoglycemic individuals and
hypothesized that AAA levels were increased in response to
hyperglycemia, increasing insulin secretion and contributing to a
compensatory mechanism to maintain glucose homeostasis in early
insulin resistance. It also suggests that AAA is a marker of diabetes
risk and a potential modulator of glucose homeostasis in humans.
Additional investigations should be done to linkAAA toweight gain,
insulin resistance, and T2DM.

In addition to AAA, GLN has also been linked to insulin
resistance (Cheng et al., 2012; Newgard et al., 2009). Hanzu et al.
(Hanzu et al., 2014) found high levels of GLN and ALA in the
visceral adipose tissue of individuals with obesity. Due to the high
gluconeogenic effect, the increased amount of these amino acids
released by visceral adipose tissue contributes to hyperinsulinemia
and the development of insulin resistance (Hanzu et al., 2014).

Higher GLN levels in the OW group suggest that being overweight
may modify glucose metabolism due to increased body fat,
especially visceral fat (Payab et al., 2021; Yan et al., 2023), evidenced
by the augmented waist and hips circumferences and relative ratios.
Despite the evidence, other groups have observed reduced levels of
GLN in serum samples from children and urine samples from obese
adolescents (Wahl et al., 2012; Cho et al., 2017).

Furthermore, it is well established that branched-chain and
aromatic amino acids are indicators of the development of insulin
resistance in normoglycemic young adults. This fact indicates
a strong association between amino acids (Singh et al., 2023),
particularly aromatics (TRP, PHE, and TYR), and the risk of
future development of diabetes mediated partially by insulin
resistance (Rangel-Huerta et al., 2019; Newgard et al., 2009; Martos-
Moreno et al., 2005).

Under conditions of obesity, most studies demonstrate
significant changes in blood and urinary values of aromatic
(Butte et al., 2015; Cho et al., 2017; Haufe et al., 2016) and branched-
chain amino acids (Szczerbinski et al., 2022; Butte et al., 2015;
Bagheri et al., 2018). TRP, PHE, and TYR levels were elevated in
the OB group, as other studies have also shown an association
between increased concentrations of aromatic amino acids and
obesity in both younger and older children, with different metabolic
disturbances involved in the progression from overweight to obesity
between the two age groups (Butte et al., 2015; Wu et al., 2024;
Newgard et al., 2009; Payab et al., 2021; Bagheri et al., 2018;
Kim et al., 2010; Yu et al., 2018).

Exploring amino acids throughVolcano Plot analysis comparing
children with normal weight (NW) and those with excess weight
(OW + OB), using the NW group as a reference, the amino acids
that exhibited a log2 fold change of less than −2 and -log10(p)
of less than 1.3 — phenylalanine, tyrosine, α-aminoadipic acid,
cystathionine, and lysine — showed greater significance and were
negatively regulated in the NW group. Notably, tyrosine emerged
as the amino acid with the most significant changes and the most
considerable magnitude of change.

Tyrosine levels were related to increased hepatic fat content,
suggesting hepatic dysfunction associated with a metabolic disorder
(Libert et al., 2018; Haufe et al., 2016). In addition, tyrosine
contributes to the profile described in obese children (Payab et al.,
2021). It may be a possible predictor of insulin resistance in these
children and the most sensitive metabolite for the classification
of obesity (Handakas et al., 2022; Butte et al., 2015; Martos-
Moreno et al., 2005). Increased plasma levels of phenylalanine
and tyrosine have been observed in most analyses of amino
acid biomarkers in obesity and T2DM (Payab et al., 2021;
Haufe et al., 2016; Zhao et al., 2016; Park et al., 2015). In this
regard, elevated levels of PHE and its hydroxylation product, TYR,
provided strong relevance as biomarkermetabolites predictive of the
development of cardiovascular disease and diabetes type 2. Suzuki
et al. (2019) described that a state of unbalanced or increased amino
acids associated with obesity may exacerbate obesity and insulin
sensitivity (Suzuki et al., 2019).

Several limitations of the present study need consideration. The
relatively small size of groups may have interfered with statistical
significance. Moreover, our study used BMI-for-age to classify
obesity, rather than body fat content and distribution, which would
be a more accurate parameter of adiposity and metabolic changes.
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However, determining criteria for cutting off body fat in children
remains under discussion in the pediatric area. Additionally, other
children’s data should be compared with these results to trace the
relationship between nutritional status and the metabolic profile
of amino acids. Our working group is already outlining new data
crossings.

Conclusion

The search for a biomarker that indicates the development
of obesity is essential in a population that has not yet reached
the reproductive stage. Since it allows blocking the progression of
obesity and related comorbidities from measures that encourage
healthier habits, before the need for drug therapies. Analysis of
amino acids in urine through metabolomics showed a strong
association between childhood obesity and increased levels of
AAA, CTH, SER, and aromatic amino acids, particularly TYR,
which appears to be a good candidate for obesity biomarkers.
Potential mechanisms for increased levels of these amino acids
include increasing protein degradation and impairment of oxidative
metabolism in some tissues. Additional investigations must be done
to determine whether the metabolism of TYR and other aromatic
amino acids could identify the metabolic profile of children with
obesity and other disorders.
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