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Impact of different doses of cold
water immersion (duration and
temperature variations) on
recovery from acute
exercise-induced muscle
damage: a network
meta-analysis

Hai Wang, Lu Wang and Yingxu Pan*

Capital University of Physical Education and Sports, Beijing, China

Objective: This network meta-analysis and systematic review evaluated the
recovery impacts of varying cold water immersion (CWI) protocols on acute
exercise-induced muscle damage.

Methods: We searched CNKI, PubMed, Cochrane Library, Web of Science, and
Embase from January 2000 to September 2024 for randomized controlled trials
examining CWI’s recovery effects on acute muscle damage. Data extraction,
study screening, and risk of bias assessment were conducted independently by
two reviewers. Analyses were performed using Stata 16.0.

Results: A total of 55 RCTs were included, with 42 reporting delayed onset
muscle soreness (DOMS), 36 reporting jump performance (JUMP), and 30
reporting creatine kinase (CK) levels. Network meta-analysis showed that
compared with the control group, MD-MT-CWI: Medium-duration medium-
temperature cold water immersion (10–15 min, 11°C–15°C) [SMD = −1.45,
95%CI(-2.13, −0.77), P < 0.01] and MD-LT-CWI: Medium-duration low-
temperature cold water immersion (10–15 min, 5°C–10°C) [SMD = −1.12,
95%CI(-1.78, −0.47), P = 0.01] significantly reduced DOMS; MD-LT-CWI
(10–15 min, 5°C–10°C) [SMD = 0.48, 95%CI(0.20, 0.77), P = 0.01] and MD-
MT-CWI (10–15 min, 11°C–15°C) [SMD = 0.42, 95%CI(0.15, 0.70), P = 0.02]
significantly improved JUMP; MD-MT-CWI (10–15 min, 11°C–15°C) [SMD =
−0.85, 95%CI(-1.36, −0.35), P = 0.01] and MD-LT-CWI (10–15 min, 5°C–10°C)
[SMD = −0.90, 95%CI(-1.46, −0.34), P = 0.02] significantly reduced CK.
Cumulative probability ranking showed that MD-LT-CWI (10–15 min, 5°C–10°C)
was themost effective for improving JUMP and reducing CK, while MD-MT-CWI
(10–15 min, 11°C–15°C) was the most effective for reducing DOMS.

Conclusion: Different dosages of cold water immersion (varying in duration
and temperature) had different effects on recovery from acute exercise-
induced muscle damage. We found that MD-LT-CWI (10–15 min, 5°C–10°C)
was most effective for improving biochemical markers (CK) and neuromuscular
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recovery, while MD-MT-CWI (10–15 min, 11°C–15°C) was most effective for
reducing muscle soreness. In practice, we recommend using MD-LT-CWI
(10–15 min, 5°C–10°C) and MD-MT-CWI (10–15 min, 11°C–15°C) to reduce
Exercise-induced muscle damage (EIMD). However, due to the limitations of
the included studies, further high-quality studies are needed to verify these
conclusions.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,
identifier CRD42024602359.
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1 Introduction

EIMD commonly occurs following high-intensity or unfamiliar
exercises, especially during eccentric muscle contractions (Proske
and Morgan, 2001). This condition manifests as DOMS, increased
CK levels, localized inflammation, and a decline in muscle
strength and functionality, all of which may significantly
impede athletic performance and recovery (Peake et al., 2017;
Hyldahl and Hubal, 2014). Consequently, the quest for effective
recovery interventions has become a central theme in sports
science research (Owens et al., 2019).

CWI is a prevalent recovery modality post-exercise
(Leeder et al., 2012). Immersing the body in cold water, CWI
helps alleviate muscle soreness, diminish inflammation, and hasten
recovery of muscle function. The beneficial effects of CWI are
possibly due to vasoconstriction, reduction in tissue temperature,
decreased inflammatory mediator release, and reduced nerve
conduction velocity. (Machado et al., 2016).

Despite its recognized benefits, the ideal CWI protocols,
particularly concerning water temperature and duration of
immersion, are still under debate. This ambiguity impedes
the establishment of standardized, evidence-based guidelines.
Therefore, a thorough evaluation of various CWI protocols is
necessary to ascertain the most efficacious combinations for
enhancing recovery.

Existing research has primarily focused on two isolated
factors of cold water immersion (CWI): water temperature
and immersion duration. Regarding water temperature, low-
temperature CWI (5°C–10°C) is widely considered the most
effective in mitigating muscle soreness and reducing blood creatine
kinase (CK) levels (Hohenauer et al., 2015). Low temperatures
accelerate local vasoconstriction, reducing inflammation and
alleviating exercise-inducedmuscle damage (EIMD) (Eimonte et al.,
2021a; Pawłowska et al., 2022; Takagi et al., 2011; Herrera et al.,
2010; Eimonte et al., 2021b). However, the discomfort associated
with lower temperatures may hinder long-term adherence
(Śliwicka et al., 2020). In contrast, moderate-temperature
CWI (11°C–15°C) is generally more tolerable due to its
higher comfort level, although its recovery effects remain
less clear. Additionally, high-temperature CWI (16°C–20°C),
while more comfortable, has shown relatively weaker effects in
reducing inflammation and promoting muscle function recovery
(Sellwood et al., 2007).

Concerning immersion duration, studies have reported
varying durations, typically categorized as short (<10 min),
moderate (10–15 min), and long (>15 min). Different durations
can exert varying effects on recovery. Short-duration immersions
(typically <10 min) are believed to provide immediate recovery
benefits, such as reducing muscle soreness, inflammation, and
perceived fatigue in the hours immediately following exercise.
These benefits are often more acute and noticeable right after
the immersion (Machado et al., 2016; Machado et al., 2017).
In contrast, longer-duration immersions (typically >15 min) are
considered more beneficial for overall recovery, which refers to
the longer-term restoration of muscle function, strength, and
endurance, particularly after high-intensity exercise-inducedmuscle
damage. The prolonged exposure to cold water in long-duration
immersions may aid in reducing delayed onset muscle soreness
(DOMS) and accelerate the repair of muscle tissues over a longer
period, contributing to a more comprehensive recovery process
(Machado et al., 2016; Machado et al., 2017).

This network meta-analysis systematically evaluated the effects
of different CWI protocols on EIMD recovery by comparing
various combinations of water temperature and duration. The study
categorizedCWIprotocols into six groups based on these parameters:

SD-LT-CWI: Short-duration low-temperature cold water
immersion (<10 min, 5°C–10°C).

MD-LT-CWI: Medium-duration low-temperature cold water
immersion (10–15 min, 5°C–10°C).

LD-LT-CWI: Long-duration low-temperature cold water
immersion (>15 min, 5°C–10°C).

MD-MT-CWI: Medium-duration medium-temperature cold
water immersion (10–15 min, 11°C–15°C).

MD-HT-CWI: Medium-duration high-temperature cold water
immersion (10–15 min, 16°C–20°C).

LD-HT-CWI: Long-duration high-temperature cold water
immersion (>15 min, 16°C–20°C).

Primary outcomes measured in this study include CK
levels as a biomarker of muscle damage, DOMS as a subjective
assessment, and jump height (JUMP), which serves as an indicator
of neuromuscular function and strength. By integrating data
from multiple sources, this analysis seeks to elucidate which
CWI parameter combinations—specifically temperature and
duration—optimize recovery after EIMD. The insights gained are
intended to help athletes, coaches, and sports scientists develop
evidence-based recovery strategies.
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2 Methods

2.1 Registration

This systematic review and network meta-analysis adhered
to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The protocol was officially
registered with the International Prospective Register of Systematic
Reviews (PROSPERO), registration ID: CRD42024602359.

2.2 Literature search strategy

A comprehensive, computerized search was executed across
multiple databases such as CNKI, PubMed, Cochrane Library, Web
of Science, and Embase. The objective was to collate randomized
controlled trials (RCTs) examining the impact of CWI on recovery
after acute EIMD. The search covered the period from January 2000
to September 2024. Developed based on the PICOS framework,
the strategy included: (P) Population—healthy individuals; (I)
Intervention—CWI; (C)Comparison—control andpassive recovery
groups without intervention; (O) Outcomes—CK, DOMS, and
jump performance (including counter-movement jump or squat
jump); (S) Study design—RCTs. The search utilized a blend of
subject headings and free-text terms. Additionally, references of
all included studies were scrutinized to unearth further pertinent
literature. Search terms deployed included various combinations
and synonyms of CWI, muscle fatigue, EIMD, and study design
descriptors.

2.3 Inclusion criteria

(1) Only studies employing a RCT design were selected.
(2) Participants were required to be healthy males or females

without recent illnesses or chronic disease histories.
(3) The investigations needed to focus on a singular

exercise session.
(4) The CWI protocol had to be administered within 1 hour

following exercise.
(5) The studies must report at least one of the following outcomes:

DOMS, CK, or JUMP.
(6) Outcome assessments were required to be conducted within

48 h post-intervention.

2.4 Exclusion criteria

(1) Research not limited to a singular CWI intervention (e.g.,
studies combining CWI with compression garments, active
recovery, or nutritional supplements).

(2) Long-term CWI protocols.
(3) Theses, conference proceedings, or abstracts lacking full-text

availability.
(4) Studies where valid outcome data were unextractable and

author clarification could not be obtained.
(5) Duplicated publications.

2.5 Literature screening and data
extraction

Two researchers independently screened the literature, extracted
data, and cross-verified their findings. In cases of disagreement,
a third party was consulted for assistance. Missing data were
supplemented by contacting the authors whenever possible.
Literature screening began with reading titles and abstracts; after
excluding obviously irrelevant studies, full texts were reviewed to
determine final inclusion. Data extraction primarily included: first
author, country, year of publication, intervention subjects (sample
size for each group, gender, age, occupation), intervention measures
(CWI protocol, testing time after intervention), and outcome
indicators.

2.6 Assessment of risk of bias in included
studies

Risk of bias was assessed by two researchers using the Cochrane
Handbook’s tool for RCTs. The assessment criteria included:
allocation sequence generation, allocation concealment, blinding
of participants and personnel, blinding of outcome assessment,
completeness of outcome data, absence of reporting bias, and other
potential biases.

2.7 Data synthesis

Based on the temperature and duration differences in the
CWI intervention protocols from the included literature, this study
identified the following six criteria for grouping:

SD-LT-CWI: Short-duration low-temperature cold water
immersion (<10 min, 5°C–10°C).

MD-LT-CWI: Medium-duration low-temperature cold water
immersion (10–15 min, 5°C–10°C).

LD-LT-CWI: Long-duration low-temperature cold water
immersion (>15 min, 5°C–10°C).

MD-MT-CWI: Medium-duration medium-temperature cold
water immersion (10–15 min, 11°C–15°C).

MD-HT-CWI: Medium-duration high-temperature cold water
immersion (10–15 min, 16°C–20°C).

LD-HT-CWI: Long-duration high-temperature cold water
immersion (>15 min, 16°C–20°C).

2.8 Statistical analysis

To minimize the impact of baseline differences, this study
utilized the change values of mean and standard deviation before
and after the intervention for effect size synthesis. The calculation
method for standard deviation changes was based on the formula
provided in the Cochrane Handbook (6th edition) (Higgins and
Collaboration, 2019). Following the PRISMAguidelines for network
meta-analysis (Hutton et al., 2015), a random-effects model was
employedwithin a frequentist framework to combine effect sizes and
calculate the 95%confidence intervals (CIs) using Stata 16.0 software
(Salanti, 2012). This approach was used to assess the effects of
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various CWI intervention protocols on CK, DOMS, and JUMP. Due
to the inconsistency in measurement units for outcome indicators,
standardized mean difference (SMD) was used as the effect size
for synthesis. A network evidence plot was generated to describe
the relationships between different exercise interventions, where
the lines connecting nodes represent direct comparisons between
interventions, with line thickness proportional to the number of
studies and node size proportional to sample size. The inconsistency
factor and its 95% CI were calculated to evaluate the consistency of
each closed loop (Chaimani et al., 2013). An inconsistency model
was employed to test for inconsistency; when P > 0.05, a consistency
model was used for analysis. The surface under the cumulative
ranking curve (SUCRA)was utilized to rank and compare the effects
of different types of interventions. SUCRA values range from 0%
to 100%, with 100% indicating the best intervention effect and 0
indicating the worst. A funnel plot was created to assess the presence
of publication bias or small sample effects.

3 Results

3.1 Study identification and selection

The search strategy yielded 1,299 potentially relevant articles
across several databases: CNKI (5), PubMed (170), Embase (142),
Cochrane Library (631), and Web of Science (351). The elimination
of 540 duplicates was followed by the exclusion of 431 articles after
screening titles and abstracts. Subsequent full-text reviews led to the
exclusion of an additional 260 articles, with data extraction being
unfeasible for 13 articles. Ultimately, 55 RCTs were selected for
inclusion in this analysis (Figure 1).

3.2 Characteristics of included studies

A total of 55 randomized controlled trials were included,
comprising 1,139 participants. The intervention protocols for the
experimental group included MD-LT-CWI, MD-MT-CWI, LD-LT-
CWI, SD-LT-CWI, MD-HT-CWI, and LD-HT-CWI. The included
studies were predominantly published in the last 10 years, with
42 studies reporting DOMS as an outcome measure, 36 studies
reporting JUMP, and 30 studies reporting CK. Detailed information
is presented in (Table 1).

3.3 Risk of bias assessment

Figure 2A presents an overview of the risk of bias across
the included studies. All incorporated studies utilized random
allocation methods; 47 studies provided details on allocation
concealment methods such as sealed container use or computer-
generated random sequences. However, many studies lacked
clarity regarding the blinding of implementers and participants,
thus elevating the potential for bias since blinding during the
interventions proved challenging. Blinding of outcome assessorswas
confirmed in 45 studies, mitigating detection bias. Regarding data
integrity, 48 studies showed a low risk of bias, with complete data
reported in 35.The other studies adequately justified any participant

withdrawals or follow-up losses, utilizing robust methods for
handling incomplete data. A low likelihood of reporting bias was
observed, with 49 studies analyzing and presenting results as pre-
specified in their protocols. Nonetheless, 16 studies faced additional
bias risks related to insufficient exercise intervention details or small
sample sizes (Supplementary Figure S2B).

3.4 Network meta-analysis results

3.4.1 Network evidence plot
Figure 3 displays the network evidence plot, elucidating the

effects of varying CWI protocols on recovery from acute EIMD
by examining different temperatures and durations. The most
frequently studied intervention was MD-LT-CWI (10–15 min,
5°C–10°C), and the least common was SD-LT-CWI (<10 min,
5°C–10°C). The following comparisons provided indirect evidence:
For DOMS: MD-MT-CWI (10–15 min, 11°C–15°C) versus LD-LT-
CWI (>15 min, 5°C–10°C); For JUMP: Comparisons among MD-
LT-CWI, MD-MT-CWI, and LD-LT-CWI; For CK: Comparisons
involving MD-LT-CWI, MD-MT-CWI, LD-LT-CWI, and SD-LT-
CWI. Mixed evidence was reported in other comparison scenarios.

3.4.2 Inconsistency testing
The loop inconsistency tests, inconsistency models, and node-

splitting methods were employed across all outcome measures.
The tests revealed no significant inconsistencies (P > 0.05) for the
JUMP and CK outcomes across all triangular loops. For DOMS, the
loop “CON-MD-LT (10–15 min, 5°C–10°C) - MD-MT (10–15 min,
11°C–15°C)” showed inconsistency, while others were consistent.
The inconsistency model tests confirmed non-significant P-values
for all outcomes, supporting the use of consistency models. Node-
splitting indicated high reliability for DOMS and CK, with no
significant discrepancies between direct and indirect evidence (P
> 0.05). For JUMP, four instances showed inconsistencies (P <
0.05) and five showed consistency (P > 0.05), suggesting moderate
reliability (Supplementary Figure S1).

3.5 Combined effect size analysis and
ranking results

3.5.1 DOMS
For the DOMS indicator, compared to the control group, MD-

LT-CWI (10–15 min, 5°C–10°C) [SMD = −1.12, 95% CI (−1.78,
−0.47), P = 0.01] andMD-MT-CWI (10–15 min, 11°C–15°C) [SMD
= −1.45, 95% CI (−2.13, −0.77), P < 0.01] significantly reduced
the DOMS values associated with recovery from acute exercise-
induced muscle damage. Notably, MD-LT-CWI (10–15 min,
5°C–10°C) [SMD = −2.63, 95% CI (−4.52, −0.74), P < 0.05],
MD-MT-CWI (10–15 min, 11°C–15°C) [SMD = −2.96, 95% CI
(−4.94, −0.98), P < 0.05], LD-LT-CWI (>15 min, 5°C–10°C)
[SMD = −2.47, 95% CI (−4.41, −0.52), P < 0.05], and MD-HT-
CWI (10–15 min, 16°C–20°C) [SMD = −2.51, 95% CI (−4.72,
−0.30), P < 0.05] were significantly better than LD-HT-CWI
(>15 min, 16°C–20°C) (Figure 5A).The SUCRAprobability ranking
results indicated that MD-MT-CWI (10–15 min, 11°C–15°C) had
the highest probability of being the best intervention (SUCRA
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FIGURE 1
PRISMA flow diagram: This diagram details the process of paper inclusion throughout the search strategy, illustrating that 55 studies met the inclusion
criteria and were incorporated into this network meta-analysis (NMA).

= 84.3%), followed by MD-LT-CWI (10–15 min, 5°C–10°C)
(SUCRA = 68%) and MD-HT-CWI (10–15 min, 16°C–20°C)
(SUCRA = 62.3%), while LD-HT-CWI (>15 min, 16°C–20°C) had
the lowest probability (SUCRA = 1.6%) (Figure 4A).

3.5.2 JUMP
For the JUMP indicator, compared to the control group, MD-

LT-CWI (10–15 min, 5°C–10°C) [SMD = 0.48, 95% CI (0.20,
0.77), P = 0.01] and MD-MT-CWI (10–15 min, 11°C–15°C)
[SMD = 0.42, 95% CI (0.15, 0.70), P = 0.02] significantly
improved jump height, a measure of performance recovery
from acute exercise-induced muscle damage (Figure 5B). The
SUCRA probability ranking results indicated that MD-LT-CWI
(10–15 min, 5°C–10°C) had the highest probability of being the best
intervention (SUCRA = 70.4%), followed by LD-LT-CWI (>15 min,
5°C–10°C) (SUCRA = 67.8%) and MD-MT-CWI (10–15 min,
11°C–15°C) (SUCRA = 62.6%), while MD-HT-CWI (10–15 min,
16°C–20°C) had the lowest probability (SUCRA = 29.8%)
(Figure 4B).

3.5.3 CK
For the CK indicator, compared to the control group, MD-

LT-CWI (10–15 min, 5°C–10°C) [SMD = −0.90, 95% CI (−1.46,
−0.34), P = 0.02] andMD-MT-CWI (10–15 min, 11°C–15°C) [SMD
= −0.85, 95% CI (−1.36, −0.35), P = 0.01] significantly reduced
CK levels, a physiological marker of recovery from acute exercise-
induced muscle damage (Figure 5C). The SUCRA probability
ranking results showed that MD-LT-CWI (10–15 min, 5°C–10°C)
had the highest probability of being the best intervention (SUCRA
= 75.7%), followed by MD-MT-CWI (10–15 min, 11°C–15°C)
(SUCRA = 72.5%) and SD-LT-CWI (<10 min, 5°C–10°C) (SUCRA
= 55.6%), while LD-LT-CWI (>15 min, 5°C–10°C) had the lowest
probability (SUCRA = 34.1%) (Figure 4C).

3.5.4 Publication bias assessment
We constructed separate funnel plots for all outcomes to

assess potential publication bias. A visual inspection of the funnel
plots revealed no significant publication bias. Specific details
are shown in (Figure 6).
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TABLE 1 Characteristics of the included studies.

Study N, sex Mean age
(SD/Range)

Profession Intervention
programmes

Type Time of
measures

Outcomes
measured

Anderson et al.
(2018)

27 M 24 ± 2 years Non-athletes CWI1:5°C∗12 min
CWI2:14°C∗12 min 

CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS ←→ CK↓
DOMS↓ CK↓

Angelopoulos et al.
(2022)

15 M 21.1 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ CK↓

Ascensão et al.
(2011)

20 M 18.3 + 0.8 years soccer players CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

48H JUMP↑

Bailey et al. (2007) 20 M 21.7 + 2.0 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ CK↑

Hill and Barber
(2016)

8 M 20 ± 1.2 years rugby player CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ CK↓
JUMP↑

Bartley et al.
(2021)

29 M 46.00 ± 3.15 years Kona Ironman CWI:10°C∗12 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓

Batista et al.
(2024)

20 M 14.05 ± 1.79 years adolescent
swimmers

CWI:14°C∗12 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H JUMP↑

Bouzid et al.
(2018)

8 M 19.63 ± 0.74 years soccer players CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ CK↓
JUMP↑

Crowther et al.
(2019)

14 M 26 ± 6 years Non-athletes CWI:15°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ JUMP↓

Crowther et al.
(2019)

34 M 27 ± 6 years Non-athletes CWI:15°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ JUMP
←→

Crowther et al.
(2017)

9 M 27 ± 6 years Non-athletes CWI:15°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ JUMP↑

Delextrat et al.
(2013)

8 M 23 ± 3 years athletes CWI:14°C∗14min
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ CK↓
JUMP↑

Delextrat et al.
(2013)

8 M 23 ± 3 years athletes CWI:14°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ CK↓
JUMP↑

Difranco et al.
(2022)

21 M 40.6 ± 7.2 years marathon CWI:8°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

48H CK↓

Elias et al. (2012) 14 M 20.9 ± 3.3 years soccer players CWI:12°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ JUMP↑

(Continued on the following page)

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1525726
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wang et al. 10.3389/fphys.2025.1525726

TABLE 1 (Continued) Characteristics of the included studies.

Study N, sex Mean age
(SD/Range)

Profession Intervention
programmes

Type Time of
measures

Outcomes
measured

Elias et al. (2013) 16 M 21.8 ± 2.9 years soccer players CWI:12°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ JUMP↑

Fakhro et al.
(2022)

30 NA 19–44 years Non-athletes CWI:12°C∗15 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ CK↓
JUMP↑

Fonseca et al.
(2016)

8 M 24.0 ± 3.6 years Jiu-Jitsu Athletes CWI:6°C∗19 min 
CON

LD-LT-CWI
(>15 min,
5°C–10°C)

24H DOMS↓ CK↓
JUMP↑

Getto and Golden
(2013)

15 NA 18–24 years NCAA CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↑ JUMP↓

Glasgow et al.
(2014)

10 NA 18–35 years Non-athletes CWI:6°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ CK↓

Goodall and
Howatson (2020)

18 M 24 ± 5 years Non-athletes CWI:15°C∗12min
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓

Haq et al. (2022) 16 M 47.2 ± 12.0 years Non-athletes CWI:15°C∗10 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H CK↓

Hohenauer et al.
(2020)

18 M 22.5 ± 2.7 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H JUMP↑ DOMS↓

Howatson et al.
(2009)

8 M 23 ± 3 years Non-athletes CWI:15°C∗12 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ CK↑

Ingram et al.
(2009)

11 M 27.5 ± 6.0 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ CK↓

Jakeman et al.
(2009)

18 F 19.9 + 0.97 years athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

48H DOMS↓ CK↓

Kositsky and Avela
(2020)

10 M 18.4 ± 0.5 years soccer players CWI:10°C∗20 min 
CON

LD-LT-CWI
(>15 min,
5°C–10°C)

24H DOMS↑ CK↓
JUMP↑

Leal Junior et al.,
(2011)

6 M 17–25 years soccer players CWI:5°C∗5 min 
CON

SD-LT-CWI
(<10 min,
5°C–10°C)

24H CK↓

Lindsay et al.
(2017)

15 M 28.3 ± 5.7 years MMA athletes CWI:10°C∗15 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ JUMP↑

Machado et al.
(2017)

60 M 20.4 ± 1.8 years Non-athletes CWI1:9°C∗15 min
CWI2:14°C∗15 min 

CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ CK↓
DOMS↑ CK↓

Malta et al. (2019) 36 M 24.2 ± 5.5 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

48H DOMS↓ JUMP↓
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TABLE 1 (Continued) Characteristics of the included studies.

Study N, sex Mean age
(SD/Range)

Profession Intervention
programmes

Type Time of
measures

Outcomes
measured

Minett et al. (2014) 9 M 21 ± 2 years team-sport
athletes

CWI:10°C∗20 min 
CON

LD-LT-CWI
(>15 min,
5°C–10°C)

24H DOMS↓ CK↓

Missau et al.
(2018)

13 NA 26 ± 5 years Non-athletes CWI:15°C∗10min
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓

Nasser et al. (2023) 12 M 21.1 ± 2.2 years soccer players CWI:11°C∗15 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ JUMP↑

Pesenti et al.
(2020)

14 M 16.2 ± 0.4 years soccer players CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

48H DOMS↓

Pinheiro et al.
(2024)

20 M 18 ± 0.8 years soccer players CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H CK↓ JUMP↓

Poignard et al.
(2023)

13 M 28 ± 6 years tennis players CWI:11°C∗11 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H CK↑

Pointon and
Duffield (2012)

10 M 21.0 ± 1.7 years rugby player CWI:9°C∗20 min 
CON

LD-LT-CWI
(>15 min,
5°C–10°C)

24H DOMS↓ CK↑

Pointon et al.
(2012)

10 M 19.9 ± 1.1 years rugby player CWI:8.9°C∗20 min
CON

LD-LT-CWI
(>15 min,
5°C–10°C)

24H CK↑

Pooley et al. (2020) 15 M 16 ± 1 year soccer players CWI:14°C∗10 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ CK↓
JUMP↑

Pournot et al.
(2011)

22 M 21.5 ± 4.6 years athletes CWI:10°C∗15 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↑ CK↓
JUMP↑

Roberts et al.
(2014)

10 M 21.3 ± 1.6 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H JUMP↑

Rupp et al. (2012) 22 NA 19.8 ± 1.1 years soccer players CWI:12°C∗15 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ JUMP↑

Sánchez-
Ureña et al. (2017)

10 M 14 ± 0.4 years basketball players CWI:12°C∗12 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H DOMS↓ JUMP↑

Sánchez-
Ureña et al. (2018)

13 M 19.9 ± 2.8 years Non-athletes CWI:12°C∗12min
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

48H JUMP↑

Schimpchen et al.
(2017)

7 M 25 ± 4 years weightlifters CWI:12°C–15°C∗10 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H CK↓

Siqueira et al.
(2018)

29 M 19.9 ± 1.4 years Non-athletes CWI:10°C∗20min
CON

LD-LT-CWI
(>15 min,
5°C–10°C)

48H DOMS↓ CK↓
JUMP↑

(Continued on the following page)

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2025.1525726
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wang et al. 10.3389/fphys.2025.1525726

TABLE 1 (Continued) Characteristics of the included studies.

Study N, sex Mean age
(SD/Range)

Profession Intervention
programmes

Type Time of
measures

Outcomes
measured

Buoite Stella et al.
(2024)

16 M 16–30 years soccer players CWI:10°C∗12 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓

Takeda et al.
(2024)

10 M 20.3 ± 0.6 years rugby player CWI:15°C∗10 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H CK↓ JUMP↑

Tavares et al.
(2020)

13 M 19.2 ± 0.8 years Volleyball Athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H JUMP↑

Vaile et al. (2008) 24 M NA Non-athletes CWI:15°C∗14 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ CK↓

White et al. (2014) 40 M 23.6 ± 3.7 years Non-athletes CWI1:20°C∗10 min
CWI2:20°C∗30 min
CWI3:10°C∗10 min
CWI4:10°C∗30 min

CON

MD-HT-CWI
(10–15 min,
16°C–20°C)
LD-HT-CWI
(>15 min,

16°C–20°C)
MD-LT-CWI
(10–15 min,
5°C–10°C)
LD-LT-CWI
(>15 min,
5°C–10°C)

48H DOMS↑ JUMP↓
DOMS↓ JUMP↑
DOMS↑ JUMP↑
DOMS↑ JUMP↓

Wiewelhove et al.
(2018)

24 M 30.2 ± 8.6 years Non-athletes CWI:15°C∗15 min 
CON

MD-MT-CWI
(10–15 min,
11°C–15°C)

24H DOMS↓ CK↓
JUMP↓

Wilson et al.
(2019)

16 M 21.88 ± 3.40 years Non-athletes CWI:10°C∗10 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓ JUMP↓

Yanagisawa et al.
(2003)

19 M 23.8 + 1.8 years Non-athletes CWI:5°C∗15 min 
CON

MD-LT-CWI
(10–15 min,
5°C–10°C)

24H DOMS↓

Note: DOMS, Delayed Onset Muscle Soreness; CK, Creatine Kinase; SD-LT-CWI, Short-duration low-temperature cold water immersion (<10 min, 5°C–10°C); MD-LT-CWI, Medium-duration
low-temperature cold water immersion (10–15 min, 5°C–10°C); LD-LT-CWI, Long-duration low-temperature cold water immersion (>15 min, 5°C–10°C); MD-MT-CWI, Medium-duration
medium-temperature cold water immersion (10–15 min, 11°C–15°C); MD-HT-CWI, Medium-duration high-temperature cold water immersion (10–15 min, 16°C–20°C); LD-HT-CWI,
Long-duration high-temperature cold water immersion (>15 min, 16°C–20°C); ↑: Indicates an increase in the outcome measure compared to the control group; ↓: Indicates a decrease in the
outcome measure compared to the control group; ←→: Indicates no change in the outcome measure compared to the control group.

FIGURE 2
A risk of bias of each study.

4 Discussion

This study synthesized findings from RCTs on the effects
of various doses of cold water immersion (CWI) on recovery
from acute exercise-induced muscle damage, revealing that
different CWI protocols affect physiological markers of
muscle damage (CK), subjective muscle pain (DOMS), and
performance (JUMP) differently. Currently, systematic reviews
on the impact of cold water immersion primarily compare
different recovery modalities (such as hot water immersion,
contrast baths, hydrotherapy, or massage) and categorize them
by type, with fewer studies comprehensively examining the
differences among various doses of CWI and a limited number
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FIGURE 3
Network evidence plot showing the effects of varying doses of cold water immersion (CWI) on recovery from acute exercise-induced muscle damage,
considering duration and temperature. (A) DOMS (Delayed Onset Muscle Soreness); (B) JUMP; (C) CK(Creatine Kinase); SD-LT-CWI: Short-duration
low-temperature cold water immersion (<10 min, 5°C–10°C); MD-LT-CWI: Medium-duration low-temperature cold water immersion (10–15 min,
5°C–10°C); LD-LT-CWI: Long-duration low-temperature cold water immersion (>15 min, 5°C–10°C); MD-MT-CWI: Medium-duration
medium-temperature cold water immersion (10–15 min, 11°C–15°C); MD-HT-CWI: Medium-duration high-temperature cold water immersion
(10–15 min, 16°C–20°C); LD-HT-CWI: Long-duration high-temperature cold water immersion (>15 min, 16°C–20°C).

FIGURE 4
Surface under the cumulative ranking curve for probability rankings. (A) DOMS; (B) jump; (C) CK.

of included studies. By incorporating a substantial number of
original studies, this research combined direct and indirect
evidence to explore the differences in intervention effects
between varying doses of CWI. The findings indicate that
MD-LT-CWI (10–15 min, 5°C–10°C) was most effective for
biochemical markers (CK) and neuromuscular recovery (JUMP),
while MD-MT-CWI (10–15 min, 11°C–15°C) was best for
alleviating muscle soreness (DOMS).

4.1 Recovery from DOMS

In this network meta-analysis, MD-MT-CWI (10–15 min,
11°C–15°C) demonstrated the best efficacy in alleviating delayed
onset muscle soreness (DOMS). DOMS is a delayed pain resulting
from micro-damage to muscle tissue following intense exercise,
typically occurring 24–72 h post-exercise (Hill et al., 2014;
Vieira et al., 2016). This pain is closely related to factors such as

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2025.1525726
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wang et al. 10.3389/fphys.2025.1525726

FIGURE 5
Results of the network meta-analysis. (A) DOMS (Delayed Onset Muscle Soreness); (B) JUMP; (C) CK(Creatine Kinase); SD-LT-CWI: Short-duration
low-temperature cold water immersion (<10 min, 5°C–10°C); MD-LT-CWI: Medium-duration low-temperature cold water immersion (10–15 min,
5°C–10°C); LD-LT-CWI: Long-duration low-temperature cold water immersion (>15 min, 5°C–10°C); MD-MT-CWI: Medium-duration
medium-temperature cold water immersion (10–15 min, 11°C–15°C); MD-HT-CWI: Medium-duration high-temperature cold water immersion
(10–15 min, 16°C–20°C); LD-HT-CWI: Long-duration high-temperature cold water immersion (>15 min, 16°C–20°C). Data in bold indicate statistically
significant differences between vertical and horizontal intervention methods in the table.

mechanical damage to muscle fibers, local inflammatory responses,
edema around the muscles, and activation of pain receptors
(Afonso et al., 2021). The inflammatory response following exercise
can lead to local swelling and the release of inflammatory mediators
(such as prostaglandins and interleukins), which further exacerbate
pain and discomfort. (Ascensão et al., 2011).

Cold water immersion, particularly MD-MT-CWI (10–15 min,
11°C–15°C), can alleviate DOMS through several primary
mechanisms. First, cold water induces vasoconstriction, reducing
local blood flow and thus decreasing the accumulation and
release of inflammatory mediators, significantly inhibiting the
initial local inflammatory response (Ihsan et al., 2016). Second,
cold water lowers tissue temperature, slowing local metabolism
and reducing edema and interstitial fluid accumulation, which
alleviates tissue pressure and stimulation of pain receptors
(Hohenauer et al., 2015).

Compared to low-temperature CWI (5°C–10°C), medium-
temperature CWI (11°C–15°C, 10–15 min) may offer a better
balance between cooling effect and comfort.While low-temperature
CWI is effective in reducing muscle inflammation and pain,
prolonged exposure to excessively low temperatures can lead
to discomfort, muscle tightness, or even vasoconstriction,
potentially hindering optimal recovery (Wilcock et al., 2006;
Crystal et al., 2013; Yeargin et al., 2024; Versey et al., 2013).

In contrast, medium-temperature CWI (11°C–15°C) provides
sufficient cooling to mitigate muscle soreness and inflammation
without the discomfort associated with colder temperatures
(Machado et al., 2016; Machado et al., 2017). Several studies
(Machado et al., 2016; Machado et al., 2017) suggest that
moderate temperatures can be more comfortable for longer
immersion durations, which may reduce stress responses and
improve adherence to recovery protocols. Furthermore, medium
temperatures might enhance blood flow by avoiding excessive
vasoconstriction, thus promoting more effective muscle repair
and reducing delayed onset muscle soreness (DOMS). While
further research is needed to validate these mechanisms, medium-
temperature CWI appears to be a more practical approach in
clinical settings for alleviating DOMS while maintaining patient
comfort.

4.2 Recovery of JUMP

The results indicate that MD-LT-CWI (10–15 min, 5°C–10°C)
was the most effective in enhancing jump performance. This
finding is significant, especially for athletes needing rapid
recovery of functional performance. Jump performance reflects
a combination of neuromuscular function and strength, and
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FIGURE 6
Funnel plot of publication bias (A) DOMS; (B) JUMP; (C) CK.

cold water immersion can promote recovery through various
mechanisms (Bailey et al., 2007).

First, cold water lowers local muscle temperature, slowing
nerve conduction and muscle metabolic rates, allowing for effective
recovery in a short timewhile alleviating soreness and fatigue caused
by muscle damage, which is crucial for athletes needing to regain
jump capacity quickly (Rowsell et al., 2011). Second, cold water
immersion helps reduce muscle fatigue accumulation, promotes
blood return, and aids in clearing metabolic waste such as lactic
acid, thereby accelerating energy supply recovery andmicro-damage
repair, whichmitigates fatigue (Leeder et al., 2012). Additionally, the
vasodilation that occurs after cold water immersion enhances blood
flow in the recovery phase, increasing the supply of oxygen and
nutrients to support muscle regeneration and repair. This process
helps accelerate the recovery of muscle function and aids in the
restoration of neuromuscular function (Leeder et al., 2012).

It is critical to acknowledge that whileMD-LT-CWI significantly
boosts jump performance, overly low temperatures may induce
muscle stiffness and discomfort (Machado et al., 2017;Wilcock et al.,
2006; Crystal et al., 2013; Yeargin et al., 2024; Versey et al., 2013) if
applied for extended periods. Therefore, it is advisable to tailor the
timing and temperature of immersion to the specific needs of the
athlete to optimize recovery benefits without imposing additional
physiological strain.

4.3 Reduction of CK

Creatine kinase (CK) is a key biomarker for muscle
damage, with elevated levels typically associated with damage
to muscle cell membranes and leakage of muscle fibers
(Choo et al., 2022; Rowsell et al., 2009). This meta-analysis found
that both MD-LT-CWI (10–15 min, 5°C–10°C) and MD-MT-CWI
(10–15 min, 11°C–15°C) significantly reduced CK levels post-
exercise, indicating that cold water immersion effectively mitigates
muscle damage.

The mechanisms by which cold water immersion lowers CK
levels primarily involve reducing the extent of muscle damage and
accelerating the repair process (White et al., 2014). Cold immersion
lowers local temperatures, decreasing the permeability ofmuscle cell
membranes and thus curtailing CK leakage into the bloodstream
(White and Wells, 2013), helping to preserve cellular structural
integrity and minimize further membrane damage (Ingram et al.,
2009). Additionally, it diminishes inflammatory responses and local
edema, creating an optimal environment for muscle regeneration
(Ascensão et al., 2011). Enhanced vasodilation following cold
immersion increases nutrient and oxygen supply to muscles,
accelerating the repair process and the reestablishment of normal
physiological functions (Ascensão et al., 2011). Moreover, intense
exercise triggers oxidative stress, boosting free radical production
that exacerbates muscle damage. CWI mitigates these effects by
reducing tissue metabolic rates, curtailing free radical production,
and enhancing antioxidant activity (Malta et al., 2021), crucial for
decreasing CK release.

In this study, both MD-LT-CWI (10–15 min, 5°C–10°C)
and MD-MT-CWI (10–15 min, 11°C–15°C) exhibited consistent
effects in lowering CK levels. However, MD-MT-CWI (10–15 min,
11°C–15°C) provides greater comfort, potentially making it more
suitable for the practical needs of most athletes. Considering
practical circumstances, selecting an appropriate cold water
immersion protocol can help alleviate muscle damage while
providing a more comfortable recovery experience.

4.4 Limitations

Despite efforts to reduce heterogeneity across the included
primary studies, unavoidable factors such as participant age
and geographical differences remained. Specifically, geographical
differences refer to variations in studies conducted across different
countries and regions, where factors such as climate, culture,
and local exercise habits may influence the effectiveness of
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cold water immersion (CWI). These differences could result in
variations in study design, participant selection, and intervention
implementation, potentially impacting the generalizability of
the findings.

Notably, the analysis revealed limited gender diversity within
the sample populations: only one study exclusively used female
participants, five studies did not specify the gender of participants,
and the remaining studies involved only male participants. As a
result, the outcomes of this review may primarily reflect the effects
of six different CWI doses on muscle recovery among males.

5 Conclusion

This review and meta-analysis incorporated 55 studies
examining the effects of SD-LT-CWI (<10 min, 5°C–10°C),
MD-LT-CWI (10–15 min, 5°C–10°C), LD-LT-CWI (>15 min,
5°C–10°C), MD-MT-CWI (10–15 min, 11°C–15°C), MD-HT-CWI
(10–15 min, 16°C–20°C), and LD-HT-CWI (>15 min, 16°C–20°C)
on physiological, sensory, and neuromuscular recovery following
acute exercise. Our findings indicate that MD-LT-CWI (10–15 min,
5°C–10°C) was most effective for biochemical markers (CK) and
neuromuscular recovery (JUMP), while MD-MT-CWI (10–15 min,
11°C–15°C) showed the best results for alleviating muscle
soreness (DOMS). In practice, we recommend employing MD-
LT-CWI (10–15 min, 5°C–10°C) and MD-MT-CWI (10–15 min,
11°C–15°C) to mitigate exercise-induced muscle damage (EIMD).
However, it remains crucial to develop personalized recovery plans
tailored to individual athlete differences. Given the limitations
related to the number and quality of included studies, further
high-quality research is needed to validate these conclusions.
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