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Cerebral blood flow (CBF) supports brain function and health. Cerebral blood
flow is affected by normal brain development, disease, medications use, and
other interventions. One method to measure CBF is phase contrast magnetic
resonance (PC MR) imaging, a particularly fast and reliable method to measure
blood flow through major arteries such as the internal carotid (ICA) or vertebral
arteries (VA). Unfortunately, sometimes PC MR can be compromised due to
errors by the technologist during image acquisition, patient movement, or
complex vessel structures. Our goal was to develop mathematical models to
estimate CBF for a wide age range of patients whenever 1 or more vessels
are not correctly measured. To investigate this, we studied a set of 258 PC MR
acquisitions from a group of 196 patients with one or three acquisitions per
subject (165 single images, 31 acquisitions of 3 images) ranging in age from 0.4
to 61.3 years (mean [μ] = 13.1, standard deviation [σ] = 12.3). We deliberately
excluded measurements from one or more arteries in each volunteer to mimic
situations with low image quality. Subsequently, we developed mathematical
models to predict the missing data. Our predictive models performed well;
across the human lifespan when at least one ICA measurement was available,
our normalized root mean squared error values were low (<0.137), our R-
squared values were high (>0.91), and we observed high intra-class correlation
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coefficients (>0.951). In summary, these imputation models are effective in
estimating CBF in children and adults.

KEYWORDS

internal carotid artery (ICA), cerebral blood flow (CBF), magnetic resonance imaging
(MRI), vertebral artery (VA), phase contrast (PC)

1 Introduction

Maintaining an adequate blood supply to meet the brain’s
energy demand is essential for its health. The brain consumes 20%
of the body’s total energy, necessitating a considerable supply of
blood which constitutes 12% of the heart’s total cardiac output
(Hall et al., 2012; Mink et al., 1981). Both total cerebral blood flow
(CBF [mL/min]) and relative CBF adjusted by brain volume [rCBF,
mL/min/100 g] also change across the lifespan, and can become
impaired by injury or disease (Liu et al., 2019; Paniukov et al.,
2020; Oshima et al., 2002). In children, CBF is influenced by
normal brain maturation and pathological conditions such as
congenital heart defects (De Silvestro et al., 2023; Lim et al.,
2016), meningitis (Ashwal et al., 1992), Moyamoya (Sun et al.,
2018), metabolic disorders (Qi et al., 2023), and hydrocephalous
(Hirabuki et al., 2000). In adults, alterations in CBF are associated
with cardiovascular risk (Hirabuki et al., 2000; Jennings et al., 2013;
King et al., 2018; Varela et al., 2012), small vessel disease including
Alzheimer’s dementia (Yu et al., 2020; Leijenaar et al., 2017), white
matter lesions (Hanaoka et al., 2016), anemia (Borzage et al.,
2016), stroke risk in sickle cell disease (Prohovnik et al., 2009;
Vernooij et al., 2008), and higher risk of non-cardiovascular
mortality in the elderly (Sabayan et al., 2013).

Non-invasive assessment of CBF is attractive for diagnosing
and monitoring disease status. Phase contrast (PC) magnetic
resonance (MR) imaging can measure flow through the internal
carotid arteries (ICA) and vertebral arteries (VA). PC MR imaging
provides a reproducible (intra-class correlation coefficient (ICC)
0.97–0.99, coefficient of variation 4%–9%), robust measurement
of CBF that can be normalized to estimate rCBF [mL/min/100 g]
(Liu et al., 2014; Sakhare et al., 2019; Koerte et al., 2013; MacDonald
and Frayne, 2015). PC MR is robust to parameter variations
including encoding velocity, number of signal averages, voxel size,
flip angle, slice thickness, and imaging acceleration (Greil et al.,
2002; Correia de Verdier et al., 2024; Thunberg et al., 2003).
Furthermore, PC acquisitions remain accurate despite practical
acquisition challenges such as differing study sites, slice inclination,
and breathing motion (Greil et al., 2002; Andersson et al., 2016;
Summers et al., 2005). Because velocity is directly encoded in the
moving blood, post-processing is straightforward and does not rely
on complex modelling or assumptions that may differ between
subjects who have normal or pathologic flow. By following well-
established scanning norms such as minimizing repetition time
and echo time, setting the encoding velocity to a value moderately
above the fastest expected flow for a given clinical scenario, and
selecting voxels sufficiently small to fit inside the vessel lumen, a
robust PC protocols can be deployed in clinical environments across
a wide age range (Greil et al., 2002; Correia de Verdier et al., 2024;
Lagerstrand et al., 2020).

However, the clinical use of PC MR imaging to measure CBF
is hampered when PC images from one or more vessels cannot
quantify flow. Factors such as normal variation in vessel size,
tortuosity of the ICAs and VAs, patient motion, and operator
facility may contribute to an unsuccessful image acquisition.
While automated techniques have been developed by researchers
to overcome some of these challenges, they have not been
implemented by vendors for use in standard clinical imaging
environments (Liu et al., 2014).Our prior research in adults reported
flow measurements in each vessel are sufficiently correlated with
one another that imputation can compensate for measurements
corrupted by anatomical variation, motion or obliquity, or improper
placement (Shah et al., 2023). We previously reported that flow
through any one vessel is highly correlated with CBF due to the
left-right symmetry in arterial flows and the constant ratio between
anterior and posterior flows, which lead to excellent imputation
models in adults. This study extends the feasibility of imputation
to a wider age range by examining these correlations in both
children and adults. We developed new mathematical models using
a combination of age and arterial blood flows to impute the CBF
across the human lifespan.

2 Materials and methods

2.1 Patient demographics

This study includes 258 single-slice phase contrast images that
were obtained from a total of 196 subjects (N = 108 children
and N = 88 adults), across two studies. One study population
comprised pediatric patients froma study approved by theChildren’s
Hospital Los Angeles Committee on Clinical Investigations (CCI
18–00493). Assent was obtained from the parents of patients
(N = 67, all children) recruited between 2020 and 2023. These
patients ranged from 0.4–11.9 years (μ = 2.7, σ = 1.6, 37M, 30F).
This cohort included patients with seizures and epilepsy (N =
23), neoplasms (N = 14), developmental delay or regression (N
= 7), cerebral palsy (N = 3), and other visit reasons (N = 20).
All (N = 67) children were anesthetized with propofol (100%);
some of these children also received dexmedetomidine (43%),
sevoflurane (4%), or ketamine (1%). Their hematocrit levels were
(μ = 35.9, σ = 3.2).

The other study population comprised unsedated patients and
volunteers with ages ranging from adolescence through adulthood.
This was a secondary analysis of existing data, which was originally
approved by the Children’s Hospital Los Angeles Committee on
Clinical Investigations (CCI 11–00083). Informed consent was
obtained from 129 patients (N = 41 children and N = 88 adults)
recruited between 2012 and 2017. These patients ranged from
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TABLE 1 Summary of relevant MR imaging parameters for pediatric and
adult cohorts.

Exam Pediatric Adult

Echo Time (ms) 11 7.5

Repetition Time (ms) 140 12.3

Field of View (mm × mm) 100 × 100 260 × 260

Acquisition Matrix 112 × 107 204 × 201

Reconstruction Matrix 224 × 224 488 × 488

Slice Thickness (mm) 5 5

Bandwidth (Hz/pixel) 171 244

Velocity encoding gradient (cm/s) 60 200

Signal averages 36 10

9–61 years (μ = 23.5, σ = 9.7, 59M, 70F). This cohort included
patients with sickle cell disease (N = 55), patients with other
hemoglobinopathies (N = 32), and healthy control volunteers (N
= 42). Their hematocrits levels were (μ = 32.9, σ = 7.2); some
patients 33% of the adult cohort (N = 42) received chronic
transfusions (Borzage et al., 2016). All subjects were free of known
cerebral vessel steno-occlusive disease.

2.2 Image acquisition

The imaging methods are reported elsewhere in detail and
summarized here (Borzage et al., 2016). We obtained all images for
both groups with 3T Philips MRI systems (Ingenia, Ingenia CX, or
Achieva) equippedwith an eight-element head coil.We localized the
vessels in the neck with a magnetic resonance angiogram, and then
placed a PCMR imaging plane approximately 1 cm above the carotid
bifurcation. In the pediatric population, the angiogramwas collected
in the sagittal plane; in the adult population, it was collected in the
axial plane with inline reformatting into sagittal and coronal planes
to facilitate orthogonal placement of the PC imaging plane. Because
flow values are similar with and without cardiac gating, no gating
was used (Nordmeyer et al., 2010). Imaging parameters for both
protocols were similar (Table 1). Each pediatric patient yielded 1 to
3 PC MR images (36 scans yield 1 image each, 31 scans yielded 3
images each).

2.3 Image processing

PC images were processed to quantify flow rate through each
of the four major cerebral arteries. We performed all PC image
analysis using ImageJ (National Institutes of Health, Bethesda,
MD) and MATLAB (The MathWorks, Natick, MA) to quantify
flow. The complex difference image was thresholded to identify
moving voxels (defined as greater than the mean plus two standard
deviations of stationary voxels sampled from a non-vascular region).

Background phase was identified by fitting the phase differences of
stationary voxels using a two-dimensional second-order polynomial
and then removed. Vessel boundaries were automatically selected
using a Canny edge-detector of the complex difference image,
dilating the edge by a single voxel, creating a binary mask
representing the inside of the vessel lumen, and then excluding
any stationary voxels within the vessel mask. Blood flow in each
artery was calculated by summing the blood velocities (cm/s)
within the vessel multiplied by the voxel area (cm2). When the
automatic edge detection failed (<5% of the time), the ICA or VA
lumen boundaries were identified manually by an MR researcher
(JCW) with 22 years of experience analyzing PC MR images.
Images demonstrating successful acquisition and flow quantitation
of the 4 vessels (2 ICAs, 2 VAs) underwent further processing
and modelling.

2.4 Modeling cerebral blood flow as a
function of vessels and age and other
variables

We computed the mean and standard deviation for CBF,
individual vessel flows, and anterior and posterior circulations.
We evaluated all 4 blood flow ratios for left (L) and right (R)
ICAs and VAs (LICA-CBF, RICA-CBF, LVA-CBF, RVA-CBF) as
well as anterior-to-posterior and right-to-left flow ratios from both
pediatric and adult volunteers with a two-way ANOVA. Post-
hoc comparison of these groups was performed using a Wilcoxon
Kruskal-Wallis test (Table 2).

We systematically excluded flow data from one or more vessels
to simulate the effects of a sub-optimal image acquisition. We
analyzed the 8 scenarios wherein combinations of 2, 1, or 0 ICAs
or VAs could be analyzed from an image. We applied a standard
least-squares model to estimate CBF as a function of (1) the
remaining vessels able to be analyzed, and (2) an age-dependent
equation. The age-dependent equation was a single parsimonious
model of CBF as a function of age across the human lifespan. To
create this equation, we evaluated age-based models (polynomial,
power, logistic, and combinations thereof) usingMATLAB (R2021b,
Mathworks, Natick, MA), and compared their performance using
root mean squared error. In scenarios where either 2 ICAs or 2 VAs
were analyzed, we reducedmodel complexity by calculating the total
anterior (sum of ICAs) or posterior (sum of VAs) flow to reduce
degrees of freedom. The age-based model was extended to include
the following additional parameters: sex; sex and hematocrit; and
sex, hematocrit, and total brain volume.

2.5 Assessing cerebral blood flow model
quality

The quality of each imputation model was assessed using
root mean squared error, R-squared statistic, and intra-class
correlation coefficient (ICC). The ICC (2, 1) is a two-way
random, singlemeasures absolute agreement betweenmodel 0 (gold
standard, all vessels present) and age-based models 1–8 (Table 3),
calculated using MATLAB. We also performed Bland-Altman
analyses of all age-based models compared to known CBF
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TABLE 2 Wilcoxon Kruskal-Wallis test results demonstrate statistical differences in vessel-to-CBF ratios. Despite the statistical difference, the effect size
was small. The median difference between the vessels ranged from −2.5% (pediatric RVA versus pediatric RVA) to 2.3% (pediatric RICA vs. pediatric LICA)
(mean [μ] = 0.05% standard deviation [σ] = 2.2%). This small effect does not justify the use imputation models, for which 32 unique combinations of
pediatric or adult vessels would be presented as separate imputation models. Note that this table omits comparison of ICAs versus VAs, which are clearly
different.

Vessel
1

Vessel
2

p-value Hodges-Lehmann pseudo-median Lower confidence limit Upper confidence limit

Pediatric
RVA

Pediatric
LVA

0.0004 −0.0246 −0.0383 −0.0112

Adult
RVA

Pediatric
LVA

0.0013 −0.0192 −0.0311 −0.0075

Adult
LVA

Pediatric
RVA

0.0219 −0.0137 −0.0261 −0.0022

Adult
RICA

Pediatric
LICA

0.0157 0.0168 0.0030 0.0300

Adult
LICA

Pediatric
LICA

0.0029 0.0210 0.0070 0.0352

Pediatric
RICA

Pediatric
LICA

0.0185 0.0230 0.0039 0.0408

(model 0). We calculated the biases as the mean difference
between model 0 and each other model, and the 95% limits of
agreement were defined as twice the standard deviation of the
differences of individual measurements between model 0 and each
other model.

3 Results

In the pediatric volunteers, we report the followingmean (μ) and
standard deviation(σ) values for CBF (μ = 530.7, σ = 204.7), anterior
flow (sum of ICAs, μ = 361.4, σ = 135.8), and posterior flow (sum of
VAs, μ = 169.3, σ = 90.1). Flows in individual arteries were: LICA (μ
= 176.4, σ = 75.3), RICA (μ = 184.9, σ = 73.3), LVA (μ = 90.4, σ =
51.2), and RVA (μ = 78.9, σ = 49.9).

In the adult volunteers, we report the CBF (μ = 930.6, σ =
298.0), anterior flow (μ = 650.5, σ = 209.4), and posterior flow (μ
= 280.0, σ = 105.9). Flows in individual arteries were: LICA (μ =
326.8, σ = 111.0), RICA (μ = 323.7, σ = 106.1), LVA (μ = 145.5,
σ = 76.7), and RVA (μ = 134.5, σ = 53.2). All values are shown in
Figure 1. Ratios of anterior-to-posterior flow and right-to-left flow
are shown in Figure 2. Ranges of CBF are similar to previous studies
usings color duplex sonography and 4D flow MRI (Schöning and
Hartig, 1996; Wu et al., 2016).

The two-way ANOVA determined that differences in flow ratios
were particular to vessel types (p < 0.0001) and the interaction of
vessel type and age (p = 0.0147) but not age alone (p = 0.9312).
We performed post hoc comparisons of these ratios with Wilcoxon
Kruskal-Wallis tests. We found that for most ratios, both the
age-based comparisons (e.g., ratios of pediatric LVA versus adult
LVA) and the lateral comparisons (e.g., pediatric LVA-CBF versus
pediatric RVA-CBF) to be statistically similar (p > 0.05, statistically
different vessels reported in Table 2). As expected, all comparisons

of ICA-CBF ratios and VA-CBF ratios (e.g., pediatric VA-CBF
versus pediatric ICA-CBF) were different (p < 0.0001). However,
the size of differences in ratios between individual vessels and CBF
were minor; the maximum ratio difference (pediatric RICA-CBF
versus pediatric LICA-CBF) was very small, 0.023. Due to this
small effect size, we simplified the models using equivalence of
vessel-to-CBF ratios across age groups and left and right symmetry
of vessels.

We evaluated the difference in anterior-to-posterior and right-
to-left flow ratios as a function hematocrit and age group. There
was no association in a linear regression between hematocrit and
either the anterior-to-posterior ratio (p = 0.0595) or right-to-left
ratio (p = 0.8292). There was no association between age and either
anterior-to-posterior flow ratio (p = 0.1928) or the right-to-left ratio
(p = 0.3261).

Table 3 demonstrates the performance of each imputation
model as functions of the remaining vessels to be analyzed,
and the age dependent equation. As anticipated, the error in
imputation (RMSE) increased and the R-squared decreased from
the model with the fewest to most missing vessels (model 1
to model 8). All models showed statistical significance (p <
0.0001); however the age term was not significant for model
1 (p = 0.4454), only marginally significant for model 2 (p =
0.0202), and significant for the remaining models (p < 0.0001).
Table 4 demonstrates the vessel-free CBF models, using age, sex,
hematocrit, and total brain volume. The age-logistic model to
estimate age-related changes in CBF (Model 8a from Table 4, shown
in Figure 3) was selected based on its superior performance over
other tested models (Table 5). The same statistics were calculated
for the original, age-independent imputationmodels (Table 6). Age-
dependent models performed equivalently to the age-independent
models in cases with 1 or 2 missing VAs, or 1 missing ICA
with 1 or 2 VAs present (models 1, 2, 3, and 4), showing
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TABLE 3 Models for computing CBF when vessels are missing. The models are independent of the lateral location of the imputed vessel(s), allowing us
to omit models for the combinations of different left versus right vessels (Figure 3). Models 1–7 use an age-dependent model of CBF, denoted ĈBF(age)
and defined as model 8, noted in Table 4 as model 8a; this is the most conservative of the vessel-independent CBF models. Overall, the models followed
the anticipated pattern wherein missing ICAs contributed more error than missing VAs (e.g., model 3 versus 1). Age was useful in all models (p < 0.05),
except model 1, for which it was not significant (p = 0.4454). Abbreviations cerebral blood flow (CBF), internal carotid artery (ICA), vertebral artery (VA),
root mean square error (RMSE), intra-class correlation coefficient (ICC). An online calculator for these models is provided: https://brainflow.
science/impute-cbf.

Number
of Usable
vessels

Model Cerebral
blood
flow

equation
[mL/min]

p-value for term: ĈBF(age) RMSE NormalizedRMSE R-Squared ICC(2,1)

ICA VA

2

2 0 Anterior +
Posterior

NA 0 0 1.00 1.000 

1 1 0.010 ×
ĈBF(age)
+1.196
× Anterior
+1.064 ×
VA

0.4454 46.34 0.063 0.98 0.990 

0 2 0.045 ×
ĈBF(age)
+1.376 ×
Anterior

0.0202 69.73 0.095 0.95 0.977

1

2 3 0.082 ×
ĈBF(age)
+1.600 ×
ICA+1.192
× Posterior

<0.0001 52.14 0.071 0.97 0.987 

1 4 0.111 ×
ĈBF(age)
+2.003 ×
ICA+1.302
× VA

<0.0001 76.73 0.105 0.94 0.972 

0 5 0.176 ×
ĈBF(age)
+2.381 ×
ICA

<0.0001 100.49 0.137 0.91 0.951 

0

2 6 0.335 ×
ĈBF(age)
+2.175 ×
Posterior

<0.0001 123.29 0.168 0.86 0.921 

1 7 0.580 ×
ĈBF(age)
+2.792 ×
VA

<0.0001 177.61 0.243 0.70 0.821 

0 8 ĈBF(age)
(See
Table 4)

NA 236.95 0.324 0.47 0.638 

similar RMSE, normalized RMSE, ICC, and R-squared. In all other
cases, the age-dependent models had lower RMSE and normalized
RMSE, and higher R-squared correlations than the age-independent
models.

We performed Bland-Altman analyses of models 1-8 compared
to ground truth (model 0) (Figure 4). Models 1-5 were statistically
unbiased (p > 0.05), while model 6 had a small yet significant

bias (μ = −3.24%, p = 0.0045). Models 1-4 had narrow limits of
agreement (σ = 6.06–11.62%) while models 5-6 and had wider limits
of agreement (σ = 15.61–18.16%). Model 7, which was derived
from a measurement in 1 VA, it performed exceptionally poorly
(μ = −5.80%, σ = 24.64%, p = 0.0002), similar to model 8a (μ =
−9.01%, σ = 32.80%, p < 0.0001) where CBF is estimated based
on age alone.
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FIGURE 1
Demonstration of blood flow rates and ratios between vessels. Left panel: measurements of flow in units of mL/minute. From left to right the figures
shows CBF contribution: total, anterior, left ICA, right ICA, posterior circulation, left VA, right VA. Right panel: ratios of flow in individual arteries versus
CBF. From left to right the figure shows left ICA, right ICA, left VA, right VA. The figures demonstrate visually (1) the range of CBF (2), the contribution
from individual arteries is predominantly from the anterior circulation, that flow through (3) ICAs and (4) VAs are symmetric on the left and right sides.
Abbreviations cerebral blood flow (CBF), internal carotid artery (ICA), vertebral artery (VA).

FIGURE 2
Anterior-to-posterior posterior ratio (left panel) and right-to-left ratio (right panel), presented as a function of their age. A Wilcoxon Kruskal-Wallace
test demonstrated no difference between the pediatric and adult populations.

TABLE 4 Vessel-free models of CBF. The presented models take parameters of age (years), sex, Hct, brainvol. Abbreviations cerebral blood flow (CBF,
mL/min), root mean square error (RMSE), hematocrit (Hct, percentage), and total brain volume (brainvol, cubic centimeters).

Model Cerebral blood flow equation [mL/min] RMSE Normalized RMSE R-Squared

8a ĈBF(age) = L/(1+ b× e(k×age)) + c× age+ d
L = 1297, b = 2.132, c = −6.262, d = −220.5, k = −0.4247

236.95 0.324 0.47 

8b ĈBF(age, sex) = L/(1+ b× e(k×age)) + c× age+ d
If female: L = 777.8, b = 16.92, c = −8.456, d = 372.1, k = −0.5614
If male: L = 1101, b = 6.603, c = −2.742, d = 17.09, k = −0.7679

233.62 0.320 0.48

8c ĈBF(age, sex,Hct) = 0.804× ĈBF(age, sex) − 24.772×Hct+ 966.895 186.72 0.256 0.67

8d ĈBF(age, sex,brainvol,Hct) = 0.5590× ĈBF(age, sex) + 0.5518× brainvol− 26.01×Hct+ 675.8 182.63 0.250 0.68

4 Discussion

Cerebral blood flow varies considerably across the lifespan,
especially across infancy and childhood. PC-based CBF
measurements provide a robust and fast complement to both

regional MR perfusion techniques, (arterial spin labelling
and dynamic susceptibility contrast), bedside techniques (3D
Doppler ultrasound), and radiologic approaches such as
PET and SPECT (Clement et al., 2022; Shen et al., 2023,
Catafau et al., 2001, Frackowiak et al., 1980). Two-dimensional
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FIGURE 3
Image demonstrating total CBF vs. age and the resulting model.
Regression analysis demonstrates that total CBF rises rapidly from
birth through middle childhood followed by a slow decline from
adolescence through adulthood. Regression line formula
is noted in (Table 4, Model 8a). Abbreviations cerebral blood
flow (CBF).

PC methods require minimal scan time, complexity, or post-
processing requirements, making them easier to deploy than more
advanced 4D PC. We therefore sought to extend our previous
imputation models by incorporating age-dependence and build
models applicable across the human lifespan. The new age-based
models meet or exceed the performance of the previously published
age-independent models in all cases. We further evaluated other
variables (hematocrit, sex, and brain volume) and present models
that use these parameters to improve imputation. However, the
presence of at least one well-resolved ICA remains crucial for
performing high-accuracy imputation. In fact, when two ICAs and
one VA were present, the age dependence in the imputation (model
1) was found to be statistically insignificant. Similarly, when both
ICAs are present (model 2), the contribution of the age-dependent
term was marginal. For the remaining models, the inclusion of age
dependence was statistically significant and improved the quality of
the models. Taken together, this suggests that imputation using age
does not harm any of the models and may help improve accuracy,
particularly when ICAs are not measured. The relatively modest
effect of age in the modelling is attributable to the fact that anterior-
to-posterior and right-to-left flow ratios do not change substantially
with age, although total CBF does change with age, and these ratios
have relatively high intra-subject variability unexplained by age.

Bland-Altman analysis of CBF versus imputed CBF
demonstrated a similar trend.Models 1–5were statistically unbiased
and show similar 95% confidence intervals to the age-independent
models. Despite the improved performance of all models, the Bland-
Altman analysis still showed a significant bias for age-dependent
models 6–8 with wide 95% confidence intervals. This confirms that
failing to measure at least one ICA causes significant degradation
of imputation performance. We included models 6 and 7 because
they were valid correlates of CBF, and model 8a (CBF as a function
of age) for completeness, but we recommend against using them for
CBF imputation.

We anticipated and reported differences in vessel-to-CBF ratios
for children and adults. However, these statistically significant

differences were subtle, indicating only modest redistribution of
flow patterns from childhood (when it is slightly more posterior) to
adulthood (more anterior). This contrasted with our anticipation of
a more profound change across development. The age-dependence
of CBF follows a generally similar trend to total brain volume
with age, peaking in late adolescence to early adulthood and
slowly declining over the remainder of the human lifespan
(Bethlehem et al., 2022; Borzage et al., 2014).

Although our models were intended for data imputation,
they may also provide value in the case of the clinical setting.
An unsuccessful acquisition would normally be repeated by a
technician, however, occasionally an error is missed until after the
patient is no longer being scanned, or repeating a scan is not
possible because a patient is unstable. In these admittedly rare
cases, our improved imputation provides more accurate results. A
more likely application in a clinical setting is using our imputation
after a successful acquisition. When all four vessels are acquired,
our models can be used to evaluate potentially abnormal flow
patterns due to intracranial arterial stenosis diminishing flow in
one or more vessels (Kim et al., 2022; Craig et al., 1982). This
evaluation comprises: calculating ground truth CBF (model 0),
omitting one or more vessels and imputing CBF (model 1, 3),
then comparing ground truth versus imputed CBF. Larger CBF
discrepancies indicate flows that do not follow our established
patterns. An alternative application in a clinical setting is detecting
abnormal flow as a function of age, which may indicate impaired
brain development.

5 Limitations

A key assumption of these models is that the cerebrovasculature
is anatomically complete.The participants included in themodelling
do not have steno-occlusive disease, and our imputation models
are suitable for studying development and aging but will likely
fail in subjects with dysfunctional vasculature, such as diminished
flow through one or more vessels. Techniques such as arterial
spin labelling will be more appropriate for quantifying blood
flow and characterizing steno-occlusions in persons with vascular
dysfunction. Brain volumes were not obtained in the analysis
so rCBF [mL/min/100 g] cannot be reported; the process for
brain volume normalization is presented in Supplementary Material
for interested readers. The CBF imputation models presented
assume that the anterior-to-posterior and right-to-left flow ratios
are constant. Work is ongoing to determine whether these
ratios, especially anterior-to-posterior flow, remain constant in
the presence of anesthetics; application of these models will
demonstrate increased error if the anterior-to-posterior ratio is
modified by diseases or interventions. Furthermore, model 8a
demonstrates that a smooth function with respect to age does
not capture the high variation in CBF between two individuals.
CBF is influenced by a wide variety of intrinsic and extrinsic
factors, including key covariates such as sex and hematocrit
(Borzage et al., 2016; Bush et al., 2016; Clement et al., 2018).
The more complicated models presented (8b, 8c, 8d, Table 4)
moderately improve performance by including hematocrit, sex, and
total brain volume, but this limits their applicability to datasets
which include these details. Our data were acquired with different
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TABLE 5 Statistics comparing the performance of different models of cerebral blood flow as a function of age. The age-logistic model outperformed
the other models, which failed to capture the rapid rise followed by slow decline of cerebral blood flow with age. Models are named by their
corresponding fit type in MATLAB, while the age-logistic formula is presented in Table 4, Model 8a.

Fit type Number of Coefficients R-Squared RMSE

Age-logistic 5 0.47 238.81

Power 2nd order 3 0.41 250.24

Power 1st order 2 0.35 262.66

Polynomial 2nd order 3 0.33 266.26

Polynomial 1st order 2 0.22 287.86

Exponential 1st order 2 0.18 293.88

TABLE 6 Statistics for performance of age-independent models on adult and pediatric data. Models 1–7 use an age-independent model of CBF with the
same configuration of missing vessels as Table 1; model 8 is defined as the population mean from the age-independent study. Performance of these
models was equal to or worse than their corresponding age-dependent models. Abbreviations cerebral blood flow (CBF), internal carotid artery (ICA),
vertebral artery (VA), root mean square error (RMSE), intra-class correlation coefficient (ICC).

Number
of

Usable
vessels

Old model Cerebral blood flow equation
[mL/min]

RMSE NormalizedRMSE R-Squared ICC(2,1)

ICA VA

2

2 0 Anterior + Posterior 0 0 1.00 1.000 

1 1 1.226 × Anterior+0.933 × VA 45.91 0.063 0.98 0.986

0 2 1.426 × Anterior 69.74 0.096 0.95 0.977

1

2 3 1.886 × ICA+1.145 × Posterior 56.07 0.077 0.97 0.985

1 4 2.419 × ICA+1.983 × VA 80.76 0.110 0.94 0.970

0 5 2.841 × ICA 111.42 0.154 0.89 0.941

0

2 6 3.219 × Posterior 157.42 0.217 0.81 0.896

1 7 5.816 × VA 254.03 0.380 0.61 0.752

0 8 933.656 324.65 0.443 NA 0.000

protocols as a part of two separate projects with MR imaging
for different indications. The pathologies and use of anesthesia in
the younger group differed considerably from those in the older
group. Therefore, we cannot exclude the possibility of important
covariates or confounders that we cannot ascertain with this
data. Average flow rates were assessed by our pipeline but peak
flow rate data was not recorded. We also lack external data
validation from other institutions. The full range of our data is
0.4–61.3 years, however most (95%) of our data spans 0.75–4.85 and
11.20–45.10 years, thus we recommend caution when attempting
to extend this model into ages <0.75, 4.85–11.20, or >45.1 years,
which represent an opportunity for future work. However, the
effects of the limited data on the age-based CBF model are
limited by the parsimonious nature of the equation. We also
found only subtly different patterns of anterior and posterior

flow in our two groups, which we omitted when modeling the
ratio between CBF and vessel (Bethlehem et al., 2022). These
limitations present opportunities for future research, particularly in
studies that recruits volunteers with similar characteristics across
the lifespan.

6 Conclusion

Phase contrast MR enables effective, robust estimation of CBF
in both pediatric and adult populations. Our findings suggest that
employing age-dependent imputation models, based on at least one
ICA flow, offers a single, parsimonious approach to estimating CBF
across the human lifespan when one or more vessels cannot be
directly measured. This reduction in number of acquisitions and
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FIGURE 4
Bland-Altman analysis of total CBF quantified by phase contrast (PC) in 4 vessels (model 0) versus various models of 1 or more missing vessels. Blue line
demonstrates bias, dashed blue line demonstrates insignificant (p > 0.05) bias, and red dash lines demonstrate 95% confidence intervals. These results
suggest that it is important to successfully capture at least 1 ICA or 2 VAs to impute CBF measurements. Age-dependent model 4 was unbiased,
improving performance compared the previously published age-independent model 4. Abbreviations cerebral blood flow (CBF).

total scan time required for CBF estimation reduces the need for on-
scanner quality controlmeasures andmitigates attendant challenges.

PC MR imaging, combined with our methods for addressing
missing data, provides valuable insights into CBF and the metabolic
sustenance of the brain. This approach can complement other
MR imaging techniques suited for assessing lung and heart
efficiency in oxygenation and blood delivery, or for mapping
the regional distribution of blood and oxygen consumption in
the brain. Thus, PC MR fulfills a critical role in understanding
brain physiology. Our imputation models demonstrate a significant
advancement over previous approaches in describing vascular
physiology. Our equations simplify CBF measurement across
diverse ages groups and offers a solution to real-world acquisition
challenges.
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