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Tongue diagnosis in Traditional Chinese Medicine (TCM) plays a crucial role
in clinical practice. By observing the shape, color, and coating of the tongue,
practitioners can assist in determining the nature and location of a disease.
However, the field of tongue diagnosis currently faces challenges such as
data scarcity and a lack of efficient multimodal diagnostic models, making
it difficult to fully align with TCM theories and clinical needs. Additionally,
existing methods generally lack multi-label classification capabilities, making
it challenging to simultaneously meet the multidimensional requirements of
TCM diagnosis for disease nature and location. To address these issues, this
paper proposes TongueNet, a multimodal deep learning model that integrates
tongue image data with text-based features. The model utilizes a Hierarchical
AggregationNetwork (HAN) and a Feature Space ProjectionModule to efficiently
extract and fuse features while introducing consistency and complementarity
constraints to optimize multimodal information fusion. Furthermore, the model
incorporates a multi-scale attention mechanism (EMA) to enhance the diversity
and accuracy of feature weighting and employs a Kolmogorov-Arnold Network
(KAN) instead of traditional MLPs for output optimization, thereby improving
the representation of complex features. For model training, this study integrates
three publicly available tongue image datasets from the Roboflow platform and
enlists multiple experts for multimodal annotation, incorporating multi-label
information on disease nature and location to align with TCM clinical needs.
Experimental results demonstrate that TongueNet outperforms existing models
in both disease nature and disease location classification tasks. Specifically, in
the disease nature classification task, it achieves 89.12% accuracy and an AUC
of 83%; in the disease location classification task, it achieves 86.47% accuracy
and an AUC of 81%. Moreover, TongueNet contains only 32.1 M parameters,
significantly reducing computational resource requirements while maintaining
high diagnostic performance. TongueNet provides a new approach for the
intelligent development of TCM tongue diagnosis.
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1 Introduction

As a comprehensive medical theory and practical system,
TraditionalChineseMedicine (TCM)has a long history andholds an
important place in Eastern medicine (Chiu, 2000; Chengdong et al.,
2022). Its unique theories of syndromedifferentiation and treatment,
holistic approach, and diverse diagnostic methods form a systematic
framework for diagnosing and treating diseases. Tongue diagnosis,
one of the “FourDiagnoses” in TCM, involves observing the patient’s
tongue characteristics—such as shape, color, and coating—to assess
health status. Different tongue appearances reflect, to some extent,
the state of internal organ function and blood circulation, providing
unique support for clinical diagnosis and treatment (Li et al., 2022a;
Li et al., 2022b; Qu et al., 2017).

In recent years, with breakthroughs in deep learning for
image recognition, artificial intelligence has gradually been applied
in tongue diagnosis (Zhang et al., 2022; Tang et al., 2020).
Through image recognition and deep learning models, tongue
images can be analyzed automatically, advancing the digitization
and standardization of tongue diagnosis. These studies use deep
neural networks to analyze tongue image data, offering objective,
quantifiable support that enhances diagnostic accuracy (Fan et al.,
2021). However, most research is limited to single-modality analysis
of tongue images, which fails to capture the complexity and
complementary nature of the multi-source information integral
to TCM diagnosis (Xu et al., 2020). Specifically, single-modality
analysis primarily relies on extracting features from tongue
images, which can reflect pathological states to a certain extent
but overlooks complementary diagnostic information, such as
the textual description of the tongue diagnosis. Data from a
single modality often cannot fully represent the patient’s complex
health condition, which limits diagnostic model performance
(Jiang et al., 2021). Additionally, due to visual similarities among
tongue features, image-only analysis may fail to distinguish
subtle pathological differences, affecting diagnostic accuracy and
precision (Fan et al., 2021).

Current AI-based tongue diagnosis research faces three major
challenges: First, there is a severe lack of data for Traditional
ChineseMedicine (TCM) tongue diagnosis, particularly the absence
of paired multi-modal data, which limits the effective development
of multi-dimensional tongue diagnosis analysis (Wang et al.,
2020). Second, most existing AI diagnostic models are based on
general machine learning algorithms or Western medical imaging
frameworks, failing to fully integrate the unique information
structure and diagnostic logic of TCM tongue diagnosis.This results
in insufficient accuracy and interpretability when processing TCM
diagnostic data (Balasubramaniyan et al., 2022). Lastly, there is a
lack of multi-label classificationmodels specifically for TCM tongue
diagnosis, which restricts the ability to perform comprehensive,
multi-dimensional, andmulti-perspective analysis and classification
of tongue features (Jiang et al., 2021).

To address the above issues, this paper proposes a new
multimodal deep learning model—TongueNet. First, from a data
construction perspective, a high-quality, multimodal TCM tongue
diagnosis dataset is systematically established, encompassing tongue
image data and corresponding textual annotations, along with
multi-label classification tags for disease type and disease location.
This ensures the multidimensionality and comprehensiveness of

the dataset. Next, the TongueNet model fuses tongue image
data with textual information by leveraging multimodal learning
techniques to deeply integrate image and text features. Through
the introduction of innovative methods such as consistency and
complementarity constraints, the model effectively combines the
advantages of both modalities, avoiding potential information loss
or bias that might arise from using a single modality. Furthermore,
TongueNet adopts a multi-label classification framework, enabling
the simultaneous recognition and classification of multiple related
tongue features, thus supporting a multidimensional and multi-
perspective analysis and diagnosis of tongue images.

The contributions of this paper are as follows:

• This paper integrates three tongue diagnosis datasets from
the Roboflow platform to construct a high-quality multimodal
dataset containing tongue image data and corresponding
text annotations, with multi-label classification tags for
pathology and disease location.This dataset not only addresses
the shortage of multimodal data in the field of TCM
tongue diagnosis but also provides rich, multidimensional
data support for subsequent tongue feature analysis and
model training.
• This paper proposes TongueNet, an innovative multimodal
deep learning model that simultaneously integrates features
from tongue image data and text descriptions. By employing
a HAN and feature space projection modules, TongueNet
efficiently extracts and fuses multimodal information, thereby
enhancing diagnostic capability and clinical applicability in
tongue diagnosis.
• This paper creatively incorporates a EMA, allowing TongueNet
to focus more precisely on key pathological features in tongue
images and optimize the handling of information at different
scales. This improvement significantly enhances the model’s
diagnostic accuracy, especially in processing complex tongue
diagnosis images.
• This paper replaces the traditional MLP model with the KAN,
enabling TongueNet to more effectively represent and process
complex tongue diagnosis features. Experimental results show
that this enhanced feature representation capability allows
TongueNet to achieve higher accuracy in tongue image
classification tasks.
• Experimental results demonstrate that TongueNet significantly
outperforms existing traditional models in tongue
diagnosis tasks.

2 Related work

2.1 Multimodal fusion strategy

In recent years, multimodal fusion has been extensively studied
in fields such as medical imaging and emotion recognition
(Azam et al., 2022). Multimodal fusion methods generally include
early fusion, intermediate fusion, and late fusion. Early fusion
combines the raw features of different modalities directly at the data
input stage, effectively leveraging the initial associations between
modalities to form a unified representation space (Hermessi et al.,
2021). In medical imaging, some studies have combined image

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1527751
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yang et al. 10.3389/fphys.2025.1527751

and text data after feature extraction for diagnosis, fully utilizing
the spatial information from images and semantic information
from text to enhance diagnostic accuracy (Tan et al., 2020).
Other studies have fused various physiological data at the feature
level to analyze complex conditions, achieving multi-dimensional
diagnosis. However, these methods have limited capacity for deep
modality relationship exploration, are prone to introducing data
noise, and often fall short in comprehensive feature analysis
(Huang B. et al., 2020). Intermediate fusion integrates different
modality features at intermediate layers after preliminary extraction
to capture complementary information between modalities more
fully (Tang W. et al., 2022; Tawfik et al., 2021). Certain disease
prediction models have achieved a significantly higher cross-
modal utilization rate by fusing image and text data from patients
within hidden layers. Additionally, in emotion analysis, integrating
image and audio features at intermediate layers has led to high
accuracy. Although intermediate fusion can better explore deep
relationships between modalities, it is computationally complex
and requires substantial computing resources (Alseelawi et al.,
2022; Singh et al., 2024). Late fusion combines decisions after
each modality has been processed independently, making it
suitable for tasks that demand high stability and robustness. For
instance, multimodal tumor recognition methods independently
process CT images and pathology reports before weighted fusion,
ensuring diagnostic robustness. In emotion recognition, late
fusion of voice and video features enhances recognition accuracy,
demonstrating good adaptability. However, this method cannot
fully exploit deep intermodal relationships, making its fusion of
information less comprehensive than early or intermediate fusion
(Li et al., 2021; Yadav and Yadav, 2020). In TCM tongue diagnosis,
the complex associations between different modalities are difficult
to uncover using traditional methods.

This paper proposes a novel multimodal fusion model,
TongueNet, which constructs a multimodal diagnostic framework
aligned with TCM theory by combining tongue image and
text information and applying consistency and complementarity
constraints in the representation space. This approach improves
diagnostic accuracy and clinical applicability.

2.2 Intelligent medical auxiliary diagnosis

In recent years, with the rapid development of artificial
intelligence technologies, advanced techniques such as deep
learning have seen increasing applications in the medical field,
particularly in intelligent medical auxiliary diagnosis, where
significant progress has been made (Wang et al., 2021). In the field
of medical imaging, deep learning models, especially Convolutional
Neural Networks (CNN) and Residual Networks (ResNet), have
been widely applied for auxiliary diagnosis (Xu et al., 2020). For
example, CNNs are used to extract high-dimensional features from
medical images, significantly improving the accuracy of image
analysis (Xu H. et al., 2021). In tasks like image segmentation
and tumor recognition, CNNs have demonstrated outstanding
performance, achieving notable results in fields such as lung CT
scans and breast cancer screening. ResNet, on the other hand,
addresses the vanishing gradient problem in deep networks by
introducing residual connections, improving model performance

and stability (Lin et al., 2020; Xu H. et al., 2021). Additionally,
Transfer Learning, as an efficient learning method, has also
been widely used in medical imaging, particularly for situations
with insufficient data or challenging annotations, by transferring
knowledge from existing models to enhance the generalization
ability of the model (Xu Q. et al., 2021). Beyond medical imaging,
intelligent medical diagnosis has started to expand into the domain
of sound signals. Multi-class classification of sound signals, using
traditional machine learning methods such as Support Vector
Machines (SVM) and K-Nearest Neighbors (KNN), has also
been applied for auxiliary diagnosis (Naeem et al., 2021). For
example, by analyzing features such as a patient’s voice signals and
respiratory sounds, intelligent diagnostic systems can effectively
assist doctors in initial disease screening and diagnosis (Garg and
Mago, 2021). In the diagnosis of certain neurological disorders,
voice analysis has shown great potential, particularly in early
diagnosis of cognitive impairments, Alzheimer’s disease, and other
conditions, where changes in voice signals can serve as an important
diagnostic clue (Gupta et al., 2021).

However, despite the achievements of single-modality methods
in disease diagnosis, multimodal fusion remains crucial in
intelligent healthcare applications. In this paper, we utilize
representation learning to learn shared representations of different
modalities within the data, effectively integrating information from
different sources to enhance the diagnostic capability of the model.

2.3 Intelligent tongue diagnosis

Intelligent tongue diagnosis, as an important component of
TCM diagnosis, combines tongue and facial feature information
and integrates with TCM theory to offer new approaches and
methods for disease diagnosis (Chengdong et al., 2022). Tongue
diagnosis involves observing features such as the shape, color,
and coating of the tongue, which can reflect the health status
of the body. In recent years, with the development of computer
vision and artificial intelligence technologies, intelligent tongue
diagnosis has gradually become a convenient and accurate auxiliary
diagnostic tool (Mukai et al., 2022). In the early stages of tongue
diagnosis research, traditional machine learning methods, such as
SVM and KNN, were widely used for classifying tongue texture
and coating features (Balu and Jeyakumar, 2021). These methods
extracted features such as texture, color, and shape from tongue
images and combined them with patient information such as age,
gender, and medical history for disease diagnosis. For example,
SVM-based tongue coating texture analysis methods can extract
texture features from the tongue coating to analyze and determine
the disease type, offering a more accurate diagnosis when combined
with traditional TCM theory (Song et al., 2020). KNN algorithms
have also been used to analyze features such as the shape and
color of the tongue to help classify different conditions. However,
these methods still face certain challenges when processing complex
tongue diagnosis images, such as feature extraction accuracy and
image complexity (Song et al., 2020; Li J. et al., 2022). With the
development of deep learning techniques, CNN have gradually
become mainstream in the field of tongue diagnosis (Yuan and
Liao, 2020). CNNs automatically extract deep features from tongue
diagnosis images, offering significant advantages over traditional
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methods. Since tongue and facial images are mostly visible light
images, CNNs can effectively capture subtle changes in the images,
enabling accurate analysis of TCM constitution and diseases. For
instance, CNN-based automated analysis of tongue texture, color,
and shape has greatly improved the efficiency and accuracy of
tongue diagnosis, especially when trained on large-scale datasets,
where CNNs show strong generalization ability. In recent years,
Transformer models have also been applied in the field of tongue
diagnosis, particularly in the analysis of tongue and facial feature
points. Transformers can effectively capture dependencies between
different regions and use self-attention mechanisms to weight
information from different parts of the tongue diagnosis images,
further improving diagnostic accuracy (Huang X. et al., 2020). By
jointly analyzing tongue and facial feature points, Transformers
enable more comprehensive health assessments, providing new
technical support for intelligent tongue diagnosis systems.

3 Methodology

3.1 Overview

In this paper, we propose the TongueNet network, a framework
designed to fully leverage the consistency and complementarity
between multimodal data. Through multi-level feature extraction,
cross-modal fusion, spatial mapping and projection, and attention
mechanisms, the network aims to enhance the diagnostic model’s
accuracy and generalization ability. As shown in Figure 1, we
first construct independent feature extraction networks for
unimodal data (tongue images and text). Tongue image data is
processed through a hierarchical aggregation network (comprising
a hierarchical encoder and a global aggregation network) to extract
modality-specific features, while text data is fed into a neural
transformation network to extract personalized features specific
to the text modality. These features are initially represented in
Euclidean space to capture each modality’s unique characteristics.
To achieve spatial alignment and feature fusion across modalities,
we designed a feature space transformation module, which maps
unimodal features from Euclidean space to hyperbolic space,
where cross-modal consistency is calculated and optimized. Next,
a cross-modal bridging strategy is employed to fuse tongue image
and text features, capturing and reinforcing the complementarity
between multimodal features. The fused features are then fed
into a feature space projection module, where they are projected
into three independent yet complementary subspaces to generate
feature representations with complementary information. During
this process, an Multi-scale attention (EMA) Ouyang et al. (2023)
attention mechanism is applied to further weight the fused
features, emphasizing the synergy between different modalities
and enhancing the diversity and effectiveness of the feature
representations. Finally, the fused multimodal features are input
into the stacked KAN layers to obtain label predictions in Euclidean
space. To further optimize classification accuracy, the label
predictions are mapped to hyperbolic space. By calculating the loss
between the predicted values and the true labels in both Euclidean
and hyperbolic spaces, dual optimization for multi-label prediction
is achieved.This process leverages the complementarity of Euclidean
and hyperbolic spaces in feature representation, thereby enhancing

the model’s accuracy and robustness in complex diagnostic tasks,
meeting the clinical needs of TCM diagnosis.

3.2 Hierarchical aggregation network

For processing tongue image features, we propose
the Hierarchical Aggregation Network (HAN), which,
as shown in Figure 2, includes two key modules: the hierarchical
encoder module and the gated aggregation network module.

In the Hierarchical Encoder module, assume the input feature is
Xt. First, a linear layer f0 is applied to map the input feature into the
hidden layer space, resulting in

Z0
t = f0 (Xt)

Then, a group convolution layer withN groups is used to extract
features at different hierarchical levels, obtaining the hierarchical
feature representations ZN

t , as follows:

ZN
t = fN (Z

N−1
t ) , (N ∈ [1,N])

where fN represents a group convolution operation. Group
convolution reduces the number of parameters while maintaining
channel independence, which is beneficial for capturing broader
contextual information. For example, when the convolution kernel
size is k(N) and the stride is s(i), the receptive field at different
levels expands with the hierarchy. The receptive field size at level N
is given by:

l (N) = l (N− 1) + [(k (N) − 1) ×
N−1

∏
i=1

s (i)]

To enhance global contextual information, a global average
pooling operation is applied at the final level of the hierarchical
encoder, yielding the final hierarchical feature ZN+1

t :

ZN+1
t = fgap (Z

N
t )

The Gated Aggregation Network module assigns weights
to features of different granularities, denoted by G =
{G1,G2,…,GN,…,GN+1}, which represents the importance of each
layer’s features. The weights are calculated using a function fG(X),
with an output dimension ofℝH×W×(N+1). Finally, the aggregation of
features at different granularities is achieved by performing element-
wise multiplication with each hierarchical feature and summing the
results, computed as:

Zt =
N+1

∑
N=1

GN ⊙ZN
t

where ⊙ denotes element-wise multiplication, defined as:

GN ⊙ZN
t =
[[[[

[

[GN]
0,0
⋅ [ZN

t ]0,0 ⋯ [G
N]

0,j
⋅ [ZN

t ]0,j
⋮ ⋱ ⋮

[GN]
i,0
⋅ [ZN

t ]i,0 ⋯ [G
N]

i,j
⋅ [ZN

t ]i,j

]]]]

]

Through this hierarchical encoding and gated aggregation
strategy, HAN can extract feature information at different scales
and adaptively aggregate information by assigning different weights,
thereby effectively enhancing the model’s representational capacity
in multi-modal feature fusion.
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FIGURE 1
TongueNet Overall Network Architecture Diagram. The image features are extracted using a hierarchical aggregation network, while the text features
are obtained through a text encoder. Modal fusion is performed via consistency constraints, followed by a feature space projection module where the
fused features are further weighted using the EMA attention mechanism. Finally, classification prediction is made through the KAN network.

FIGURE 2
Hierarchical Aggregation Network Architecture Diagram. The diagram illustrates the process where the input features X′ are first processed through the
Hierarchical Encoder to generate feature representations Z(0),Z(1),…,Z(n). These features are then aggregated using the Gated Aggregation Network,
which combines them into the final feature representation Zl.

3.3 Feature space projection

In the feature space projection module, the fused multimodal
feature F is projected onto multiple complementary subspaces

to enhance the feature representation capability. Specifically, the
fused feature F is mapped to three different subspaces S1, S2, and
S3, generating three feature representations F1, F2, and F3 with
complementary information. The equations are as follows:
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{{{{
{{{{
{

F1 =W1F+ b1
F2 =W2F+ b2
F3 =W3F+ b3

where W1, W2, and W3 are the projection matrices, and b1,
b2, and b3 are the corresponding bias terms. Each subspace is
designed with unique projection matrices and biases to capture
complementary information from multiple dimensions of the
multimodal features. Through this multi-dimensional feature
decomposition, the feature space projection module enhances
the diversity and complementarity of the feature representations
within the model.

3.4 Kolmogorov-arnold network

In this paper, we employ the Kolmogorov-Arnold Network
(KAN) in place of the traditional MLP as the final classifier.
The primary motivation for this replacement lies in KAN’s
superior expressive power and interpretability. Compared to
MLP, KAN is based on the Kolmogorov-Arnold representation
theorem, where learnable activation functions are placed on the
edges instead of fixed node activations, enabling the network
to capture complex relationships in data more flexibly and
efficiently.

Specifically, KAN does not use traditional linear weight
matrices but replaces each weight parameter with a univariate
function. This transforms the “linear transformation + nonlinear
activation” structure inMLP into a “direct combination of nonlinear
activations,” simplifying the computation and enhancing parameter
efficiency. The KAN designed in this work consists of multiple
layers of functions, where the activation value xl+1,j at each layer
is computed from the input xl,i of the previous layer using the
activation function φl,j,i. The equations are as follows:

The calculation of activation values at each layer:

xl+1,j =
nl
∑
i=1

φl,j,i (xl,i)

The process of combining multiple layers to form the
final output:

KAN (x) = (ΦL−1◦ΦL−2◦⋯◦Φ1◦Φ0) (x)

The final form of the output equation:

f (x) =
nL−1
∑

iL−1=1
φL−1,iL−1(

nL−2
∑

iL−2=1
⋯

n1
∑
i1=1

φ1,i2,i1(
n0
∑
i0=1

φ0,i1,i0 (xi0))⋯)

By using KAN instead of MLP for the final classification,
we leverage KAN’s capability in representing high-dimensional
features, while its finer-grained activation functions allow the
learning of more complex feature patterns. Moreover, KAN’s layer-
by-layer structure enhances interpretability, which aligns well with
the need for feature expressiveness in complex diagnostic tasks.
This structure not only improves model accuracy but also meets
the requirements of multimodal feature representation in TCM
diagnosis.

3.5 Multi-scale attention

The design of the EMA attention mechanism aims to enhance
feature representation capability while reducing computational
complexity. This mechanism divides the channel dimension into
multiple sub-feature groups, allowing spatial semantic information
to be evenly distributed across each group. As shown in Figure 3,
the core steps of the EMA attention mechanism are as follows:
1) Channel Division and Sub-feature Group Construction: The
EMA attention mechanism first divides the channel dimension
into multiple sub-feature groups. This division enables each sub-
feature group to capture its internal spatial information distribution
with lower computational cost. Additionally, this approach allows
for more fine-grained feature processing, enabling each sub-
feature group to effectively retain spatial semantic information.
2) Global Information Encoding: Before further processing the
feature groups, the EMA attention mechanism performs global
information encoding on the input features. Global information,
obtained through global average pooling, is used to recalibrate
the channel weights within each feature group. This allows the
model to focus more on the feature regions contributing to the
final result, while ignoring irrelevant or noisy features. 3) Cross-
dimensional Interaction: The EMA mechanism further aggregates
the output features of two parallel branches through cross-
dimensional interaction. Specifically, two parallel branches process
different sub-feature groups and then fuse information across
dimensions.This cross-dimensional interaction design enhances the
complementarity between features, enabling the fused features to
better represent the input multimodal information.

Specifically, we first perform aggregation along the height
dimension, as shown in the formula below:

zHc (H) =
1
W
∑

0≤i≤W
xc (H, i)

where zHc (H) represents the mean feature aggregation of channel c
along the height dimension H, and xc(H, i) is the feature value of
channel c at height H and width i. W is the width of the feature
map. This step averages over the width dimension to obtain global
information for each channel along the height dimension.

Next, we perform aggregation along the width dimension:

zWc (W) =
1
H
∑

0≤j≤H
xc (j,W)

where zWc (W) represents the mean feature aggregation of channel c
along the width dimension W, and xc(j,W) is the feature value of
channel c at height j and widthW.H is the height of the feature map.
This step averages over the height dimension to obtain the global
feature information of each channel along the width dimension.

Next, we perform global spatial aggregation by averaging the
feature values at all spatial positions:

zc =
1

H×W

H

∑
j=0

W

∑
i=0

xc (i, j)

where zc is the global average feature value of channel c across
the entire spatial space, representing the global information of this
channel over the entire feature map.

The cross-dimensional interaction strategy of the EMAattention
mechanism further enhances the robustness and generalization
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FIGURE 3
EMA module network architecture diagram.

ability of the diagnostic model in TongueNet. By interacting
the outputs of parallel branches, the EMA mechanism effectively
reduces redundant information, allowing the model to maintain
high diagnostic accuracy while distinguishing subtle pathological
features more precisely within the multimodal feature space.

3.6 Loss function

In thismethod, to enhance the consistency and complementarity
of multimodal features across different representation spaces,
consistency and complementarity loss functions are designed to
optimize the feature space, ultimately improving the model’s
diagnostic accuracy and robustness.

Firstly, the consistency of feature representation space ensures
that similar feature vectors remain consistent across different
representation spaces, meaning that distance metrics in different
spaces should be similar. Specifically, let the distinctive feature
of the tongue image, after being processed by the hierarchical
aggregation network, be represented in Euclidean space as Zes

t and
in hyperbolic space as Zhs

t . Likewise, the text features, after being
processed by the neural transformation network, are represented
in Euclidean space as Zes

s and in hyperbolic space as Zhs
s . To

achieve spatial consistency, a consistency loss function Lconsis is
defined as follows:

Lconsis = 1−
Des (Z

es
t ,Z

es
s ) ⋅D

c
hs (Z

hs
t ,Z

hs
s )

‖Des (Z
es
t ,Z

es
s )‖22 ⋅ ‖D

c
hs (Z

hs
t ,Z

hs
s )‖22

where Des denotes the distance metric in Euclidean space, defined
as Des(X,Y) = ‖X−Y‖22, and Dc

hs represents the distance metric in
hyperbolic space, defined as:

Dc
hs (X,Y) =

1
|c|

cosh−1(1−
2c‖X−Y‖22

(1+ c‖X‖22)(1+ c‖Y‖
2
2)
)

This consistency loss function ensures the consistency of similar
features between Euclidean and hyperbolic spaces by comparing the
distances, thereby improving the fusion of multimodal features.

Secondly, in addition to maintaining consistency, it is necessary
to enhance the complementarity between different modalities.
In this model design, a complementarity loss function Lcompl
ensures that the label predictions in Euclidean and hyperbolic
spaces exhibit complementary relationships, further optimizing the
feature fusion effect. The complementarity loss function is defined
as follows:

{
{
{

Lce = Dce (Ŷ
es,Yes)

Lcompl = D
c
hs (Ŷ

hs,Yhs)

where Ŷes and Ŷhs are the predicted labels in Euclidean and
hyperbolic spaces, respectively, andYes andYhs are the target labels in
Euclidean and hyperbolic spaces.Dce andD

c
hs are the distancemetric

functions in Euclidean and hyperbolic spaces, respectively.
Finally, this paper combines the consistency loss and

complementarity loss into a multi-objective optimization problem,
with the total loss function Ltotal represented as follows:

Ltotal =WceLce +WconsisLconsis +WcomplLcompl

where Wce, Wconsis, and Wcompl are weight coefficients for each
loss term, balancing the losses of consistency, complementarity,
and label prediction. This total loss function jointly optimizes
features in Euclidean and hyperbolic spaces, allowing the model to
better capture the complementarity and consistency of multimodal
features, ultimately enhancing diagnostic accuracy and adaptability
across diverse diagnostic scenarios.

4 Experiments

4.1 Experimental setup

4.1.1 Dataset
This paper organizes and utilizes three tongue image datasets

from the open-source data platform Roboflow, collecting a total of
4,815 tongue images. Among them, 3,370 images are used as the
training set, 722 as the test set, and another 722 as the validation set.
The dataset includes a rich variety of features such as tongue coating,
tongue body, tongue shape, and tongue edges, characterized by
diverse colors, shapes, and thicknesses, providing diversified tongue
image information for the model.

This study employs a three-expert annotation mechanism to
ensure high-quality and consistent data labeling. First, three experts
with extensive clinical experience in TCM were selected, with
at least one holding a senior professional title (Associate Chief
Physician or above). These experts underwent annotation training,
where unified standards were established, and a detailed annotation
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FIGURE 4
Dataset Sample Display. Including image-text pairs and multi-class label information.

guideline was developed to ensure a consistent understanding
of tongue image features, such as tongue size, thickness, teeth
marks, and cracks. During the annotation process, the three
experts independently labeled the same tongue image, assigning
multi-label information for disease nature and disease location. A
consistency checkwas then conducted—if all three annotationswere
identical, the data was retained; if discrepancies existed, the data
was discarded to prevent noise from affecting model performance.
Additionally, to ensure data quality, inter-expert agreement (Cohen’s
Kappa) was calculated as a quality evaluation metric, and 10%
of the final annotated samples were randomly selected for
review, further ensuring the stability and reliability of the data
annotation process.

The dataset contains multiple category labels,
specifically including:

• Pathological conditions: cold, Qi deficiency, Qi stagnation,
heat, dampness, phlegm, blood deficiency, blood stasis,
Yang deficiency, and Yin deficiency. To improve annotation
accuracy, multiple experts annotated the data. In cases of
inconsistent annotations, re-annotation was conducted to
ensure only consistent results were retained.
• Pathological locations: intestine, lung, liver, spleen, kidney,
stomach, heart, others, and healthy.

Through this approach, the dataset in this paper encompasses
multidimensional features and clinical pathological information of
tongue images, providing strong data support for training and

testing multimodal diagnostic models. The dataset sample display
is shown in Figure 4.

4.1.2 Experimental environment
The experimental environment in this study includes high-

performance hardware configurations and software frameworks to
ensure the efficiency and stability of model training and testing.The
hardware setup is equipped with a multi-core CPU, high-capacity
GPUmemory, and sufficient RAM, providing support for large-scale
data processing and model computation. The software environment
utilizes the Ubuntu operating system, combined with Python 3.9
and the PyTorch deep learning framework, with GPU acceleration
enabled through CUDA. Additionally, the OpenCV library is
integrated for image processing tasks. The specific configurations
are shown in Table 1.

4.2 Experimental details

4.2.1 Parameter settings
Table 2 shows the hyperparameter settings used in our

experiments to ensure model stability and optimization
effectiveness during the training process. These settings include
the learning rate, batch size, number of epochs, and optimizer
type, which help control the model’s convergence speed and
generalization ability.
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TABLE 1 Experimental hardware and software Configuration.

Configuration Name Specific information

Hardware Environment

CPU Intel(R) Xeon(R) Gold 6129 CPU @ 2.30 GHz × 32

GPU NVIDIA Tesla V100-PCIE × 10

VRAM 160 GB

Memory 187 GB

Software Environment

Operating System Ubuntu

Python Version 3.9.18

PyTorch Version 1.13.0

CUDA Version 11.3

OpenCV Version 4.6.0

TABLE 2 Hyperparameter settings.

Hyperparameter Value

Learning Rate 0.001

Batch Size 16

Epochs 300

Optimizer Adam

Learning Rate Scheduler Step Decay

Weight Initialization He Initialization

Dropout 0.5

4.2.2 Evaluation metrics
The evaluation metrics in this paper include Accuracy (Acc),

Precision (P), Recall (R), F1 Score (F1), Mean Average Precision
(mAP), and Area Under the Curve (AUC). These metrics are used
to comprehensively evaluate the classification performance of the
model. The formulas are as follows:

Acc = TP+TN
TP+TN+ FP+ FN

,

P = TP
TP+ FP

,

R = TP
TP+ FN

,

F1 = 2× P×R
P+R
,

mAP = 1
N

N

∑
i=1

APi,

AUC = ∫
1

0
TPR (t) d (FPR (t))

whereTP is the true positive count,TN is the true negative count, FP
is the false positive count, FN is the false negative count,N is the total

number of classes, APi is the average precision for class i, TPR(t) is
the true positive rate, and FPR(t) is the false positive rate.

4.3 Results

As shown in Table 3, TongueNet significantly outperforms
existing baseline models, including FocalNet, WaveMLP, ViP,
CycleMLP, and LeViT, in both the pathology (Pathology) and
location (Location) tasks. Compared to these baseline models,
TongueNet demonstrates substantial improvements across
multiple evaluation metrics, further validating the effectiveness
of the proposed method in multimodal feature fusion and
diagnostic tasks.

In the pathology classification task, TongueNet achieved
an accuracy of 89.12%, outperforming FocalNet’s 88.44% and
CycleMLP’s 87.34%, showcasing its superior classification capability.
Notably, in the critical F1 score metric, TongueNet achieved
48.07%, significantly higher than CycleMLP’s 40.25% and LeViT’s
39.75%, indicating TongueNet’s advantage in balancing precision
and recall. Additionally, TongueNet attained 46.44% in mean
average precision (mAP) and 0.83 in AUC, both of which are
superior to all baseline models. These improvements demonstrate
that TongueNet effectively captures subtle pathological features,
significantly enhancing the accuracy of pathology classification.

In the location classification task, TongueNet also exhibited
exceptional performance, achieving an accuracy of 86.47%, with a
clear improvement over CycleMLP and LeViT. In terms of precision,
TongueNet achieved 62.44%, significantly higher than FocalNet’s
54.12% and ViP, highlighting its high accuracy in identifying
location-specific features. In the F1 score, TongueNet obtained
48.25%, with notable improvements over other models such as
CycleMLP and LeViT, further confirming its adaptability and
robustness in handling complex feature patterns. TongueNet also
achieved 47.61% in mAP and 0.81 in AUC, both outperforming
baseline models, demonstrating its stronger ability to understand
and differentiate features in location diagnosis tasks.
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TABLE 3 Performance comparison of TongueNet with other models.

Diagnostic task Model Parameters (M) Evaluation metrics

Acc (%) P (%) R (%) F1 (%) mAP (%) AUC

Pathology

FocalNet Cao et al. (2019) 31.08 88.44 68.05 25.79 36.63 42.16 0.75

WaveMLP Tang et al. (2022b) 35.42 84.95 44.72 29.92 35.70 35.00 4.18

ViP Chen et al. (2020) 25.87 82.96 38.93 31.67 34.89 30.74 0.80

CycleMLP 27.80 87.34 56.37 31.67 40.25 38.60 0.82

LeViT Graham et al. (2021) 32.01 88.48 65.45 29.13 39.75 42.84 0.81

TongueNet 32.01 89.12 65.82 38.19 48.07 46.44 0.83

Location

FocalNet Cao et al. (2019) 31.08 84.53 54.12 35.32 42.58 45.13 0.79

WaveMLP Tang et al. (2022b) 35.42 83.18 47.86 28.11 35.16 39.29 4.21

ViP Chen et al. (2020) 25.87 83.86 51.51 36.43 42.57 42.15 0.78

CycleMLP 27.80 85.24 57.06 37.17 44.85 44.78 0.81

LeViT Graham et al. (2021) 32.01 85.55 58.77 35.69 44.18 45.17 0.74

TongueNet 32.01 86.47 62.44 39.57 48.25 47.61 0.81

The bold font represents the optimal result.

TABLE 4 TongueNet ablation study on consistency and complementarity.

Diagnostic task Method Consistency Performance metrics

Consistency Complementarity Acc (%) P (%) R (%) F (%) mAP (%) AUC

Pathology

(a) - - 84.91 61.02 25.64 36.27 39.71 0.74

(b) ✓ - 85.45 62.01 28.97 37.47 40.35 0.70

(c) - ✓ 84.32 58.17 33.28 42.19 42.63 0.71

(d) ✓ ✓ 89.12 65.82 38.19 48.07 46.44 0.83

Location

(a) - - 82.02 55.24 32.16 40.65 41.64 0.71

(b) ✓ - 82.34 56.42 33.67 43.18 41.11 0.73

(c) - ✓ 82.20 55.46 35.67 43.42 41.76 0.75

(d) ✓ ✓ 86.47 62.44 39.57 48.25 47.61 0.81

The bold font represents the optimal result.

4.4 Ablation study

As shown in Table 4, we evaluated the contribution of the
consistency and complementarity modules to the performance of
the TongueNet model in both pathology and location diagnosis
tasks. The experimental results demonstrate that the inclusion of
these modules significantly enhances the model’s performance,
further highlighting the advantages of TongueNet in multimodal
diagnosis.

In the pathology classification task, when the consistency and
complementarity modules were not used [configuration (a)], the
model achieved an accuracy of 84.91%, an F1 score of 36.27%, and
an AUC of 0.74. When the consistency module was introduced
alone [configuration (b)], the model’s accuracy improved to 85.45%,
with the F1 score increasing by 1.2 percentage points to 37.47%,
although AUC slightly decreased to 0.70. This indicates that the
consistency module improves some key performance metrics, but
the improvement is limited when used alone. When only the
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complementarity module was added [configuration (c)], the F1
score significantly increased to 42.19%, a 5.92 percentage point
improvement over the baseline model (a), and the mAP also
improved from 39.71% to 42.63%. In the complete model with
both consistency and complementaritymodules [configuration (d)],
TongueNet achieved an accuracy of 89.12%, the F1 score further
increased to 48.07%, and AUC reached 0.83. These results show
significant improvements across allmetrics compared to the baseline
model (a), validating the importance of both modules in capturing
multimodal feature complementarity and consistency.

In the location classification task, a similar trend was
observed. The baseline model (a), without the consistency and
complementarity modules, achieved an accuracy of 82.02%, an
F1 score of 40.65%, and an AUC of 0.71. After introducing the
consistency module [configuration (b)], the accuracy increased to
82.34%,with slight improvements in the F1 score andAUC, reaching
43.18% and 0.73, respectively. When only the complementarity
module was used [configuration (c)], the F1 score reached 43.42%,
and AUC increased to 0.75. Finally, in the complete model with
both modules [configuration (d)], TongueNet’s accuracy improved
to 86.47%, the F1 score increased to 48.25%, and AUC reached 0.81,
with significant improvements across all metrics compared to the
baseline model.

4.5 Analysis of different data proportions

Considering that the effect of consistency and complementarity
constraints may be influenced by the dataset size, this section
conducts experiments by sampling 25%, 50%, and 100% of the
original data to explore the robustness of these spatial constraints
with smaller datasets.

As shown in Table 5, when only 25% of the original data is used,
the TongueNet model with spatial constraints still outperforms the
model without spatial constraints. Specifically, the model’s accuracy
improves from 83.19% to 84.05%, and the AUC increases from 0.58
to 0.65.This indicates that even with limited data, spatial constraints
still have a positive impact on model performance. With 50% of
the data, adding spatial constraints further improves the model’s
accuracy to 86.22%, the F1 score rises from 29.48% to 34.45%, and
the AUC increases from 0.63 to 0.78. This further validates the
effectiveness of spatial constraintswith smaller datasets, allowing the
model to better capture potential relationships between multimodal
features. With the full dataset (100%), the model with spatial
constraints achieves the best performance, with an accuracy of
89.12% and an AUC of 0.83, significantly outperforming the
configuration without spatial constraints.These results demonstrate
that spatial constraints enhance model performance across different
data scales, particularly contributing to model robustness and
classification accuracy when data is limited.

A similar trend is observed in the location diagnosis task
(as shown in Table 6). With 25% of the data, the model with spatial
constraints shows improvements across all metrics compared to
the model without spatial constraints, especially with the AUC
increasing from 0.61 to 0.65, and a noticeable improvement in
the F1 score. When the data increases to 50%, the model with
spatial constraints shows a more significant improvement in both
accuracy and F1 score, with accuracy reaching 80.35%, compared

to 79.30% without spatial constraints. The AUC also shows a
significant increase, rising from 0.71 to 0.75. With the full dataset
(100%), the introduction of spatial constraints allows the model to
achieve optimal performance, with accuracy rising to 86.47% and
AUC to 0.81. Overall, spatial constraints contribute significantly
to the model’s classification performance across different data
scales, especially when data is scarce, improving the model’s
robustness and generalization ability. These experimental results
further demonstrate the potential of TongueNet in multimodal
traditional Chinese medicine diagnosis, as it can effectively capture
the relationship between tongue images and textual features, even
with limited data, thus improving diagnostic accuracy.

4.6 Comparison of multimodal and
unimodal

To further validate the effectiveness of multimodal fusion in
TongueNet for pathology and location diagnosis tasks, this paper
compares the performance of the multimodal (image and text)
model with the unimodal (image-only) model.

As shown in Table 7, in the pathology diagnosis task, the
multimodal model outperforms the unimodal model across all
metrics. Specifically, the accuracy of the unimodal model is 81.87%,
while the multimodal model reaches 89.12%, improving by 7.25
percentage points. At the same time, the precision and F1 score of
the multimodal model improved by approximately 3.4% and 1.94%,
respectively. In terms of mean average precision (mAP) and AUC,
the multimodal model also showed significant advantages, reaching
46.44% and 0.83, which is an improvement of 18.15% and 0.05 over
the unimodal model. This indicates that multimodal information
fusion can effectively enhance the model’s ability to capture
pathology features, leading to more accurate diagnostic results.

As shown in Table 8, in the location diagnosis task, the
multimodal model also demonstrates better performance. The
accuracy of the unimodal model is 84.63%, while the multimodal
model improves to 86.47%. In terms of the F1 score, the multimodal
model reaches 48.25%, improving by 12.49 percentage points,
which indicates that multimodal fusion significantly improves the
robustness and accuracy of the model for location diagnosis.
Additionally, the mAP improves from 26.24% in the unimodal
model to 47.61%, and the AUC increases from 0.75 to 0.81, further
proving the advantage of multimodal features in capturing location-
specific characteristics.

4.7 Discussion

The proposed TongueNet employs a multimodal deep learning
approach to integrate tongue image analysis and textual features,
significantly enhancing the automation of Traditional Chinese
Medicine (TCM) tongue diagnosis. In disease nature and lesion
location classification tasks, the model outperforms existing
traditional methods across multiple key evaluation metrics, such
as accuracy and AUC. The findings of TongueNet have broad
implications for clinical applications and the development of
AI in healthcare. Tongue analysis is a crucial component of
TCM diagnosis, traditionally relying on practitioners’ subjective
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TABLE 5 Effect of dataset size on representational spatial constraints in pathology diagnosis task.

Diagnostic task Percentage (%) Spatial constraint Performance metrics

Acc(%) P (%) R (%) F (%) mAP (%) AUC

Pathology

25%
No 83.19 36.32 22.64 27.68 32.20 0.58

Yes 84.05 41.36 25.06 30.97 34.49 0.65

50%
No 84.71 42.56 22.91 29.48 34.98 0.63

Yes 86.22 51.23 26.40 34.45 36.77 0.78

100%
No 84.91 61.02 25.64 36.27 39.71 0.74

Yes 89.12 65.82 38.19 48.07 46.44 0.83

The bold font represents the optimal result.

TABLE 6 Effect of dataset size on representational spatial constraints in location diagnosis task.

Diagnostic task Percentage (%) Multi-display constraint Performance metrics

Acc(%) P (%) R (%) F (%) mAP (%) AUC

Location

25%
No 75.44 31.07 19.64 24.07 34.04 0.61

Yes 77.64 37.50 19.29 25.47 36.12 0.65

50%
No 79.30 46.15 21.05 28.92 39.73 0.71

Yes 80.35 51.55 29.24 37.31 43.18 0.75

100%
No 82.02 55.24 32.16 40.65 41.64 0.71

Yes 86.47 62.44 39.57 48.25 47.61 0.81

The bold font represents the optimal result.

TABLE 7 Comparison of TongueNet’s pathology diagnosis performance between multimodal and unimodal models.

Training mode Modality Acc(%) P (%) R (%) F (%) mAP (%) AUC

Unimodal Image 81.87 62.42 39.15 46.13 28.29 0.78

Multimodal (Image & Text) 89.12 65.82 38.19 48.07 46.44 0.83

TABLE 8 Comparison of TongueNet’s location diagnosis performance between multimodal and unimodal models.

Training mode Modality Acc(%) P (%) R (%) F (%) mAP (%) AUC

Unimodal Image 84.63 60.32 38.47 35.76 26.24 0.75

Multimodal (Image & Text) 86.47 62.44 39.57 48.25 47.61 0.81

experience, which often leads to inconsistencies among different
physicians. This study addresses this issue by standardizing and
quantifying tongue features through a data-driven approach,
reducing human-induced errors and enhancing diagnostic
consistency. Furthermore, TongueNet surpasses the limitations of
traditional single-modal tongue diagnosis methods by achieving

joint learning of image and text features, enabling more
comprehensive and accurate disease nature and lesion location
diagnosis. Compared to rule-based approaches, TongueNet exhibits
greater adaptability and self-learning capability, continuously
improving its generalization performance with new data, making
it suitable for tongue diagnosis tasks across different regions
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and patient groups. This method can assist doctors in hospitals
and clinics in making rapid diagnoses and can also be applied
to telemedicine systems. It is particularly beneficial for primary
healthcare institutions and remote areas, enabling efficient, low-cost
intelligent tongue diagnosis, thereby improving access to medical
resources.

Although TongueNet has made significant progress in the
automation of TCM tongue diagnosis, this study still has certain
limitations. One of the primary bottlenecks affecting the model’s
generalization ability is the insufficient scale and diversity of the
dataset. The dataset used in this study consists of 4,815 tongue
images, which is relatively small compared to other mainstream
medical imaging datasets, such as CheXpert and ImageNet. This
data limitation may lead to performance instability in different
populations or clinical settings, especially when dealing with
individuals of different ethnicities, ages, genders, and lifestyles. For
instance, research indicates that dietary habits, regional climate,
and genetic factors influence tongue characteristics. However, the
current dataset does not encompass a sufficiently diverse range of
individuals, which may restrict the model’s applicability to certain
populations. Therefore, future research should focus on expanding
the dataset size and developing amultimodal tongue image database
that includes diverse geographic regions and populations to enhance
the model’s adaptability and robustness.

Furthermore, the complex relationship between disease nature
and lesion location may not have been fully explored. For
example, certain disease natures (e.g., “Spleen Qi Deficiency”)
are often highly correlated with specific lesion locations (e.g.,
“pale and swollen tongue”), but the current model does not
explicitly capture these pathological associations and instead treats
them as two independent classification tasks. Future research
can enhance the model’s clinical applicability by incorporating
additional annotation dimensions, such as microscopic tongue
features (thickness of tongue coating, cracks, moisture levels),
syndrome combinations (changes in Qi, blood, and body fluids),
and individual health conditions (dietary habits, lifestyle factors).
Additionally, introducing Graph Neural Networks (GNNs)
or relation inference models can help explore the structured
relationships between disease nature, lesion location, and syndrome
types, enhancing themodel’s understanding of complex pathological
patterns and improving diagnostic reasoning and medical
interpretability.

The application of artificial intelligence in medical diagnosis
still faces ethical and interpretability challenges. Although
TongueNet has demonstrated excellent performance in experiments,
its decision-making process remains a “black box,” lacking
interpretability. Both doctors and patients may find it difficult
to understand the basis of AI diagnoses, which could affect the
acceptance and trustworthiness of AI-assisted diagnosis in real-
world medical practice. Moreover, in clinical practice, the issue of
responsibility attribution for AI diagnosis remains an unresolved
ethical concern. Currently, most medical AI systems operate as
Clinical Decision Support (CDS) systems, where the final diagnostic
decision is made by the physician. However, if an AI misdiagnosis
occurs, there is no clear consensus on whether the physician should
bear full responsibility for the error.

Future research can be optimized and expanded in multiple
directions. First, expanding the dataset size and diversity is

crucial by collecting tongue images from individuals of different
genders, ages, regions, and dietary habits, thereby constructing
a more representative multimodal medical imaging database.
Second, in terms of model optimization, integrating Transformer
architectures can enhance cross-modal information interaction,
while incorporating self-supervised learning (SSL) methods can
reduce dependence on large-scale manually annotated data.
Additionally, to improve the credibility of AI diagnosis, future
studies should focus on explainable AI (XAI) methods, such as
Grad-CAM, LIME, and SHAP, enabling physicians to intuitively
understand AI’s diagnostic logic, thereby increasing clinicians’
trust in AI-assisted diagnosis. Finally, TongueNet can be further
integrated with telemedicine systems and smart health devices
to enable real-time tongue diagnosis analysis and facilitate the
development of mobile AI-based tongue diagnosis systems,
promoting the clinical application of intelligent TCM diagnosis.

5 Conclusion

This paper presents a multimodal deep learning model
called TongueNet, which combines tongue image and text
information to achieve high-precision multi-label classification
for pathology and location in TCM diagnosis. TongueNet utilizes
a HAN and a feature space projection module to efficiently
extract and integrate multimodal features. The model applies
consistency and complementarity constraints to optimize the
fusion of tongue and text features. Additionally, the EMA attention
mechanism is introduced to effectively allocate weights across
multimodal features, enhancing the diversity and accuracy of
feature representation. TongueNet also replaces the traditional MLP
with a KAN for output optimization. KAN’s multi-level nonlinear
function learning strengthens the model’s ability to represent
complex features, further improving classification performance.
Experimental results show that TongueNet outperforms existing
models in both pathology and location diagnosis tasks, validating
its potential application in multimodal TCM diagnosis.
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