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Introduction: Existing technologies are at risk of abnormal hemi-diaphragm
measurement due to their abnormal morphology caused by lung field
deformation during quiet breathing (free respiration or respiratory) interventions
in dynamic chest radiography (DCR). To address this issue, an optimization
method for hemi-diaphragm measurement is proposed, utilizing graphics and
the consistency criterion for diaphragm motion.

Methods: First, Initial hemi-diaphragms are detected based on lung field mask
edges of dynamic chest X-ray images abstracted from the DCR at respiratory
interventions controlled by the radiologist’s instructions. Second, abnormal
hemi-diaphragms are identified, resulting from morphological deformation of
the lung field during respiration. Lastly, these abnormal hemi-diaphragms are
optimized based on the consistency criterion of diaphragm motion.

Results: Results show that the proposed optimization method can effectively
measure the hemi-diaphragm, even in the presence of the inapparent
cardiophrenic angle caused by abnormal deformations of the lung field
morphology during respiration, reducing the mean error by 49.050 pixels
(49.050 × 417 μm = 20,453.85 μm).
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Discussion: Therefore, the proposed optimization method may become an
effective tool for precision healthcare to find the pattern of diaphragm
movement during respiratory interventions.

KEYWORDS

dynamic chest radiography, hemi-diaphragm measurement, convolutional neural
network, graphics, diaphragmmotion consistency criterion, respiration

1 Introduction

X-ray is the most widely used primary imaging modality for
routine chest and bone radiography as it is widely available, low-
cost, has a fast imaging speed, and is easy to acquire (Liu et al.,
2022; Yang et al., 2024a). Specifically, a digital X-ray image can
be obtained within seconds after exposure by directly projecting
the captured image of the human body onto a two-dimensional
plane (Yang et al., 2024a; Yang et al., 2024b). Therefore, it has
become the preferred imaging device to improvework efficiency and
facilitate the initial chest diagnosis of critically ill and/or emergency
patients in clinical practice (Yang et al., 2024a; Yang et al., 2024b;
Howell, 2016; Irmici et al., 2023).

As the most widely used static chest imaging modality, the
static chest X-ray technique captures the thorax and surrounding
structures at a specific moment, resulting in a chest X-ray plain
film. The chest X-ray plain film can display the inside and
outside structures of the chest cavity, which is most helpful in
identifying abnormalities in the heart, lung parenchyma, pleura,
chest wall, diaphragm, mediastinum, and hilum (Reed, 2011).
Therefore, it is typically used as a preliminary examination to
evaluate diseases such as thoracic diseases or damage (such as rib
fractures), lung diseases (such as pneumonia and COVID-19), and
cardiovascular diseases (such as an abnormal cardiothoracic ratio)
(Yang et al., 2024a; Sun et al., 2023; Amin et al., 2024). It effectively
alleviates the slow imaging speed of chest computed tomography
(CT), magnetic resonance imaging (MRI), and positron emission
tomography (PET), especially in clinical practice for critically ill
and/or emergency patients (Yang et al., 2024a; Yang et al., 2024b;
Howell, 2016; Irmici et al., 2023). However, the static chest imaging
modality limits the dynamic analysis of lung physiological activity,
such as ventilation (Yang et al., 2025), changes in the cardiothoracic
ratio (Yang et al., 2024a), alterations in lung field area, and
diaphragm movement during lung respiration (Yang et al., 2024b).

Compared to static chest imaging modalities, dynamic chest
functional imaging modalities facilitate quantitative analysis
of lung physiological activity from an anatomical perspective.
These modalities include chest CT, MRI, X-ray, scintigraphy,
PET, ultrasound, and electrical impedance tomography (EIT) for
quantitative analysis of lung physiological activity, such as evaluating
ventilation and perfusion in specific regions (Nakamura et al., 2024).
Additionally, the dynamic chest MRI is particularly valuable for
quantifying the severity of chest wall deformation in children
with spinal deformities, which is crucial for understanding its
impact on trunk appearance and cardiopulmonary function (Arias-
Martínez et al., 2025). However, compared to other dynamic chest
functional imaging modalities, dynamic X-ray and CT imaging

modalities are the preferred choices for diagnosing chest diseases
in clinical practice (Al-qaness et al., 2024). Dynamic chest X-ray
and CT imaging modalities are not conflicting but complementary,
which are crucial in chest medical imaging. Specifically, chest
X-ray fluoroscopy, a type of dynamic chest radiography (DCR),
is a real-time, sequential, high-resolution digital X-ray imaging
system of the thorax in motion over the respiratory cycle, utilizing
pulsed image exposure. Post-acquisition image processing by a
computer algorithm automatically characterizes the motion of
thoracic structures (Fyles et al., 2023). Compared with chest X-
ray fluoroscopy, the chest CT sacrifices temporal resolution to
obtain higher three-dimensional spatial resolution. Specifically,
although the chest CT provides a more precise definition of the
structure and abnormalities within the thorax than the chest X-
ray fluoroscopy, due to its limitations on radiation dose, chest
CT images are currently only acquired at deep exhalation and/or
deep inhalation, obtaining inspiratory or/and expiratory chest CT
images (Yang et al., 2022a; Deng et al., 2024; Wang et al., 2024).
However, the lungs undergo irregular deformation during the
respiratory process (Gong et al., 2024). Compared to the inspiratory
and expiratory chest CT images (at the two time points), chest
fluoroscopy encompasses more time points during quiet breathing
(free respiration or respiratory) interventions. Therefore, this
significantly contributes to the dynamic quantitative analysis of
lung movement function, such as hemi-diaphragm motion.

Specifically, Tanaka et al. assessed the correlation between
diaphragmmotion parameters and lung vital capacity (Tanaka et al.,
2006). Meanwhile, Yamada et al. evaluated the average
diaphragmatic excursions in healthy volunteers and the difference
in tidal breathing diaphragm motion between COPD and healthy
controls using DCR (Yamada et al., 2017b; Yamada et al., 2017a).
Subsequently, Yamada et al. further assessed the correlation between
diaphragm motion and anthropometrics (Yamamoto et al., 2020).
In addition, Hida et al. assessed diaphragm motion in standing
positions during forced breathing and evaluated its associations
with demographics and pulmonary function tests. Subsequently,
Hida et al. further assessed the differences in speed and excursion
of diaphragmatic motion between patients with COPD and
controls, as well as the correlation between pulmonary function
tests and diaphragmatic motion (Hida et al., 2019b; Hida et al.,
2019a). Besides, FitzMaurice et al. described the changes in
diaphragm motion and lung areas before and after modulator
therapy in adults with cystic fibrosis bronchiectasis using DCR
(FitzMaurice et al., 2022c). Subsequently, FitzMaurice et al. further
described diaphragm motion in individuals with a paralyzed
hemi-diaphragm using DCR, as well as diaphragm motion in
individuals undergoing treatment for a pulmonary exacerbation
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of cystic fibrosis bronchiectasis (FitzMaurice et al., 2022b;
FitzMaurice et al., 2022a). Additionally, Chen et al. quantitatively
evaluated diaphragmatic motion during forced breathing in
patients with chronic obstructive pulmonary disease using DCR
(Chen et al., 2022). Therefore, precision hemi-diaphragm detection
in DCR images is crucial for accurately assessing diaphragm
movement function (Yang et al., 2024b).

Based on the above, Yang et al. proposed an effective hemi-
diaphragm detection method using a convolutional neural network
(CNN) and Graphics for its accurate evaluation (Yang et al., 2024b).
This hemi-diaphragm detection method can potentially localize
the cardiophrenic angle based on the morphology of the left and
right lung field mask edge images, utilizing graphics to assist
with hemi-diaphragm measurement. However, the measurement
method of the hemi-diaphragm mentioned above often yields an
abnormal measurement of the hemi-diaphragm in the left lung
field due to its abnormal morphology resulting from lung field
deformation in DCR. Therefore, it is necessary to propose an
optimization method to ensure the accuracy of hemi-diaphragm
measurement on the dynamic chest X-ray (CXR) images for
subsequent quantitative analysis. Our contributions in this paper are
briefly described as follows:

(1) We propose an abnormal hemi-diaphragm identification
method caused bymorphological deformation of the lung field
motion during respiration, which is crucial for subsequent
hemi-diaphragm optimization.

(2) We propose a hemi-diaphragm optimization method based on
the diaphragm motion consistency criterion to optimize these
abnormal hemi-diaphragms, even if there is an inapparent
cardiophrenic angle caused by abnormal deformations of the
lung field morphology during respiration.

(3) The proposed optimization method may become an effective
tool for identifying the pattern of diaphragmmovement during
respiratory interventions for precision healthcare.

2 Materials and methods

The proposed hemi-diaphragm optimization method involves
the initial measurement of the hemi-diaphragm from dynamic CXR
images extracted from the DCR, followed by the optimization of
the abnormal hemi-diaphragm. Based on the above, materials and
methods are described in Sections 2.1 and 2.2, respectively.

2.1 Materials

Seven hundred seventy-six static CXR images (512 × 512)
predefined by pneumonia, tuberculosis, unclear disease, and health
(the normal case in the data description) were collected from
public CXR datasets and the Radiopaedia website accessed by
Google browser (https://radiopaedia.org/). They were used to
train and test the standard lung field segmentation model based
on a CNN architecture. The fifteen static Internet CXR images
were collected from the Radiopaedia website (https://radiopaedia.
org/articles/chest-pa-view-1, https://radiopaedia.org/articles/chest-
radiograph?lang=us, and https://radiopaedia.org/articles/chest-

TABLE 1 Characteristics of these five sets of DCR (150 dynamic
CXR images).

Characteristics Value/Mean ± SDa

Gender (male/female) 3/2

Age (year) 41.2 ± 24.964 (Range: 21–69)

kVp 77.0 ± 2.739 (Range: 75–80)

Distance source to the detector (cm) 180

Exposure time (ms) 125

X-ray tube current (mA) 110.0 ± 13.693 (Range: 100–125)

Entrance dose in mGy 0.282 ± 0.208 (Range: 0.130–0.510)

Frames/s 15

aThe SD denotes the standard deviation.

expiratory-view-2?lang=us), an open-source, expert-reviewed, and
extensive radiology encyclopedia.Detailed information on these 776
static CXR images can be found in our previous research (Yang et al.,
2024a; Yang et al., 2024b). In addition, five sets of DCR (the CXR
video) at respiratory interventions controlled by the radiologist’s
instructions are collected by a digital X-ray imaging system
(manufacturer: Lanmage, collection mode: chest fluoroscopy, and
flat panel detector: IRAY). Specifically, 30 dynamic CXR images are
abstracted from each DCR. Table 1 summarizes the characteristics
of these 150 (30 × 5) dynamic CXR images. Specifically, these
participants received prior guidance from radiologists on respiratory
intervention control, which trained them to breathe quietly in the
standing position. Then, they underwent postero-anterior digital
X-ray imaging while breathing quietly in the standing position.

Written informed consents were obtained from these
participants, and the study was approved by the GuangzhouMedical
University Ethics Committee in China (Grant number: 2023-hg-ks-
24, Approval Date: 28 August 2023, Tel: +86-20-34153599, Fax:
+86-20-34153066).

2.2 Methods

Figure 1 illustrates the overall flowchart of the proposedmethod
for optimizing hemi-diaphragm measurement in dynamic CXR
images. Specifically, the proposed hemi-diaphragm optimization
method includes two main steps. Step 1 completes the initial hemi-
diaphragmmeasurement of the dynamicCXR images. Subsequently,
step 2 completes the optimization of the abnormal hemi-diaphragm
based on the measurement obtained in step 1.

2.2.1 Initial hemi-diaphragm measurement
Figures 1, 2A show that the initial hemi-diaphragm

measurement is based on our previous method (Yang et al., 2024b).
Specifically, this method localizes the right cardiophrenic angle
based on the edge of its lung field mask. Then, the left cardiophrenic
angle is localized based on the right cardiophrenic angle and the
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FIGURE 1
Overall flowchart of the proposed method for optimizing hemi-diaphragm measurement in dynamic CXR images. The pink box: CXR images with an
abnormal hemi-diaphragm that requires correction. The green box: CXR images with the normal hemi-diaphragm.
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FIGURE 2
The schematic diagram for the hemi-diaphragm measurement based on left and right lung field mask edge images. (A) The initial hemi-diaphragm
measurement (normal). (B) Optimized process of the abnormal hemi-diaphragm measurement. (b1) The initial hemi-diaphragm measurement
(abnormal). (b2) Initialization of the abnormal left cardiophrenic angle. (b3) Optimization of abnormal left cardiophrenic angle.

edge of the left lung field mask. Lastly, the initial right hemi-
diaphragm is determined by a line segment extending from the right
cardiophrenic angle to the right costophrenic angle along the edge of
the right lung field mask. Similarly, the initial left hemi-diaphragm
is determined by a line segment from the left cardiophrenic angle to
the left costophrenic angle along the left lung field mask edge.

2.2.1.1 Lung field segmentation
A pre-trained, robust, and standard lung field segmentation

model is used to abstract the lung field from these 150 dynamic
CXR images, generating 30 lung field mask images of each case.
Specifically, the organ and lesion segmentation model for medical
images based on CNNs has become an indispensable technology
for quantitative analysis (Yang et al., 2024a; Zaman et al., 2024;
Zeng et al., 2023; Duan et al., 2023; Yang et al., 2021; Junia and K,
2024; Iqbal et al., 2021; Iqbal et al., 2020;Mochurad, 2025). However,
a robust and standardized lung field segmentation model for cross-
center and pathological CXR images remains to be developed for
quantitative analysis based on the lung field.

Based on the above, the metrics of five standard lung field
segmentation models based on the fully convolutional networks
(FCN) (Long et al., 2015), SegNet (Badrinarayanan et al., 2017),

U-Net (Ronneberger et al., 2015), and its two improved networks
(ResU-Net++ (Jha et al., 2019) and AttU-Net (Wang et al., 2022))
with these 776 static CXR images and data augmentation technique,
were evaluated to validate that automatic lung field segmentation in
routine CXR imaging is a data diversity problem, not amethodology
problem (Yang et al., 2024b). These networks, including FCN,
SegNet, U-Net, ResU-Net++, and AttU-Net, are trained sequentially
using the same training set, generating five lung field segmentation
models. Then, five standard evaluation metrics, including accuracy,
precision, recall, Dice, and Intersection over Union (IoU), as well as
the 95th percentile Hausdorff distance (HD), are calculated for these
lung field segmentation models using the same test set, respectively
(Yang et al., 2024a; Yang et al., 2024b; Yang et al., 2025). Specifically,
the mean accuracies (%) of these lung field segmentationmodels are
98.75 ± 0.49, 98.93 ± 0.63, 98.93 ± 0.85, 99.02 ± 0.60, and 99.05 ±
0.69, respectively. In addition, the mean precision (%) of these lung
field segmentation models is 97.56 ± 1.15, 97.89 ± 1.49, 93.30 ± 1.40,
97.80 ± 1.96, and 98.36 ± 1.44, respectively. The mean recall (%) of
these lung field segmentation models is 97.14 ± 1.73, 97.55 ± 1.93,
97.31 ± 2.70, 98.05 ± 1.69, and 97.67 ± 2.14, respectively. The mean
Dice (%) of these lung field segmentation models is 97.35 ± 1.19,
97.71± 1.56, 97.78± 1.63, 97.91± 1.46, and 97.99± 1.43, respectively.
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The mean IoU (%) of these lung field segmentation models is 94.85
± 2.22, 95.57 ± 2.91, 95.71 ± 3.05, 95.95 ± 2.74, and 96.11 ± 2.69,
respectively. Finally, the mean 95th percentile HD of these lung field
segmentation models is 5.61 ± 3.26, 5.41 ± 3.81, 5.72 ± 5.02, 5.46 ±
4.51, and 5.02 ± 4.15, respectively.

Although these evaluation metrics indicate no significant
difference between these lung field segmentation models, this
lung field segmentation based on FCN was excluded due to the
noticeable jagged edges in the lung field masks (Yang et al., 2024a;
Yang et al., 2024b; Yang et al., 2025). Meanwhile, due to the simple
network structure and limited computing resources of U-Net, the
lung field segmentationmodel based onU-Net is ultimately adopted
in this study.

2.2.1.2 Lung field identification and edge detection
The right and left lung fields are identified based on their area

in each lung field mask image (Yang et al., 2024b). Additionally,
an edge detection algorithm is applied to the lung field mask
images, resulting in 30 edge images for each case (Yang et al.,
2024b). Specifically, this edge detection algorithm uses a 3 × 3
pixel correction template to traverse each lung field mask image in
rows/columns with a step size of 1 pixel to generate the corroded
lung field mask image. Then, the lung field mask edge images are
obtained by subtracting the corroded lung field mask image from its
corresponding uncorroded lung field mask image.

2.2.1.3 Initial hemi-diaphragm detection
The initial left and right hemi-diaphragm are separately

measured based on the right and left lung field mask edge images.
Specifically, the right cardiophrenic angles at time k C1,k of each

case are cleverly localized by the maximum Euclidean distance from
the straight line at time k A1,kB1,k (k = 1,2,3, …,30) shown in the
mathematical expressions Equations 1, 2:

A1,kB1,k:a1,kx+ b1,ky+ c1,k = 0, (1)

C1,k(x,y) ← max D⃗C1,k

=max(dr1,k(pr1,k),dr2,k(pr2,k)...,drn,k(prn,k))

=max(dr1,k(xr1,k,yr1,k),dr2,k(xr2,k,yr2,k), ...,drn,k(xrn,k,yrn,k))

=max(
|a1,kxr1,k + b1,kyr1,k + c1,k|

√a2
1,k + b

2
1,k

, ...,
|a1,kxrn,k + b1,kyrn,k + c1,k|

√a2
1,k + b

2
1,k

)

,

(2)

Where D⃗C1,k = (dr1,k(pr1,k),dr2,k(pr2,k)...,drn,k(prn,k)) denotes
the ith Euclidean distances at time k dri,k of these
coordinates (pr1,k,pr2,k, ...,prn,k) = ((xr1,k,yr1,k),(xr2,k,yr2,k), ...,
(xrn,k,yrn,k)) extracted from all pixels (A1,k to B1,k) in the right
lung edge at time k Ιmask_right_edge,k on the right side of the A1,kB1,k
to the straight line A1,kB1,k, and i = 1, 2, …, n. These parameters
a1,k,b1,k,c1,k denote the coefficients of the straight lineA1,kB1,k, and
r denotes the right lung.

Subsequently, the left cardiophrenic angle at time k, C2,k, is
localized based on the right cardiophrenic angle and the left lung
field mask edge.

Specifically, since this left cardiophrenic angle at time k C2,k
is not the farthest point from the straight line A2,kB2,k (k = 1,2,3,
…,30), it is necessary to restrict the coordinate points extracted

from all pixels in the left lung edge at time k Ιmask_le ft_edge,k on the
left side of the A2,kB2,k. Therefore, the empirical preset constant
parameter Δy (20 pixels) is introduced to restrict the coordinate
points far from the left cardiophrenic angleC2,k.The left intersection
of the horizontal line y = yC1,k(x,y−Δy)

and the left lung edge at time
k Ιmask_le ft_edge,k is configured as an auxiliary measurement point
C2Δy,k
′(x,y). Thus, this left cardiophrenic angle at time k C2,k is

constrained from the edge segment A2,kB2,k to the edge segment
C2Δy,k
′(x,y)B2,k on the left lung edge Ιmask_le ft_edge,k.

The above specific implementation details are represented by
mathematical expressions Equation 3–5:

A2,kB2,k:a2,kx+ b2,ky+ c2,k = 0, (3)

{
{
{

y = yC1,k(x,y−Δy)

Ιmask_le ft_edge,k = 0
→ C2Δy,k

′(x,y), (4)

C2,k(x,y) ← max D⃗C2,k

=max(dl1,k(pr1,k),dl2,k(pl2,k)...,dlm,k(plm,k))

=max(dl1,k(xl1,k,yl,k),dl2,k(xl2,k,yl2,k), ...,dln ,k(xlm,k,ylm,k))

=max(
|a2,kxl1,k + b2,kyl1,k + c2,k|

√a2
2,k + b

2
2,k

, ...,
|a2,kxln ,k + b2,kyln ,k + c2,k|

√a2
2,k + b

2
2,k

)

,

(5)

Where D⃗C2,k = (dl1,k(pl1,k),dl2,k(pl2,k)...,dln ,k(pln ,k)) denotes
the ith Euclidean distances at time k dli,k of these
coordinates (pl1,k,pl2,k, ...,pln ,k) = ((xl1,k,yl1,k),(xl2,k,yl2,k), ...,)
(xln ,k,yln ,k)) extracted from all pixels (C2Δy,k

′(x,y to B1,k) in the
left lung edge Ιmask_le ft_edge,k on the left side of the A2,kB2,k to the
straight lineA2,kB2,k, and i = 1, 2,…,m.These parameters a2,k,b2,k,c2,k
separately denote the coefficients of the straight line A2,kB2,k, and
l denotes the left lung.

Last, the initial right hemi-diaphragm A1,kC1,k is determined by
a line segment from the right cardiophrenic angle at time k C1,k to
the right costophrenic angleA1,k along the right lung fieldmask edge
Ιmask_right_edge,k. Similarly, the initial left hemi-diaphragm A2,kC2,k is
determined by a line segment from the left cardiophrenic angle at
time k C2,k to the left costophrenic angleA2,k along the left lung field
mask edge Ιmask_le ft_edge,k.

2.2.2 Hemi-diaphragm measurement
optimization

Figures 1, 2B show the optimized process of the abnormal hemi-
diaphragm measurement based on left and right lung field mask
edge images.

2.2.2.1 Abnormal and normal hemi-diaphragm
identification

These abnormal and normal hemi-diaphragm images should
be identified in the dynamic CXR images abstracted from
the same DCR.

The abnormal hemi-diaphragm is often accompanied by
morphological deformation of dynamic lung field motion during
respiration. This morphological deformation frequently occurs in
the left lung field and can result in the inconspicuousness of the
left cardiophrenic angle at time k C2,k. Therefore, an abnormal
hemi-diaphragm often appears in the lung field, and due to the
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inconspicuousness of the left cardiophrenic angle at time k C2,k, the
length of the abnormal left hemi-diaphragm is longer than that of
the normal left hemi-diaphragm. Based on the above, an innovative
method for detecting abnormal hemi-diaphragm is proposed.

Specifically, the shortest left hemi-diaphragm of these dynamic
CXR images can be determined using this abnormal hemi-
diaphragm detection method. Then, the shortest left hemi-
diaphragm length is configured as the baseline length lbase.
Subsequently, the difference between the length of each left hemi-
diaphragm and this baseline length is calculated. If this difference
exceeds the empirical preset difference length Δl (20 pixels), the left
hemi-diaphragm is determined as an abnormal left hemi-diaphragm
hemiabnormal. Otherwise, this left hemi-diaphragm is determined to
be a normal left hemi-diaphragm heminormal.

The above specific implementation details are represented by
mathematical expressions Equations 6, 7:

lbase =min(l1, l2, ..., li, ..., lk), i = 1,2,3, ...,k, (6)

{
{
{

i f|li − lbase| ≥ Δl;→ li ∈ hemiabnormal

else→ li ∈ heminormal

, (7)

where li denotes the length of the left hemi-diaphragm at time i, and
lbase denotes the shortest initial left hemi-diaphragm of all initial left
hemi-diaphragms (the baseline length). Besides, hemiabnormal and
heminormal separately denote the abnormal and normal left hemi-
diaphragm.

2.2.2.2 Diaphragm motion consistency criterion
Several studies have determined reference values for

diaphragmatic motion and sought to establish a correlation
between diaphragm movement displacement and lung diseases,
using dynamic chest images obtained from various imaging
modalities, including X-ray (Hida et al., 2019b; Hida et al., 2019a;
FitzMaurice et al., 2022c; FitzMaurice et al., 2022b; FitzMaurice et al.,
2022a; Chen et al., 2022), ultrasound (Boussuges et al., 2009), and
MRI (Hao et al., 2025). Specifically, the displacement values of
the right and left diaphragmatic excursions were measured using
M-mode ultrasound in 210 healthy adult subjects (150 men and
60 women) at the standing position, providing consistency in
the displacement of the right and left diaphragmatic excursions
(Boussuges et al., 2009). In addition, the caudocranial displacements
of the 25 points from end-expiration (EE) to end-inspiration (EI)
were quantified, and the velocity of the surfaces of right and left
hemi-diaphragms at each point was separately derived by dividing
the displacement from EE to EI by the time interval from EE to EI
by dynamic MRI, proving strong correlations in velocity between
homologous regions of right and left hemi-diaphragms (Hao et al.,
2025). Most notably, the range of hemi-diaphragm excursion
observed using DCR is proven to be similar to that observed using
M-mode ultrasound (Al-qaness et al., 2024). This illustrates the
scientific and rational nature of the diaphragm motion consistency.

Additionally, the underlying cause of abnormal diaphragm
detection in the existing technologies is the inapparent
cardiophrenic angle on DCR resulting from lung field deformation
during respiration. Therefore, it is necessary to consider modifying
this abnormal diaphragm based on the timing characteristics of
DCR, such as consistency in diaphragm motion at the same time.

Based on the above analysis, the diaphragm motion consistency
criterion is proposed to assist in optimizing the abnormal left
hemi-diaphragm at time k C2,k. Anatomically, the left and right
hemi-diaphragm are at different locations of the same diaphragm.
Therefore, the subsequent study assumes that the relative vertical
motion displacement dk of the cardiophrenic angles at time k C1,k,
C2,k and the cardiophrenic angles at time k ± n C1,k±n, C2,k±n are
consistent. This proposed diaphragm motion consistency criterion
is represented by mathematical expressions Equation 8:

dk ≈ yC1,k
− yC1,k±n
≈ yC2,k
− yC2,k±n
, (8)

Where yC1,k
and yC1,k±n

separately denote the right cardiophrenic
angles at time k and k ± n in the y direction. Besides, yC2,k

and yC2,k±n

separately denote the left cardiophrenic angles at time k and k ± n in
the y direction.

2.2.2.3 Optimization of abnormal cardiophrenic angle
Because the position detection mistakes of the left and

right cardiophrenic angles will cause abnormal hemi-diaphragm,
the optimization task for hemi-diaphragm measurement is to
correct the positions of these left and right cardiophrenic angles.
Meanwhile, based on engineering experience and themorphological
characteristics of the lung, this situation often occurs at the left
cardiophrenic angle.

First, each original left cardiophrenic angle C2,k of the abnormal
diaphragm hemiabnormal to be corrected is initialized separately
by the most adjacent left cardiophrenic angle C2,k±n of the
normal diaphragm heminormal. Second, the relative vertical motion
displacement dk of the right cardiophrenic angle at time k C1,k,
and that at time k ± n C1,k±n is calculated. Third, the coordinate
in the y direction yC2,k_correct

of the corrected left cardiophrenic
angle C2,k_correct is determined to compensate for the relative vertical
motion displacement d⃗k of the yC2,k_correct

of the corrected left
cardiophrenic angle C2,k_correct . Subsequently, the coordinate in the
x direction xC2,k_correct of the corrected left cardiophrenic angle
C2,k_correct is determined by calculating the intersection point of the
line parallel to the x-axis y = yC2,k_correct

and the left lung field mask
edge Ιmask_le ft_edge,k. Last, the left hemi-diaphragm A2,kC2,k_correct is
optimized by a line segment from the corrected left cardiophrenic
angle at time k C2,k_correct to the left costophrenic angle A2,k along
the left lung field mask edge Ιmask_le ft_edge,k.

The above specific implementation details are represented by
mathematical expressions Equations 9–12:

C2,k(x,y) = C2,k±n(x,y), (9)

d⃗k = yC2,k
− yC2,k±n
, (10)

yC2,k_correct
= yC2,k
+ d⃗, (11)

{
{
{

y = yC2,k_correct

Ιmask_le ft_edge,k = 0
→ xC2,k_correct (12)

Where C2,k(x,y) and C2,k±n(x,y) separately denote the left
cardiophrenic angles at time k and k ± n. Besides, d⃗k denotes
the relative vertical motion displacement. Furthermore, yC2,k

and
yC2,k±n

separately denote the left cardiophrenic angles at time k
and k ± n in the y direction. xC2,k_correct and yC2,k_correct

separately
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denote the horizontal and vertical coordinates of the corrected left
cardiophrenic angle C2,k_correct .

2.2.3 Evaluation metrics
To assess the effectiveness of the proposed method, the standard

evaluation metrics in this study include the Euclidean distance error
and the length error. The specific evaluation metrics are represented
by mathematical expressions Equations 13–18:

dB1,k_error = d(B1,k,B1,k_GB) = √(xB1,k
− xB1,k_GB

)2 + (yB1,k
− yB1,k_GB

)
2
,

(13)

dC1,k_error = d(C1,k,C1,k_GB) = √(xC1,k
− xC1,k_GB

)2 + (yC1,k
− yC1,k_GB

)
2
,

(14)

dB2,k_error = d(B2,k,B2,k_GB) = √(xB2,k
− xB2k_GB
)2 + (yB2,k

− yB2,k_GB
)
2
,

(15)

dC2,k_error = d(C2,k,C2,k_GB) = √(xC2,k
− xC2,k_GB

)2 + (yC2,k
− yC2,k_GB

)
2
,

(16)

B1,kC1,k_error = lB1,kC1,k
− lB1,kC1,k_GB

, (17)

B2,kC2,k_error = lB2,kC2,k
− lB2,kC2,k_GB

, (18)

Where dB1,k_error, dC1,k_error, dB2,k_error and dC2,k_error separately
denote the Euclidean distance error of the detected or corrected
right and left costophrenic and cardiophrenic angles at time k B1,k,
B2,k, C1,k and C2,k. Besides, B1,k_GB, B2,k_GB, C1,k_GB and C2,k_GB
separately denote the ground truth of right and left costophrenic
and cardiophrenic angles at time k. B1,kC1,k_error and B2,kC2,k_error
separately denote the length error of the right and left hemi-
diaphragm. In addition, lB1,kC1,k

and lB2,kC2,k
separately denote the

detected or corrected length of the right and left hemi-diaphragm
at time k. In addition, lB1,kC1,k_GB and lB2,kC2,k_GB

separately denote the
ground truth of the right and left hemi-diaphragm at time k.

To ensure the consistency and reliability of the ground
truths, three radiologists participated in the manual annotation
of these ground truths in this study. Specifically, two primary
radiologists independently annotate the ground truths on each
dynamic CXR image using the software Labelme (v5.1.0).
Then, the third experienced radiologist arbitrates or makes
final modifications to the disputed annotation results of these
ground truths.

2.2.4 Implementation details
The lung field segmentation model is trained on PyCharm

2017.3.3 (Community Edition) in Windows 10 Pro 64-bit, utilizing
an NVIDIA GeForce GTX 1080 Ti GPU and 16 GB RAM.
Then, the pth format of the lung field segmentation model
is converted to the pt format based on PyCharm 2017.3.3.
Lastly, the lung field segmentation model with the pt format is
called by C++ code based on Visual Studio 2017 for lung field
segmentation of the dynamic CXR images of cases 1–5. Similarly,
the proposed optimization method is automatically performed for
hemi-diaphragm measurement in Visual Studio 2017.

3 Results

This section presents the comprehensive results of hemi-
diaphragm measurement based on both previous and our proposed
optimization methods.

3.1 Hemi-diaphragm measurement based
on the previous method

Table 2 reports the mean Euclidean distance error of the
right and left costophrenic and cardiophrenic angles measured by
the previous method (Yang et al., 2024b). Additionally, Figure 3
visually and statistically illustrates these Euclidean distance errors
associated with abnormal left cardiophrenic angles. Meanwhile,
Table 3 reports the mean length error of the right and left hemi-
diaphragms measured by the previous method (Yang et al., 2024b)].
In addition, Figure 4 visually and statistically displays these length
errors of abnormal left hemi-diaphragms.

Specifically, the mean Euclidean distance error of the
right and left costophrenic and cardiophrenic angles (dB1,k_error,
dC1,k_error, dB2,k_error, and dC2,k_error) of these five cases measured
by the previous method is 1.071/3.335/2.092/2.257/2.560,
5.171/4.004/5.759/2.375/4.913, 3.634/2.867/1.712/1.866/3.011,
and 3.338/5.074/65.753/75.460/3.308 pixels, respectively. Besides,
the mean length error of the right and left hemi-diaphragms
(B1,kC1,k_error and B2,kC2,k_error) of these five cases measured
by the previous method is 1.367/1.067, 0.933/0.900, 0.833/95.800,
0.700/104.600, and 1.400/1.200, respectively. Compared with
other Euclidean distance errors in Table 3, larger numerical
values of Euclidean distance error of the left cardiophrenic
angles dC2,k_error in Figure 3A,C result in the outliers (65.753
± 26.420 and 75.460 ± 32.63 pixels) of cases 3 and 4.
These outliers further contributed to the larger numerical
values of the length error of the left hemi-diaphragms
B2,kC2,k_error in Figures 4A,C.

Meanwhile, the times of abnormal and normal left hemi-
diaphragms in the 30 dynamic CXR images for each case are also
determined, as reflected in Figures 3, 4A,C. For example, except
for times 1 and 27–30 of case 3, measurement abnormalities are
present in the left hemi-diaphragms at other times. Besides, except
for times 6–10 of case 4, there are measurement abnormalities in the
left hemi-diaphragms at other times.

3.2 hemi-diaphragm measurement
optimization

Figure 5 visually displays the comparison of cases 3 and 4’s
Euclidean distance error of left cardiophrenic angles and length error
of left hemi-diaphragms measured by the previous and proposed
method. Table 4 compares the mean Euclidean distance error of
the costophrenic and cardiophrenic angles in cases 3 and 4, as
measured by both previous and proposed optimization methods.
Additionally, Figure 6 visually and statistically illustrates these
Euclidean distance errors using our proposed optimization method.
Meanwhile, Table 5 compares the mean length error of the right and
left hemi-diaphragms in cases 3 and 4, asmeasured by both previous
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TABLE 2 Mean Euclidean distance error of the right and left costophrenic and cardiophrenic angles measured by the previous method.

Case Mean dB1,k_error
Mean dC1,k_error

Mean dB2,k_error
Mean dC2,k_error

Mean error

1 (30 images) 1.071 ± 1.748 (0.000–5.099) 5.171 ± 2.644 (0.000–9.220) 3.634 ± 1.937 (1.000–8.246) 3.338 ± 2.362 (0.000–10.000) 3.304

2 (30 images) 3.335 ± 1.417 (1.000–6.000) 4.004 ± 2.464 (1.414–11.660) 2.867 ± 2.270 (0.000–8.000) 5.074 ± 2.631 (1.414–14.560) 3.820

3 (30 images) 2.092 ± 2.031 (0.000–10.000) 2.126 ± 1.332 (0.000–5.000) 1.712 ± 1.801 (0.000–6.000) 65.753 ± 26.420 (2.236–84.853)a 17.921a

4 (30 images) 2.257 ± 1.723 (0.000–6.403) 2.375 ± 1.627 (0.000–6.083) 1.866 ± 1.253 (0.000–5.000) 75.460 ± 32.631 (1.000–101.820)a 20.490a

5 (30 images) 2.560 ± 1.951 (0.000–8.544) 4.913 ± 2.280 (1.000–8.602) 3.011 ± 1.683 (0.000–7.616) 3.308 ± 3.205 (0.000–17.090) 3.448

aThe bold number indicates the outliers of the mean Euclidean distance error.

FIGURE 3
Visual and statistical Euclidean distance error of abnormal left cardiophrenic angles measured by the previous method. (A) Visual Euclidean distance
error of case 3. (B) Statistical Euclidean distance error of case 3. (C) Visual Euclidean distance error of case 4. (D) Statistical Euclidean distance
error of case 4.

and proposed optimization methods. Additionally, Figure 7
visually and statistically displays the length errors of the left
hemi-diaphragms.

Specifically, the mean Euclidean distance error of the left
cardiophrenic angle measured by the proposed optimization
method of case 3 has significantly decreased from 65.753 ± 26.420
(2.236–84.853) to 5.759 ± 2.579 (1.414–11.180) pixels (p-value
<0.001), thereby themean error of all right and left costophrenic and
cardiophrenic angles has also significantly decreased from 17.921 to
2.922 pixels (p-value <0.001). Besides, the mean Euclidean distance
error of the left cardiophrenic angle measured by the proposed

optimization method of case 4 has significantly decreased from
75.460 ± 32.631 (1.000–101.820) to 2.484 ± 2.041 (0.000–8.602)
pixels (p-value <0.001), thereby the mean error of all right and
left costophrenic and cardiophrenic angles has also significantly
decreased from 20.490 to 2.246 pixels (p-value <0.001).

Meanwhile, the mean length error of the right and left hemi-
diaphragms measured by the proposed optimization method of case
3 has significantly decreased from 95.800 ± 39.449 (1.000–122.000)
to 1.933 ± 4.143 (0.000–13.000) pixels (p-value <0.001), thereby
the mean error of the right and left hemi-diaphragms has also
significantly decreased from 48.3165 to 1.383 pixels (p-value
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TABLE 3 Length error of the right and left hemi-diaphragms measured by the previous method.

Case Mean B1,kC1,k_error Mean B2,kC2,k_error (pixel) Mean error

1 (30 images) 1.367 ± 0.964 (0.000–4.000) 1.067 ± 0.9072 (0.000–3.000) 1.217

2 (30 images) 0.933 ± 0.944 (0.000–4.000) 0.900 ± 0.885 (0.000–4.000) 0.917

3 (30 images) 0.833 ± 0.699 (0.000–3.000) 95.800 ± 39.449 (1.000–122.000)a 48.3165a

4 (30 images) 0.700 ± 0.702 (0.000–2.000) 104.600 ± 45.874 (3.000–140.000)a 52.650a

5 (30 images) 1.400 ± 0.855 (0.000–3.000) 1.200 ± 0.664 (0.000–3.000) 1.300

aThe bold number indicates the outliers of the mean length error.

FIGURE 4
Visual and statistical length error of abnormal left hemi-diaphragms measured by the previous method. (A) Visual length error of case 3. (B) Statistical
length error of case 3. (C) Visual length error of case 4. (D) Statistical length error of case 4.

<0.001). Besides, the mean length error of the right and left hemi-
diaphragms measured by the proposed optimization method of case
4 has significantly decreased from 104.600 ± 45.874 (3.000–140.000)
to 2.267 ± 2.196 (0.000–9.000) pixels (p-value <0.001), thereby
the mean error of the right and left hemi-diaphragms has also
significantly decreased from 52.650 to 1.484 pixels (p-value <0.001).

In summary, the mean Euclidean distance error of the left
cardiophrenic angle measured by the proposed optimization
method of cases 3 and 4 has significantly decreased from 70.606
(≈(65.753 + 75.460)/2) to 4.122 (≈(5.759 + 2.484)/2) pixels (p-value
<0.001), thereby the mean error of these right and left costophrenic

and cardiophrenic angles has also significantly decreased from
19.206 (≈(17.921 + 20.490)/2) to 2.584 (=(2.922 + 2.246)/2) pixels
(p-value <0.001). Besides, the mean length error of the right and left
hemi-diaphragms measured by the proposed optimization method
of cases 3 and 4 has significantly decreased from 100.200 (=(95.800
+ 104.600)/2) to 2.100 (=(1.933 + 2.267)/2) pixels (p-value <0.001),
thereby the mean error of these right and left hemi-diaphragms has
also significantly decreased from 50.484 (≈(48.317 + 52.650)/2) to
1.434 (≈(1.383 + 1.484)/2) pixels (p-value <0.001). Based on the
above, the proposed optimization method can effectively measure
the hemi-diaphragm, even in the presence of the inapparent
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FIGURE 5
Visual comparison of cases 3 and 4’s Euclidean distance error of left cardiophrenic angles and length error of left hemi-diaphragms measured by the
previous and proposed method. (A) Visual comparison of case 3’s Euclidean distance error of left cardiophrenic angles measured by the previous and
proposed methods. (B) Visual comparison of case 4’s Euclidean distance error of left cardiophrenic angles measured by the previous and proposed
methods. (C) Visual comparison of case 3’s length error of left hemi-diaphragms measured by the previous and proposed methods. (D) Visual
comparison of case 4’s length error of left hemi-diaphragms measured by the previous and proposed methods.

TABLE 4 The method comparison of the mean Euclidean distance error of the right and left costophrenic and cardiophrenic angles.

Method Case Mean
dB1,k_error

Mean
dC1,k_error

Mean
dB2,k_error

Mean
dC2,k_error

Mean error

Yang, et al. [3] 3 (30 images) 2.092 ± 2.031
(0.000–10.000)

2.126 ± 1.332
(0.000–5.000)

1.712 ± 1.801
(0.000–6.000)

65.753 ± 26.420
(2.236–84.853)

17.921

Ours 3 (30 images) 2.092 ± 2.031
(0.000–10.000)

3.472 ± 5.351
(0.000–22.000)

1.712 ± 1.801
(0.000–6.000)

5.759 ± 2.579
(1.414–11.180)a↓

2.922a↓

Yang, et al. [3] 4 (30 images) 2.257 ± 1.723
(0.000–6.403)

2.375 ± 1.627
(0.000–6.083)

1.866 ± 1.253
(0.000–5.000)

75.460 ± 32.631
(1.000–101.820)

20.490

Ours 4 (30 images) 2.257 ± 1.723
(0.000–6.403)

2.375 ± 1.627
(0.000–6.083)

1.866 ± 1.253
(0.000–5.000)

2.484 ± 2.041
(0.000–8.602)a↓

2.246a↓

aThe bold number indicates better performance compared to the previous method.

cardiophrenic angle caused by abnormal deformations of the lung
field morphology during respiration, reducing the mean error by
49.050 pixels (50.484–1.434).

Figures 8, 9 illustrate the optimization process for the left
hemi-diaphragm visualizations of cases 3 and 4. Specifically,
Figures 8, 9 display the costophrenic and cardiophrenic angles
measured using both the previous and proposed methods on the
dynamic CXR images. The dynamic CXR images with abnormal
left cardiophrenic angles, as shown in Figures 3, 4, are labeled with
pink boxes. Meanwhile, the dynamic CXR images with abnormal
left cardiophrenic angles, as shown in Figures 3, 4, are labeled with
green boxes.

More specifically, abnormal left cardiophrenic angles C2,k in the
dynamic CXR images of case 3 at the time k = 2–26 are presented

with blue circles. Similarly, the abnormal left cardiophrenic angles
C2,k in the dynamic CXR images of case 4, at times k =
1–5 and 11–30, are presented with blue circles. Based on our
proposedmethod, these abnormal left cardiophrenic angles,C2,k, are
optimized in an orderly manner to the corrected left cardiophrenic
angle at time k,C2,k_correct . Each high-resolution image in Figures 8, 9
is provided by the Supplementary Materials (S1_case3 and S1_
case4), respectively.

4 Discussion

This section discusses the experimental results, highlights the
study’s limitations, and suggests future directions.
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FIGURE 6
Visual and statistical Euclidean distance error of all costophrenic and cardiophrenic angles measured by the proposed method. (A) Visual Euclidean
distance error of all costophrenic and cardiophrenic angles of all cases. (a1) Visual Euclidean distance error of all costophrenic and cardiophrenic
angles of case 1. (a2) Visual Euclidean distance error of all costophrenic and cardiophrenic angles of case 2. (a3) Visual Euclidean distance error of all
costophrenic and cardiophrenic angles of case 3. (a4) Visual Euclidean distance error of all costophrenic and cardiophrenic angles of case 5. (a5) Visual
Euclidean distance error of all costophrenic and cardiophrenic angles of case 5. (B) Statistical Euclidean distance error of all costophrenic and
cardiophrenic angles of all cases. (b1) Statistical Euclidean distance error of all costophrenic and cardiophrenic angles of case 1. (b2) Statistical
Euclidean distance error of all costophrenic and cardiophrenic angles of case 2. (b3) Statistical Euclidean distance error of all costophrenic and
cardiophrenic angles of case 3. (b4) Statistical Euclidean distance error of all costophrenic and cardiophrenic angles of case 4. (b5) Statistical Euclidean
distance error of all costophrenic and cardiophrenic angles of case 5.
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TABLE 5 The method comparison of the mean length error of the right and left hemi-diaphragms.

Method Case Mean B1,kC1,k_error Mean B2,kC2,k_error Mean error

Yang, et al. [3] 3 (30 images) 0.833 ± 0.699 (0.000–3.000) 95.800 ± 39.449 (1.000–122.000) 48.317

Ours 3 (30 images) 0.833 ± 0.699 (0.000–3.000) 1.933 ± 4.143 (0.000–13.000)a↓ 1.383a↓

Yang, et al. [3] 4 (30 images) 0.700 ± 0.702 (0.000–2.000) 104.600 ± 45.874 (3.000–140.000) 52.650

Ours 4 (30 images) 0.700 ± 0.702 (0.000–2.000) 2.267 ± 2.196 (0.000–9.000)a↓ 1.484a↓

aThe bold number indicates better performanc compared to the previous method.

4.1 Morphological deformation of the lung
field motion during respiratory
interventions

Morphological deformation of the lung field motion during
quiet breathing (free respiration or respiratory) interventions is the
fundamental reason for abnormal hemi-diaphragm measurement
based on the morphology of the lung fields. Lung field segmentation
models of dynamic CXR images, abstracted from DCR based
on the CNN, can utilize multi-center pathological lung images
and data augmentation technology to adapt to morphological
deformation changes and achieve satisfactory performance
(Yang et al., 2024a; Yang et al., 2024b; Yang et al., 2025).
However, these significant deformation changes will increase the
risk of abnormal hemi-diaphragm measurement based on the
existing method (Yang et al., 2024b).

Specifically, the primary function of the lungs is to facilitate
gas exchange between the inspired air and the circulatory system,
thereby helping to bring oxygen to the blood and remove
carbon dioxide from the body (Jeong et al., 2024). During
this respiration process, the lung field motion will undergo
morphological deformation. Compared to other static organs
or tissues, such as the brain and bones, these morphological
deformations of the lung field present a non-rigid and complex
state. This non-rigid and complex state is particularly evident in
the dynamic CXR images collected during breathing. Additionally,
for the dynamic CXR images collected from normal cases during
the breathing process, the morphology of the lung field generally
does not undergo significant deformation. However, the lungs may
suffer from some diseases that can lead to significant deformation
changes in lung morphology. For example, end-stage (stage Ⅲ or
Ⅳ) chronic obstructive pulmonary disease (COPD) generally causes
dyspnea and/or cor pulmonale (Yang et al., 2022a; Yang et al.,
2022b). Both dyspnea and/or cor pulmonale caused by COPD
often accompany significant deformation changes in the lung field
morphology.

4.2 Normal and abnormal hemi-diaphragm
identification

Identifying normal and abnormal hemi-diaphragms is crucial
for optimizing the existingmethod. Specifically, the abnormal hemi-
diaphragm identification aims to determine the hemi-diaphragms
that require optimization. In contrast, normal hemi-diaphragm

identification assists in optimizing the abnormal hemi-diaphragms,
as discussed in the upcoming section on the diaphragm motion
consistency criterion.

Additionally, the reasons we configured the shortest hemi-
diaphragm among all initial hemi-diaphragms as normal left
and right hemi-diaphragms are discussed below. Specifically, the
dynamic CXR images are all from a single case, indicating that
during the breathing process, if there is no significant change in the
captured position, the length of the left and right diaphragm does
not increase or decrease significantly. Therefore, this corresponds
to the anatomical structure of the diaphragm on the dynamic
CXR image. Furthermore, the reason for generating the abnormal
hemi-diaphragm is also discussed below. Specifically, the significant
deformation changes will shift the cardiac angle upwards on its CXR
image, increasing the corresponding initial diaphragm length.Then,
the initial hemi-diaphragm measurement requires locating the left
and right costophrenic and cardiophrenic angles on the edges of
the lung field. However, significant deformation changes in the lung
field morphology will result in the cardiophrenic angle not meeting
the normal morphological characteristics of the lung field edges at
certain moments during the breathing process.

4.3 Diaphragm motion consistency
criterion

The proposed diaphragm motion consistency criterion is
discussed below. Specifically, the primary respiratory muscles
involved in respiratory action are the diaphragm, intercostal, and
abdominal wall muscles (De Troyer and Moxham, 2020). When
inhaling calmly, the diaphragm and intercostal muscles contract,
causing an increase in the anterior-posterior, left-right, andup-down
diameters of the chest cavity. The lung fields expand accordingly,
forming an active inhalation movement. However, when exhaling,
the above process is just the opposite.

The diaphragm is the primary respiratory muscle, controlled by
the will, that assists with inhalation and expiration (Marufah et al.,
2022). During inhalation and respiration, the lower edge of the lung
field is uniformly in close contact with the diaphragm. Therefore,
the diaphragm’s movement can reflect the lungs’ respiratory
process. In anatomy, due to the integrated structure and the
mechanical movement of the diaphragm muscle pulling of the
left and right hemi-diaphragm, the movement of both the left
and right hemi-diaphragm will be carried to the hemi-diaphragm
connected to it. Based on the above, we assume that the motion
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FIGURE 7
Visual and statistical length error of right and left hemi-diaphragms measured by the proposed method. (A) Visual length error of the right and left
hemi-diaphragms of all cases. (a1) Visual length error of right and left hemi-diaphragms of case 1. (a2) Visual length error of right and left
hemi-diaphragms of case 2. (a3) Visual length error of right and left hemi-diaphragms of case 3. (a4) Visual length error of right and left
hemi-diaphragms of case 4. (a5) Visual length error of right and left hemi-diaphragms of case 5. (B) Statistical length error of right and left
hemi-diaphragms of all cases. (b1) Statistical length error of right and left hemi-diaphragms of case 2. (b2) Statistical length error of right and left
hemi-diaphragms of case 2. (b3) Statistical length error of right and left hemi-diaphragms of case 3. (b4) Statistical length error of right and left
hemi-diaphragms of case 4. (b5) Statistical length error of right and left hemi-diaphragms of case 5. When statistically displaying the length error of
right and left hemi-diaphragms, absolute value calculations were performed on these 30 pairs of length errors to avoid canceling positive and
negative errors.

displacement of the cardiophrenic angle of the left and right
hemi-diaphragm is consistent within the same time interval,
and then optimizes the abnormal cardiophrenic angle using the

proposed optimization method. Furthermore, the correction of
abnormal hemi-diaphragm is ultimately completed based on the
optimized cardiorespiratory angle.
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FIGURE 8
The optimization process of case 3’s left hemi-diaphragm visualizations. The pink box: CXR images with an abnormal hemi-diaphragm that requires
correction. The green box: CXR images with the normal hemi-diaphragm.
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FIGURE 9
The optimization process of case 4’s left hemi-diaphragm visualizations. The pink box: CXR images with an abnormal hemi-diaphragm that requires
correction. The green box: CXR images with the normal hemi-diaphragm.
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4.4 Limitations

Although we propose an optimization method for hemi-
diaphragm measurement of DCR that can effectively correct
the abnormal hemi-diaphragms, our research still has certain
limitations. Specifically, the main limitation is that the proposed
optimization method relies on the cardiophrenic angle of the
normal hemi-diaphragm to correct the cardiophrenic angle of the
abnormal hemi-diaphragm. Therefore, at least an initial normal
hemi-diaphragm must be accurately measured based on the two-
dimensional morphology of the postero-anterior projection of lung
field structure in all dynamic CXR images of DCR (Yang et al.,
2024b). Based on the above, once all measured hemi-diaphragms
are abnormal, the proposed optimizationmethod will be ineffective.
Another limitation is the limited number of DCRs. Therefore, we
encourage the collection of various types of diseases and multi-
center DCRs from different types of chest X-ray devices to further
validate the proposed method, improving the practical applicability
and robustness claims.

4.5 Perspectives and future work

Although we are committed to proposing a new technology
for hemi-diaphragm detection from an engineering perspective
for clinical use, further research is needed to evaluate the
hemi-diaphragm in different lung diseases or at various stages
of the same disease, correlation with clinical endpoints such
as the pulmonary function test (e.g., FEV1, vital capacity),
disease progression, or treatment planning, based on this new
technology. In addition, a lung field segmentation model that can
input CXR images of multiple sizes needs to be developed to
eliminate the errors caused by up-sampling and down-sampling
mentioned above. Meanwhile, since the lung field edge image is
crucial for optimizing abnormal hemi-diaphragm measurements,
novel boundary detection based on CNN should be further
proposed (Iqbal et al., 2021; Iqbal et al., 2020; Mochurad,
2025). Additionally, the respiratory intervention in our paper
focuses solely on controlling the onset of breathing to collect the
DCRs. Furthermore, the pattern of diaphragm movement in other
respiratory interventions, such as Yogic breathing, residual efforts,
intermittent hypoxia, and voluntary hyperpnea, is expected to be
further analyzed based on our proposed method.

5 Conclusion

This study proposes an optimization method for hemi-
diaphragm measurement based on graphics and the consistency
criterion of diaphragm motion, aiming to eliminate the risk of
abnormal hemi-diaphragm measurements in existing technologies.
Results show that the proposed optimization method can
effectively measure the hemi-diaphragm, even in the presence
of the inapparent cardiophrenic angle caused by abnormal
deformations of the lung field morphology during respiration,

reducing the mean error by 49.050 pixels (49.050 × 417 μm =
20,453.85 μm). Therefore, the proposed optimization method may
become an effective tool for identifying the pattern of diaphragm
movement in respiratory interventions, thereby enhancing precision
healthcare.
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