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Introduction:CO2mediated ventilation ismainly controlled by two homeostatic
mechanisms. The central chemoreceptors are slower mechanisms that focus
on blood pH sensing in the brain stem while the peripheral chemoreceptors
are quicker to respond and reside in the carotid bodies. Quantification of these
mechanisms in humans remain debated.

Objective: To quantify the impact that the central and peripheral
chemoreceptors have on ventilation in response to changes in PETCO2 during
exercise with normoxic breathing and 3% CO2 inhalation.

Method: Six healthy males participated in a 5-stage bike protocol with and
without 3% CO2 inhalation. We analyzed the time series data of their breath-by-
breath PETCO2 and ventilation and generated a one input–one output model
via the Laguerre expansion technique (LET) to construct the gain function
and quantify the low (0.002–0.029 Hz) and high (0.03–0.15 Hz) frequency
components using the weighted gain averages (WGA) as estimators of central
and peripheral chemoreflex mechanisms respectively.

Results: 3% CO2 inhalation caused a significant increase the high frequency
WGAs at rest and in all levels of exercise except heavy exercise. The low
frequency WGAs, however, only maintain significance during rest and the
baseline session of exercise.

Conclusion: Changes in WGA can be used as quantitative estimates of central
and peripheral chemoreflexes. 3% CO2 activates both reflexes and is more
apparent in the higher frequency WGAs during exercise due to the oxygen
dependent mechanisms effects of exercise.

KEYWORDS

exercise ventilatory response, hypercapnic ventilatory response, dynamicmodeling and
analysis, LTI system identification, end tidal capnometry (EtCO2)

Introduction

It has long been accepted that two major receptors exist in the control of ventilation
to regulate PaCO2 and maintain relatively constant levels of oxygenation while disposing
of CO2 through ventilatory action: the peripheral (carotid) and central (medullary)
chemoreceptors (Dahan et al., 2007; Dahan et al., 1990; Heymans, 1930; Nattie and Li,
2012). The central chemoreceptors typically respond slowly to changes in CO2 (i.e., blood
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pH) whereas the peripheral chemoreceptors respond much more
quickly to O2 and CO2 (Pittman, 2011; Yang and Khoo, 1994;
Pedersen et al., 1999). Exercise modulates the effect of these
chemoreceptors to match the metabolic demand of the body
(Clark et al., 1980; Dempsey et al., 1984; Casey et al., 1987).
Studies have shown that in carotid (peripheral chemoreceptor)
resection, subjects lose their ability to control ventilation due to
hypoxia and have a reduced ventilatory response to hypercapnia
by one-third (Wasserman et al., 1975). There is a debate as
to which chemoreceptors are more responsible in mild exercise
in comparison to heavy exercise. This mainly stems from the
differing analytical methods used to quantify the strength of the
chemoreflexes (response of the chemoreceptor systems).

Many experiments took to different methods to measure the
ventilatory response to induced CO2 during exercise. Varying
results have been observed due to the variable levels of CO2
administration (Berkenbosch et al., 1989; Savulich et al., 2019;
Duffin et al., 1980; Read and Leigh, 1967). Some experiments
that have relied on rebreathing showed no difference in CO2
sensitivity in exercise (Duffin et al., 1980). Constant high levels
of CO2 inhalation (7.5% or more) have been shown to increase
arousal and anxiety (Savulich et al., 2019). Lower levels of CO2
inhalation have generally been avoided due to the lack of a
response that can be measured from the subjects. Recently, it has
been previously shown that peripheral and central chemoreceptor
augmentation can be sufficiently observed with 3% CO2 inhalation
during mild exercise (Yamashiro et al., 2021). However, it has been
difficult to model the dynamics of short single sessions to compare
how ventilatory regulation changes in response to different levels
of exercise.

Dynamic modeling methods have long been utilized to
understand the relationships between different physiological
systems including, but not limited to, the cardiovascular and
respiratory systems (Yamashiro et al., 2021; Marmarelis et al., 2017;
Mitsis et al., 2009; Grodins et al., 1954; Khoo and Marmarelis,
1989). From among these methods, we have opted to use the
Laguerre Expansion Technique (LET) to take advantage of
its ability to model relatively short and noisy data with high
accuracy, as well as its independence from parameter assumptions
(Marmarelis, 1993; Marmarelis, 2004). This study aims to quantify
the impact of central and peripheral chemoreceptors to ventilation
changes during mild and heavy exercise in response to PETCO2
variations under normoxic and 3% CO2 inhalation conditions.

Materials and methods

Experimental protocol

Six healthy male subjects (age 21.8 ± 0.4 years; height 170.88 ±
7.2 cm; body mass 65.8 ± 3.8 kg; VO2max 43.1 ± 6.1 mL/kg/min;
mean ± SD) with no history of cardiorespiratory diseases
participated in a five-stage cycling protocol twice, once while
breathing normoxic air and once with 3% CO2 inhalation. The
protocol commenced with a 6-min baseline resting period (session
1), followed by 6 minutes of baseline exercise at 40 W (session 2).
The intensity was then increased to 40% of their maximum oxygen
uptake (VO2 max) for another 6 minutes (session 3). This was

followed by a return to 6 minutes of exercise at the baseline intensity
(session 4).The final stage consisted of 6 minutes of intense exercise
at 80% of VO2 max (session 5). Each subject was consented in
compliance with the Human Subjects Committee at the Chukyo
University Graduate School of Health Sciences. Data was collected
on a breath-by-breath basis of all relevant ventilatory variables.
This includes but is not limited to, end-tidal CO2 (PETCO2), tidal
volume, and respiration rate. The specifics of the exercise protocol
and the VO2 max measurement procedures are detailed in the Kato
andYamashiro study (Yamashiro et al., 2021; Yamashiro et al., 2024).

Data preprocessing

Each subject’s breath-to-breath data was preprocessed separately
for each session by removing the DC value and very slow trends
(<0.005 Hz) through high-pass filtering from evenly sampled data
at 1 Hz (via interpolation). The preprocessed data was then clipped
at ±3 standard deviations.

Modeling methodology

The preprocessed data was used to analyze the dynamic
relationship between the PETCO2 (input) and ventilation
(output) by estimating the Impulse Response Function
(IRF)/kernel via the Laguerre expansion technique (LET)
(Yamashiro et al., 2024; Murias et al., 2014). A linear one-
input one-output model can be described using the generalized
Volterra series:

y(t) = k0 +
∞

∫
0

k1(τ)x(t− τ)dτ

Here, y(t) and x(t) represent the PETCO2 and ventilation
time series data, respectively. The kernel (k1) denotes a canonical
representation of the system dynamics for a given input-output
relation. To minimize the estimated parameters and allow for the
use of relatively short noisy data, we expand the kernel into a series
of coefficients and a set of orthogonal basis functions (discretized
Laguerre polynomials). By convolving the input data with the basis
functions, we can solve this linear relationship by utilizing the Least
Squares Method:

(XTX)−1XTy = cj

In this equation, X is the input data convolved with the Laguerre
basis functions and y is the output data. The variable cj is the array
of coefficients of the jth Laguerre function.The number of Laguerre
functions is selected by using the Bayesian Information Criterion.
For this model, we used four Laguerre functions. The calculated
kernel in the provided equation provides a quantifiable method to
understand how the output (minute ventilation) is modulated by
changes in the input (PETCO2).

The model is evaluated for its accuracy by calculating
the Normalized Mean Square Error (NMSE) using the
following equation:

NMSE =||ypred (t) − y(t)||
2 /||y(t)||2 ∗ 100
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where ypred is the predicted output generated from the calculated
coefficients. The double bars (||.||) denote the sum of squares for the
values between them.

Weighted gain averages (WGA)

To enhance our understanding of the Impulse Response
Function (IRF) dynamics, we computed the Gain function, which
represents the magnitude of the IRF spectrum. The Gain function
was calculated across all sessions, and the weighted average was
determined using the CO2 input power spectrum. The central and
peripheral chemoreflex mechanisms were assessed by identifying
frequency ranges from 0.002 to 0.029 Hz (central chemoreflex)
and from 0.03 to 0.15 Hz (peripheral chemoreflex), respectively.
We calculated the weighted average of the Gain function for each
spectral range, factoring in the CO2 input power spectrum, using
the following formula:

WGA = Average{G(f)X(f)}/Average{X(f)}

Here, G(f) and X(f) represent the Gain function and the
PETCO2 input spectrum, respectively, at each frequency range f.
Averages were computed across the previously specified low and
high frequency ranges. These newly calculated indices allow us to
quantify the impact on ventilation that PETCO2 has within each
frequency range; normalizing by the PETCO2 spectrum allows for
a comparative physiological marker between subjects.

Statistical analysis

We began by performing a two-way repeated measures ANOVA
to assess whether exercise intensity influenced the effect of inhaled
CO2. The significance of the WGAs were then evaluated for each
subject by conducting a paired t-test to observe the difference
between normal air and 3% CO2 inhalation sessions.

Results

The means and standard errors of the time-average (DC)
PETCO2 and ventilation values, as well as the averages of the
NMSE for each session, are presented in Table 1 with their respective
paired t-test p-values. All PETCO2 and ventilation difference
values maintain significance throughout each session (p < 10–4

and p < 10–3, respectively). A two-way repeated measures ANOVA
also revealed that gas inhalation and exercise intensity were both
significant main effect predictors for both PETCO2 (p < 0.001)
and ventilation (p < 0.01) with no interactions between the
two conditions. NMSE on the other hand did not have a main
effect predictor but instead exhibited an interaction between both
conditions (p < 0.001).

Using the LET, we created plots of the IRF’s for each session
as presented in the top row of Figure 1. For all sessions, 3% CO2
inhalation increases at around the 5 s lag mark. There are also small
negative values shown around the 20 s lag mark followed by a slight
overshoot around the 30 s lag mark. This, however, is difficult to

separate between the two groups and hence leads us to observing the
Gain function and calculating theWGAdescribed above. Analysis of
the Gain function revealed two resonant spectral peaks, postulated
to be the central and peripheral chemoreflexmechanisms, as seen on
the second row of Figure 1. The central chemoreflex was observed
within the frequency range of 0.002–0.029 Hz, where a notable
trough occurred, and the peripheral chemoreflex was observed
between 0.03 and 0.15 Hz, as seen in Figure 1. The PETCO2 input
signal showed minimal power above 0.15 Hz (Figure 2). TheWGAs
were calculated by averaging and normalizing for each respective
spectral range.

In a two-way repeated measures ANOVA, the analysis revealed
that for the low-frequency WGAs, exercise was a significant main
effect predictor (p = 0.0168), whereas gas level was not (p = 0.3423).
Conversely, for the high-frequency WGAs, both exercise and gas
level were significant main effect predictors (p < 0.01), but they
did not interact (p = 0.3338). Table 2 details the resulting WGA
for both frequency ranges as well as their respective differences
and paired t-test p-values. Examining the WGA for the various
sessions/conditions, we observe that 3% CO2 inhalation in session
1 causes a significant change in the slower (central chemoreflex)
and faster (peripheral chemoreflex) dynamics. The difference in
the slower dynamics loses significance as soon as the 45% VO2
max exercise is introduced. This can be possibly due to a saturation
of the amount of CO2 that drives the central chemoreflex. It is also
evident that for the slower dynamics, once the subjects return to
baseline exercise, theWGA for the normal air breathing group drops
but not to a significant degree (p = 0.2527). This may be due to
the time it takes for the central mechanisms to relax or desaturate
from the increased CO2 introduced in the earlier session. The faster
dynamicsmaintain a significant difference through all sessions, with
the exception ofsession 5 (p = 0.8503).

As depicted in the line plots in Figure 3, exercise has a less
significant impact on the trends of WGA at lower frequencies
compared to its more pronounced effects at higher frequencies.
Furthermore, at these higher frequencies, the influence of CO2 and
heavy exercise on WGA closely resembles the outcomes observed
during the anaerobic exercise level (Session 5) in the normal air
breathing protocol.

Discussion

This study investigated the dynamic responses of ventilation to
PETCO2 under the influences of 3% CO2 inhalation during varying
levels of exercise intensities using the LET. This study utilizes the
WGA to separate these effects in each session so that each level of
exercise can be studied individually. Traditional modeling methods,
due to the brief durations of the experimental sessions, would
require a longer data record than available in a single session. The
LET, in contrast, allows for a detailed understanding of dynamics
even with shorter record lengths, making it particularly suitable for
our study design.

The notable increase in the WGA for both central and
peripheral chemoreflexes makes clear the substantial impact that
CO2 inhalation has on these mechanisms. The central chemoreflex
is widely known as the main CO2 sensor in the body that controls
ventilation (Heymans, 1930). This is evident by the increase in the
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TABLE 1 Mean (SE) of end-tidal CO2, ventilation, and NMSE of each session for both conditions (normoxic breathing and 3% CO2 inhalation) with
p-values of paired t-tests across conditions (significant p-values in bold).

Session
number

End-tidal CO2 (mmHg) Ventilation (L/min) NMSE (%)

Normal air
means (SE)

3% CO2
means (SE)

Normal air
means (SE)

3% CO2
means (SE)

Normal air
means (SE)

3% CO2
means (SE)

1 36.35 (1.23) 42.45 (1.72) 12.15 (0.83) 14.96 (1.29) 67.80 (7.11) 34.01 (6.42)

p-value 1.33∗10−4 0.0023 0.0267

2 42.05 (0.45) 48.02 (0.47) 24.24 (1.24) 31.25 (1.85) 44.73 (3.83) 41.43 (3.54)

p-value 3.98∗10−6 0.0033 0.200

3 43.69 (0.91) 51.03 (0.82) 33.87 (0.79) 43.86 (1.37) 41.61 (7.94) 47.22 (5.27)

p-value 6.42∗10−6 2.49∗10−4 0.3344

4 40.35 (0.50) 47.14 (0.53) 30.28 (1.04) 40.10 (0.92) 57.02 (2.52) 57.06 (3.28

p-value 4.69∗10−5 1.67∗10−5 0.9894

5 42.18 (1.16) 52.45 (0.90) 66.19 (1.85) 79.72 (2.27) 41.43 (6.20) 63.02 (4.96)

p-value 9.40∗10−5 0.0030 0.0085

FIGURE 1
Average kernel estimates (top) and gain functions (bottom) of all sessions for normoxic breathing (blue) and 3% CO2 inhalation (red). Dashed lines
represent one standard deviation above and below the mean.

WGA in session 1 and session 2. During exercise, the metabolic
effort increases CO2 production which contributes to an increase
in ventilation (Murias et al., 2014). There is, however, a limit to how
much the central chemoreflex contributes to an change in ventilation
from inhaled CO2 during exercise. The lack of significance in

session 3 could be attributed to a saturation of CO2 in the central
mechanisms due to exercise, which would no longer produce a
noticeable increase in ventilation despite additional CO2 inhalation
(Putnam, 2010). Kuwaki has shown that central chemoreceptor
response is state dependent and that lower levels of PETCO2 induce
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FIGURE 2
Average input Spectrums of all sessions for normoxic breathing (blue) and 3% CO2 inhalation (red).

TABLE 2 Weighted Gain Averages (WGA) of each session for both conditions (normoxic breathing and 3% CO2 inhalation) with p-values of paired t-tests
across conditions (significant p-values in bold).

Session number Low frequency WGA (L/min/mmHg) High frequency WGA (L/min/mmHg)

Normal air means (SE) 3% CO2 means (SE) Normal air means (SE) 3% CO2 means (SE)

1 0.86 (0.11) 1.53 (0.24) 0.86 (0.18) 2.01 (0.29)

p-value 0.0364 0.0170

2 1.65 (0.08) 2.38 (0.24) 2.51 (0.16) 3.82 (0.43)

p-value 0.0386 0.0253

3 2.69 (0.73) 2.80 (0.50) 2.54 (0.11) 3.59 (0.20)

p-value 0.8476 0.0021

4 1.80 (0.30) 2.36 (0.26) 2.78 (0.25) 3.81 (0.39)

p-value 0.2527 0.0039

5 4.23 (0.60) 3.57 (0.75) 4.25 (0.43) 4.31 (0.50)

p-value 0.4746 0.8503

a larger change in ventilation than higher levels (Kuwaki et al.,
2010). This saturation highlights the nonlinearities that exist within
the chemoreceptor response (Mateika and Duffin, 1994). In session
4, however, we notice a marked decrease in the WGA at low
frequencies for both conditions, pointing to a desaturation of
CO2 from the central chemoreceptors. Therefore, we conclude that
heavy exercise (session 5) leads to an increase in WGA for both
conditions (Jeyaranjan et al., 1987).

An increase in peripheral chemoreflex has been previously
reported with CO2 inhalation during exercise (Yamashiro et al.,
2021). In this study, we have been able to show that for CO2
inhalation during rest and mild exercise, there is a notable increase
in peripheral chemoreflex activation than those who breathe
normal air during these sessions. The peripheral chemoreceptors
at the carotid bodies have been shown to be mainly sensitive

to acute O2 changes. This effect is bolstered with the presence
of hypercapnia (Kuwaki et al., 2010). In all sessions of light
exercise, peripheral chemoreceptor response is maintained at
the same level, indicating that all the tested ranges of aerobic
exercise stimulate the carotid bodies in a similar way. In the
heavy exercise session (Session 5), the WGA for both breathing
conditions increases but they lose the significance of their difference.
This loss in significance is due to exercise being the only main
effect predictor as reported in the two-way repeated measures
ANOVA. Session 5, when exercise is pushed to 80% or more of
the VO2 max, is widely considered to be anaerobic level exercise
(Davis et al., 1976). Anaerobic exercise changes the mechanism of
CO2 production in the body to a non-oxygen dependent pathway
(Bangsbo et al., 1990). This likely indicates that the saturation
that is induced in anaerobic exercise does not allow an increase
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FIGURE 3
Line plots of weighted gain averages throughout the sessions for low (left) and high (right) frequency mechanisms for normoxic (blue) and 3% CO2
inhalation (red). Error bars represent standard error.

of peripheral chemoreflex sensitivity of inhaled CO2 over normal
air due to the body not utilizing oxygen for exercise at this stage
(Duffin and McAvoy, 1988).

The proposed methodology in this study utilizes the LET
to model the complex dynamic relationships of CO2-driven
ventilation. The use of this nonparametric method allows for
the understanding of physiological systems without the need
for predefined assumptions. Traditional modeling methods
(Cunningham et al., 1986; Bellville et al., 1979; Duffin, 1972;
Hey et al., 1966; St Croix et al., 1996; Duffin et al., 2000), while
seminal in their work and contributions, suffer from a dependency
of measurement conditions with a priori parameters that assume
homogeneity in the subject population.The LET canmodel sessions
of spontaneous breathing as well as sessions of different stimulations
the same way. It also does not make any assumptions of the
physiological systems studied.This allows for a robust and canonical
representation of each subject that is solely dependent on their
measured data. While this method clarifies our understanding
of these respiratory regulation systems, it is important to remain
vigilant of each model’s NMSE. The NMSE reveals how much
of the output variance is not explained with the proposed model
(Marmarelis, 2004). Table 1 showcases that in Session 1, when the
subjects were inhaling 3% CO2, we have a significantly higher
model accuracy (p = 0.0267), indicating a greater contribution
from the kernel (and the Gain function by extension) to observed
changes in ventilation during the 3% inhaled CO2 trials. This
relationship, however, is diminished when anaerobic exercise
is introduced indicating that PETCO2 contributes less to the
change in ventilation during heavy exercise. It is possible that

the lactate threshold plays a role here, as anaerobic conditions
shift the metabolic pathways, reducing the sensitivity of both
central and peripheral chemoreflexes to CO2 (Andrade, 2025). In
particular, the rise in lactate and accompanying metabolic acidosis
during high-intensity exercise may shift the ventilatory control
mechanisms away from CO2 regulation, potentially contributing
to the diminished impact of inhaled CO2 on ventilation during
these conditions. This could explain the observed increase in
NMSE in Session 5, as the model’s ability to account for changes
in ventilation becomes less effective under anaerobic conditions.
With the shift toward anaerobic metabolism and the dominance of
lactate-induced ventilation changes, the contributions from CO2
to ventilation become less predictable, thus leading to a larger
unexplained variance in the model and an increase in NMSE for
that session.

By examining the weighted gain average (WGA), we were able
to identify the contribution of the central peripheral chemoreflex
under different conditions. We found that the central chemoreflex
response to inhaled CO2 is significantly greater than regular air at
rest and during baseline 40 W exercise (p < 0.04). However, this
response is reduced during mild exercise (45% VO2 max), possibly
due to CO2 saturation at the central nervous system (CNS). In
contrast, the peripheral chemoreflex maintained its sensitivity to
inhaled CO2 at all levels of exercise (p < 0.05) until anaerobic
conditions were reached, at which point the difference in response
was diminished. While exercise significantly contributes to the
activation of both central and peripheral chemoreflexes, inhaling
CO2 during exercise primarily affects the activation of the peripheral
chemoreflex.
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