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Cross-sectional study on
smoking types and stroke risk:
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Health Department, Spring Airlines Co.,Ltd, Shanghai, China

Background: Stroke, a major global health concern, is responsible for high
mortality and long-term disabilities. With the aging population and increasing
prevalence of risk factors, its incidence is on the rise. Existing risk assessment
tools have limitations, and there is a pressing need for more accurate and
personalized stroke risk predictionmodels. Smoking, a significant modifiable risk
factor, has not been comprehensively examined in current models regarding
different smoking types.

Methods: Data were sourced from the 2015–2018 National Health and
Nutrition Examination Survey (NHANES) and the 2020–2021 Behavioral Risk
Factor Surveillance System (BRFSS). Tobacco use (including combustible
cigarettes and e-cigarettes) and stroke history were obtained through
questionnaires. Participants were divided into four subgroups: non-smokers,
exclusive combustible cigarette users, exclusive e-cigarette users, and dual
users. Covariates such as age, sex, race, education, and health conditions
were also collected. Multivariate logistic regression was used to analyze the
relationship between smoking and stroke. Four machine-learning models
(XGBoost, logistic regression, Random Forest, and Gaussian Naive Bayes) were
evaluated using the area under the receiver-operating characteristic curve
(AUC), and Shapley’s additive interpretation method was applied for feature
importance ranking and model interpretation.

Results: A total of 273,028 individuals were included in the study. Exclusive
combustible cigarette users had an elevated stroke risk (β: 1.36, 95% CI:
1.26–1.47, P < 0.0001). Among the four machine-learning models, the XGBoost
model showed the best discriminative ability with an AUC of 0.794 (95% CI =
0.787–0.802).

Conclusion: This study reveals a significant association between smoking types
and stroke risk. An XGBoost-based stroke prediction model was established,
which has the potential to improve the accuracy of stroke risk assessment and
contribute to personalized interventions for stroke prevention, thus alleviating
the healthcare burden related to stroke.

KEYWORDS

stroke, machine learning, prediction model, Shap, XGBoost

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1528910
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1528910&domain=pdf&date_stamp=2025-03-19
mailto:12023203@shutcm.edu.cn
mailto:12023203@shutcm.edu.cn
mailto:chengjiwei1@126.com
mailto:chengjiwei1@126.com
https://doi.org/10.3389/fphys.2025.1528910
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1528910/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1528910/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1528910/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1528910/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Ding et al. 10.3389/fphys.2025.1528910

GRAPHICAL ABSTRACT

1 Introduction

Stroke represents a critical global health challenge, defined by
the World Health Organization as the sudden onset of clinical
symptoms indicative of focal or global cerebral dysfunction,
typically lastingmore than 24 h or leading to death, with no apparent
cause other than vascular origin (Hilkens et al., 2024).This condition
manifests primarily in two forms: ischemic stroke, accounting for
approximately 85%of cases, and hemorrhagic stroke, comprising the
remaining 15% (Maida et al., 2024; Tu et al., 2023a).

.5The pathogenesis of ischemic stroke involves the obstruction
of cerebral blood flow, predominantly due to atherosclerosis
or embolism. In contrast, hemorrhagic stroke results from the
rupture of intracranial or peri-cerebral blood vessels, causing

Abbreviations: ML, machine learning; NHANES, National Health and
Nutrition Examination Survey; BRFSS, Behavioral Risk Factor Surveillance
System; ORs, electronic cigarettes, e-cigarettes; odds ratios; CIs, confidence
intervals; RF, random forest; AUC, area under the subject-operating
characteristic curve; AI, artificial intelligence; DL, deep learning; LASSO,
Least Absolute Shrinkage and Selection Operator; BMI, body mass index;
LightGBM, Light Gradient Boosting Machine; DT, Decision Tree; KNN, K-
Nearest Neighbors; CatBoost, Categorical Boosting; SVM, Support Vector
Machine; MLP, Multi-Layer Perceptron.

hemorrhage and subsequent compression of brain tissue. As a
leading cause of mortality and long-term disability worldwide,
stroke accounted for over 12.2 million incident cases and 6.55
million deaths in 2020 (Tu et al., 2023a; Ananth et al., 2023;
Tu et al., 2023b). The global burden of stroke is projected to escalate
further, driven by demographic aging and the increasing prevalence
of modifiable risk factors such as hypertension and obesity
(Tsao et al., 2023; Martin et al., 2024). This epidemiological trend
highlights the critical need for enhanced predictive capabilities to
identify high-risk populations and implement preventive measures
effectively.

The consequences of stroke extend beyond acute mortality,
often resulting in persistent neurological deficits that impose
substantial personal and societal burdens, including extensive
requirements for long-term care and rehabilitation (Feigin et al.,
2023). While multiple risk factors contribute to stroke susceptibility,
they can be broadly categorized into modifiable and non-
modifiable determinants. Modifiable factors include metabolic
disorders (diabetes, dyslipidemia), lifestyle behaviors (smoking,
physical inactivity), and dietary patterns, whereas non-modifiable
factors encompass genetic predisposition, age, and sex (Tu et al.,
2023a; Ekker et al., 2023). Among these, smoking emerges
as a particularly potent risk factor, with its impact on stroke
risk varying according to smoking type, intensity, and duration
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(Martin et al., 2024; Wang Y. et al., 2024). Despite the identification
of these risk factors, conventional risk assessment tools demonstrate
limited predictive accuracy and generalizability across diverse
populations.

The advent of artificial intelligence (AI), particularly
machine learning (ML) and deep learning (DL) technologies,
has revolutionized stroke risk prediction through their
capacity to discern complex patterns within extensive datasets
(Singh et al., 2024). These advanced computational approaches have
demonstrated superior performance in risk stratification compared
to traditional methods, enabling more precise and individualized
risk assessments. The integration of AI with emerging data sources,
including electronic health records and wearable devices, facilitates
continuous monitoring and early detection of stroke risk factors
(Papadopoulou et al., 2024; Liu et al., 2024; Huang et al., 2023).
This technological synergy offers promising solutions to address
the growing stroke burden through timely intervention and
personalized prevention strategies.

This study aims to develop an advanced predictive model that
specifically addresses the identification of individuals at elevated
stroke risk, with particular emphasis on the differential impacts of
various smoking behaviors. By leveraging state-of-the-art machine
learning algorithms, the research seeks to enhance existing risk
assessment frameworks through a more comprehensive evaluation
of stroke risk determinants. The inclusion of smoking typology
as a critical predictive variable represents a novel contribution to
stroke predictionmodels, as current approaches have not sufficiently
addressed the heterogeneous effects of different smoking patterns on
cerebrovascular health.

The anticipated outcomes of this research are twofold:
first, to provide novel insights into the relationship between
smoking behaviors and stroke risk; second, to demonstrate the
transformative potential of machine learning applications in clinical
risk assessment. The proposed model is expected to significantly
improve the accuracy of stroke risk prediction while simultaneously
supporting the development of targeted prevention strategies.
Ultimately, this research aims to contribute to the reduction of
stroke incidence and the mitigation of its associated healthcare and
socioeconomic burdens through advanced predictive analytics and
personalized intervention approaches.

2 Materials and methods

2.1 Source of data

We utilized data from two major surveys: the Behavioral Risk
Factor Surveillance System (BRFSS) for 2020–2021 and the National
Health and Nutrition Examination Survey (NHANES).

The BRFSS, a comprehensive and nationally representative
telephone survey, is jointly administered by the CDC and all U.S.
states, along with participating territories. It focuses on gathering
data related to behavioral risk factors.

NHANES, on the other hand, is a periodic cross-sectional survey
in the US. Since the early 1960 s, the National Center for Health
Statistics and the CDC have conducted it. Starting from 1999, it
has been a biennial program, interviewing over 5,000 individuals
per iteration. Using a complex multi - stage probability sampling

method, NHANES generates nationally representative statistics for
the civilian (non-institutionalized) household population. It collects
a wide range of health and nutrition data, covering demographics,
diet, examinations, laboratory results, and questionnaire responses.
The data collection for NHANES was approved by the National
Center for Health Statistics Research Ethics Review Board, with
all participants’ parents or guardians providing written informed
consent. Our report adheres to the Strengthening the Reporting of
Observational Research in Epidemiology guidelines for presenting
cross-sectional studies.

2.2 Study population

NHANES is a cross-sectional study designed to collect data
on the health and nutritional status of the U.S. population.
Data is obtained through structured home interviews, physical
assessments at mobile screening sites, and laboratory analyses
utilizing a multistage probability sampling technique. Initially,
19,225 individuals were identified from the NHANES 2015–2018
dataset. Participants without data on tobacco use (n = 7,378) were
eliminated from the study. Additionally, individuals lacking stroke
status information (n = 574) were eliminated. A total of 11,273
participants were included in the final analysis. All data employed in
this study are publicly available (https://www.cdc.gov/nchs/nhanes/)
and have been adjusted for demographic factors for additional
analysis. Furthermore, we included 401,958 participants from the
2020–2021 BRFSS. After excluding absent smoking-related data (n
= 139,521) and stroke-related data (n = 682), a total of 261,755
participants were finally included (Figure 1).

2.3 Tobacco use assessment

The NHANES database, specifically the Smoking Cigarette Use
dataset (SMQ), gathered data on cigarette intake, current use, 30-day
smoking prevalence, quantity, and other smoking-related details.
Participants were asked via SMQ020 if they had smoked at least 100
cigarettes in their lives and about current habits (SMQ040), and via
SMQ900 if they had ever used an e-cigarette. Smoking combustible
cigarettes was defined as having smoked at least 100 cigarettes in
a lifetime or currently smoking daily/occasionally, while e-cigarette
use was defined as any single-time use (Okafor et al., 2022).

In the 2020 BRFSS, smoking inquiries paralleled NHANES,
collecting data on cigarette and e-cigarette use. BRFSS used SAS
variables SMOKE100 (Column 202) to ask about lifetime smoking
of at least 100 cigarettes, SMOKDAY2 (Column 203) for current
smoking behavior, and ECIGARET (Column 310) for e-cigarette
use. Based on these, participants were divided into four subgroups:
non-smokers, exclusive combustible cigarette smokers, exclusive
e-cigarette users, and dual users.

2.4 Stroke diagnosis

In NHANES, stroke diagnosis relied on a self-reported
questionnaire (MCQ160f). Participants were asked “Has a physician
or other healthcare provider ever informed you about a stroke?”with

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1528910
https://www.cdc.gov/nchs/nhanes/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Ding et al. 10.3389/fphys.2025.1528910

FIGURE 1
Flowchart for inclusion of study populations according to the purpose of the study.

“yes” or “no” responses. A “yes” answer indicated a confirmed stroke
diagnosis.

In BRFSS, stroke was diagnosed through a self-reported
questionnaire (SAS variable: CVDSTRK3, Column 117). The
question “Have you ever been informed that you had a stroke?” was
part of the Chronic Health Conditions segment. A positive response
meant the participant had experienced a stroke.

2.5 Covariates

To ensure consistency between NHANES and BRFSS, several
covariates were considered. Age was grouped as 18–65 and 65+;
sex as female or male; race as Hispanic, non-Hispanic white,
non-Hispanic black, or other; education as high-school graduated
or not; marital status in multiple categories; income in three
brackets; exercise as yes or no. Additionally, BMI, weight, and health
conditions like diabetes and total heart disease were included.

Exercise data came from different questions in BRFSS
(EXERANY2: “In the last 30 days, have you engaged in”) and
NHANES (PAQ746: “How frequently do you attend.”). A positive
response for exercise was marked as “YES”, negative as “NO”.
Diabetes was determined by the self-reported DIABETE4 question
in both surveys, and total heart diseasewas based on self-reported SP
data (CVDINFR4, CVDCRHD4) asking about heart attack, angina,
or coronary artery disease.

2.6 Statistical analysis

Statistical analyses were conducted using R software (version
4.1.6). Owing to the complex sampling designs utilized by the
NHANES and BRFSS surveys, we integrated sample weights from
many study eras in our analytical approaches to accurately estimate
health-related data. Through multivariate logistic regression
analysis, we derived β values and 95% confidence intervals for the
association between types of tobacco use and stroke incidence.
The key reason for choosing multivariate logistic regression is its
interpretability. Logistic regression produces clear and interpretable
coefficients that represent the chances ratios associated with each
predictor variable. This transparency is particularly vital in clinical
and epidemiological studies, where understanding the relationship
between variables and outcomes is imperative. Model 2 included
adjustments for gender, age, and racial demographics, whereas
Model 1 was uncorrected. A third model (Model 3) was constructed
with extensive covariate adjustment for the input variables of
income, marital status, education, exercise status, weight, bodymass
index, diabetes, and heart disease.

2.7 Predictive modeling and assessment

2.7.1 Deterministic feature selection
Employing the Least Absolute Shrinkage and Selection

Operator (LASSO) regression model, we discerned the primary
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predictors of stroke while accounting for the covariation among
the covariates. LASSO enhances the predictive accuracy and
interpretability of statistical models by integrating a penalty
into the regression equation, proportional to the sum of the
absolute values of the coefficients. This software effectively
eliminates variables with zero coefficients using the five-
fold cross-validation method with LassoCV (Python version:
sklearn 0.22.1).

2.7.2 ML modeling and development
We evaluated ten widely-used machine learning methods

to construct and compare predictive models: XGBoost, Logistic
Regression, Random Forest (RF), Gaussian Naive Bayes, LightGBM,
Decision Tree (DT), k-Nearest Neighbors (KNN), CatBoost,
Support Vector Machine (SVM), and Multilayer Perceptron
(MLP). All models were executed using Python 3.7 and R 4.4.2.
XGBoost, LightGBM, and CatBoost utilized the ‘xgboost 1.2.1′,
‘lightgbm 3.3.2′, and ‘catboost 1.0.6′ packages, respectively. Other
models, including Logistic Regression, RF, Gaussian Naive Bayes,
DT, KNN, SVM, and MLP, were implemented through the
‘scikit-learn 0.22.1′ package. Patients were randomly assigned
to training and testing groups in an 80:20 ratio to ensure
comprehensive model evaluation. For all models, hyperparameter
optimization was performed via grid search combined with five-
fold cross-validation to ensure fair comparison and mitigate
overfitting.

2.7.3 Model optimization and evaluation
Five-fold cross-validation was utilized to evaluate the model’s

predictive performance and confirm its stability. To account for
potential class imbalance in stroke prediction, stratified cross-
validation was applied during both hyperparameter tuning and
evaluation phases. The training dataset was randomly divided into
five groups. During each iteration of the five-fold cross-validation,
four subsets were randomly assigned as the training set, while the
remaining subset functioned as the validation set. In each training
phase of the model, 20% of the dataset was randomly selected from
the training set to assess the model’s performance. The importance
of features was assessed using the Shapley additive explanation
(Shap). Features with greater absolute Shap values substantially
impactedthemodelpredictionscores.Additionally, thedistribution
of feature values and their relationship with model predictions
were evaluated. Model performance was evaluated using seven
standard metrics: Area Under the ROC Curve (AUC), Accuracy,
Sensitivity (Recall), Specificity, Positive Predictive Value (PPV),
Negative Predictive Value (NPV), and F1-score. The validation
dataset was utilized to evaluate and compare the effectiveness of
each model. The models’ ability to predict stroke was assessed
using the area under the receiver operating characteristic curve for
the individuals.

2.7.4 Web deployment tool based on the
streamlit framework

The final prediction model is included into a web application
using the Streamlit Python framework to facilitate its use in a
clinical setting. Upon obtaining the values of the pertinent attributes
in the final model, the program can deliver the likelihood of

stroke together with a graph illustrating the variations of the
particular sub-items.

3 Results

3.1 Participants’ characteristics

Our combined analysis integrated data from NHANES and
BRFSS, with 11,273 and 261,755 participants respectively. Key
demographic and health-related differences between non-stroke and
stroke groups are presented in Table 1, 2.

Stroke patients were significantly older in both datasets. In
NHANES, 54.23% of stroke participants were 65 or older, and in
BRFSS, this percentage was 63.56% (P < 0.0001). Although females
were more common in both stroke groups (54.11% in NHANES and
54.80% in BRFSS), the difference was not statistically significant.
Income disparities were evident, with a higher proportion of
lower-income stroke patients in BRFSS (43.96% vs. 34.41% in
NHANES, P < 0.0001). Widowed individuals were more prevalent
among stroke patients (19.04% in NHANES, 24.22% in BRFSS, P
< 0.0001). Non-Hispanic Black participants were more common
in stroke groups compared to non - stroke groups (16.92% in
NHANES and 10.16% in BRFSS, P < 0.0001). Non-stroke groups
had higher educational attainment, with over 85% of stroke
patients having at least a high-school education in both datasets
(P < 0.0001).

Regarding health and lifestyle, stroke patients had a higher BMI
(30.96 ± 6.83 in NHANES and 28.95 ± 6.65 in BRFSS, P < 0.0001).
Diabetes and heart disease were more common in stroke patients
(33.71% and 35.58% in NHANES, 31.08% and 36.45% in BRFSS,
P < 0.001). Stroke patients exercised less (58.86% in NHANES,
59.28% in BRFSS, P < 0.001) and were more likely to be current
combustible cigarette smokers (42.14% in NHANES, 10.32% in
BRFSS, P < 0.0001).

3.2 The association between cigarette use
and stroke

Figure 2 demonstrates the association between tobacco use
patterns and stroke risk in individuals aged 20 and older, analyzed
using three statisticalmodels.Model 1 is unadjusted,Model 2 adjusts
for demographic factors, and Model 3 fully adjusts for confounders
such as age, sex, race, and comorbidities.

In Model 3, exclusive use of combustible cigarettes (β: 1.34–1.36,
95% CI: 1.26–1.47, P < 0.0001) and dual use of combustible
cigarettes with e-cigarettes (β: 1.34, 95% CI: 1.23–1.46, P <
0.0001) were strongly associated with increased stroke risk. These
results indicate that combustible cigarette use, whether alone or
combined with e-cigarettes, significantly elevates stroke risk after
adjusting for confounders.

In contrast, exclusive e-cigarette use showed no significant
association with stroke risk in Model 3 (P > 0.05), suggesting a
distinct risk profile compared to combustible cigarettes. However,
in Model 2, all smoking modalities, including e-cigarette use, were
significantly associated with stroke risk, highlighting the influence
of demographic factors on these associations.
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TABLE 1 Attributes of the NHANES research cohort.

Characteristic Non-stroker (n = 10,791) stroker (n = 482) P-value

Characteristic

Age (%) <0.0001

18 ≤ age < 65 81.54 45.77

≥65 18.46 54.23

Sex (%) 0.4109

Male 48.16 45.89

Female 51.84 54.11

Income (%) <0.0001

less than $25,000 15.25 34.41

$25,000 to less than $50,000 25.23 28.68

$50,000 or more 59.52 36.84

Marital Status (%) <0.0001

Married 53.85 49.97

Widowed 5.47 19.04

Divorced 9.76 14.56

Separated 2.61 2.16

Never married 18.73 8.40

living with partner 9.58 5.87

Race (%) <0.0001

Hispanic 15.73 8.64

Non-Hispanic White 63.01 63.83

Non-Hispanic Black 11.24 16.92

Other Races 10.03 10.61

Education level (%) <0.0001

<High school 8.53% 12.89%

≥High school 91.47% 87.11%

Alcohol use (%) 0.0518

Yes 63.97 56.95

No 36.03 43.05

BMI 29.57 ± 7.13 30.96 ± 6.83 <0.0001

Weight 83.80 ± 22.38 84.45 ± 22.14 0.6125

Diabetes (%) <0.0001

(Continued on the following page)
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TABLE 1 (Continued) Attributes of the NHANES research cohort.

Characteristic Non-stroker (n = 10,791) stroker (n = 482) P-value

Yes 10.58 33.71

No 89.42 66.29

Total heart disease (%) <0.001

Yes 5.86 35.58

No 94.14 64.42

Exercise (%) <0.001

Yes 75.96% 58.86%

No 24.04% 41.14%

Type of smoking <0.0001

Non-smokers 52.92 41.06

Only combustible cigarettes 25.25 42.14

Only e-cigarettes 4.67 1.79

Both combustible cigarettes and e-cigarettes 17.16 15.01

Mean + SD, for continuous variables: the P value was calculated by the weighted linear regression model; (%) for categorical variables: the P value was calculated by the weighted
chi-square test.
Abbreviations: BMI, body mass index.

3.3 A prediction model to evaluate the
stroke risk

The selection of variables included in the LASSO regression
model was based on a combination of clinical relevance, prior
literature, and statistical considerations. Specifically, we conducted
an extensive literature review on known risk factors for stroke
and included variables that have been widely recognized as
relevant predictors (e.g., age, BMI, smoking status, hypertension,
diabetes, and other cardiovascular risk factors) (Fu et al., 2024;
Dutta et al., 2024; Notley et al., 2025; Hjort et al., 2024; Jumbe et al.,
2025). Additionally, we ensured that all selected variables were
available in both datasets (NHANES and BRFSS) to maintain
consistency across analyses. LASSO regression was employed
due to its ability to perform automatic variable selection by
shrinking less important coefficients to zero, thereby reducing
model complexity and improving interpretability. By applying 5-
fold cross-validation, we optimized the regularization parameter
(λ) to achieve a balance between model performance and feature
sparsity.

We used baseline characteristics for stroke risk prediction.
Through the LASSO method for feature selection, six key predictors
were identified: ‘age’, ‘income’, ‘exercise’, ‘alcohol consumption’,
‘diabetes’, and ‘total heart disease’. These were determined to
be the most valuable for building the predictive model using
LASSO regularization and five-fold cross-validation. Figure 3
shows the coefficients for each variable in the LASSO
model.

3.4 Model explanation

We compared XGBoost, logistic regression, RF, and Gaussian
Naive Bayes (Figure 4). While the initial visualization focuses
on four representative models (linear vs nonlinear, parametric
vs non-parametric), Supplementary Figure S1 in the Supplement
provides complete ROC comparisons across all ten evaluated
models.The results show that XGBoost has the best predictive ability
(AUC = 0.794) among the primary candidates, though LightGBM
achieved comparable performance (Validation AUC = 0.793)
as detailed in Supplementary Table S1. Notably, simpler models
like Logistic Regression (AUC = 0.785) demonstrated adequate
discrimination, whereas KNN showed significant overfitting with a
25.3% AUC drop from training (0.930) to validation (0.742), likely
due to local noise sensitivity in high-dimensional space. Following
this, we utilized XGBoost to build a clinical prediction model
given its optimal balance between performance and computational
efficiency.

We compared the difference in AUC using Delong’s
nonparametric method with MedCalc version 19.6 (https://www.
medcalc.org), progressively reducing the features of the selected
ML model until a significant decrease in AUC was observed. We
illustrated the predictive influence of the variables on the outcomes
using SHAP plots. The impact of variables on outcomes can be
visually assessed through the amplitude of SHAP values (shown by
color variations) and the trend along the horizontal axis (likelihood
of an adverse event). In the image on the right, older individuals
(shown in red) have a higher likelihood of bad prognosis compared
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TABLE 2 Attributes of the BRFSS study cohort.

Characteristic Non-stroker (n = 250,890) stroker (n = 10,865) P-value

Characteristic

Age (%) <0.0001

18 ≤ age < 65 64.64% 36.44%

≥65 35.36% 63.56%

Sex (%) 0.4109

Male 45.14% 45.20%

Female 54.86% 54.80%

Income (%) <0.0001

less than $25,000 22.41% 43.96%

$25,000 to less than $50,000 23.77% 27.04%

$50,000 or more 53.82% 29.00%

Marital Status (%) <0.0001

Married 53.13% 41.55%

Widowed 11.09% 24.22%

Divorced 12.94% 20.08%

Separated 1.88% 2.85%

Never married 17.37% 9.73%

living with partner 53.13% 41.55%

Race (%) <0.0001

Hispanic 7.40% 4.01%

Non-Hispanic White 77.44% 77.68%

Non-Hispanic Black 7.37% 10.16%

Other Races 7.80% 8.15%

Education level (%) <0.0001

<High school 6.31% 12.22%

≥High school 93.69% 87.78%

Alcohol use (%) <0.0001

Yes 50.64 33.07

No 49.36 66.93

BMI 28.40 ± 6.40 28.95 ± 6.65 <0.0001

Weight 82.56 ± 21.07 82.93 ± 21.41 0.039

Diabetes (%) <0.0001

(Continued on the following page)
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TABLE 2 (Continued) Attributes of the BRFSS study cohort.

Characteristic Non-stroker (n = 250,890) stroker (n = 10,865) P-value

Yes 12.75 31.08

No 87.35 68.92

Total heart disease (%) <0.001

Yes 7.83 36.45

No 92.17 63.55

Exercise (%) <0.001

Yes 76.70% 59.28%

No 23.30% 40.72%

Type of smoking <0.0001

Non-smokers 74.52% 73.66%

Only combustible cigarettes 6.06% 10.32%

Only e-cigarettes 11.56% 6.47%

Both combustible cigarettes and e-cigarettes 7.86% 9.55%

Mean +SD, for continuous variables: the P value was calculated by the weighted linear regression model; (%) for categorical variables: the P value was calculated by the weighted
chi-square test.
Abbreviations: BMI, body mass index.

FIGURE 2
Forest plot of the relationship between cigarette use and stroke.
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FIGURE 3
(A) Selection of features with non-zero coefficients and their coefficients using the LASSO regression method. (B) The impact of the penalty coefficient
λ on the weight coefficients of each independent variable is represented on the horizontal axis as λ and on the vertical axis as the weight coefficients,
with distinct colors indicating the weight coefficients of individual independent variables.

FIGURE 4
(A) The horizontal coordinates indicate the magnitude of the SHAP value, with positive values representing the positive contribution of the variable to a
positive stroke outcome and negative values the opposite; the color ranges from blue to red to characterize the low to high values of the variable in
order. (B) SHAP evaluations of the XGBoost algorithm for forecasting adverse outcomes in stroke patients. (C) The mean AUC performance of four
machine learning models evaluated using five-fold external cross-validation. (D) ROC curve examination of the XGBoost algorithms for predicting
stroke risk in the external test set.
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FIGURE 5
Web-based calculator predicts stroke risk.

to younger individuals (represented in blue). Individuals with a high
BMI (red) are prone to experience a poor outcome as stroke patients
(right panel).

3.5 Convenient application for clinical
utility

Figure 5 illustrates the integration of the final prediction model
into a web application to improve its practical utility in a clinical
environment. In addition to risk prediction, SHAP summary plots
were generated to illustrate the contribution of each feature to
the decision-making process. Features highlighted in red indicate
higher risk, while features highlighted in blue indicate lower risk.
The web application can be accessed at the URL: http://10.50.1.
58:8502.

4 Discussion

This study demonstrates a strong association between
tobacco consumption and the risk of stroke. Epidemiological
studies consistently demonstrate a substantial association
between smoking behaviors and increased stroke incidence, with
smokers experiencing a much higher risk than non-smokers
(Wang X. et al., 2024; Feigin et al., 2024; Shi et al., 2023;
Elser et al., 2023). Our machine learning framework extended
these observations by identifying nonlinear risk thresholds.
Meanwhile, this risk extends to both active smokers and those
exposed to secondhand smoke (Lin et al., 2016; Lu et al., 2024),
emphasizing the need for targeted public health interventions
to reduce smoking rates. The intricate relationship between
smoking and stroke highlights the importance of addressing
tobacco use as a critical component of stroke prevention
strategies.

Themolecular mechanisms through which smoking contributes
to stroke risk involve a variety of harmful constituents present
in tobacco smoke, many of which are toxic and carcinogenic
(Adler et al., 2023; Jang et al., 2024; Liang et al., 2022). Key

components such as carbon monoxide and nicotine induce
endothelial dysfunction and promote a pro-inflammatory state
(Rezk-Hanna et al., 2019; Wang et al., 2023; Belkin et al.,
2023), leading to vascular damage (Whitehead et al., 2021).
Additionally, oxidative stress resulting from the inhalation
of free radicals damages vascular endothelium, exacerbating
atherosclerotic processes and increasing thrombogenic potential
(Qin et al., 2020; Higashi, 2023). Notably, the accumulation of
these detrimental substances impairs the healing of vascular
injuries, further predisposing individuals to the development of
cerebrovascular diseases (Siegel et al., 2022). These mechanisms
align with our findings of a significantly increased stroke risk
in traditional cigarette users. E-cigarettes became commercially
available in the US in 2007 and have since gained widespread
popularity among both adults and adolescents as they are generally
considered to produce fewer toxins than traditional cigarettes
(Sood et al., 2018; Goniewicz et al., 2017). However, emerging
evidence suggests that they may exert cerebrovascular toxicity via
nicotine-induced oxidative stress and inflammatory cytokine release
(Crotty Alexander et al., 2018; Benowitz and Fraiman, 2017),and
adversely affect the circulatory system through mechanisms
such as increased heart rate and blood pressure, endothelial
dysfunction, and accelerated platelet aggregation (Qasim et al., 2017;
Goniewicz et al., 2014). Preclinical evidence shows that chronic e-
cigarette exposure compromises blood-brain barrier (BBB) integrity
and exacerbates ischemic injury, comparable to traditional smoking
(Kaisar et al., 2017).

To enhance clinical utility, we developed a predictive model
utilizing baseline characteristics as potential predictors of
stroke risk. LASSO identified six linearly associated predictors,
whereas SHAP revealed BMI as a critical nonlinear factor
indicating that obesity elevated stroke risk through different
mechanisms. While age consistently emerged as the strongest
predictor reflecting cumulative vascular damage, BMI’s absence
in LASSO contrasted with its SHAP prominence, highlighting
threshold effects captured by XGBoost. This divergence
underscores the complementary strengths of LASSO and
SHAP, advocating for their joint use in heterogeneous risk
profiling.

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1528910
http://10.50.1.58:8502
http://10.50.1.58:8502
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Ding et al. 10.3389/fphys.2025.1528910

The strengths of our research are rooted in its comprehensive
approach, utilizing multiple machine learning algorithms to
determine the most effective model for stroke prediction. Notably,
the severe class imbalance (4.16% stroke cases) was addressed
through XGBoost’s scale_pos_weight parameter and weighted
logistic regression, which improved model sensitivity while
maintaining specificity. Additionally, we developed an online
predictive platform, enhancing accessibility for clinicians. However,
conventional accuracy metrics may overestimate clinical utility
given this imbalance, as evidenced by the discrepancy between
training set performance (XGBoost F1 = 0.808) and validation
metrics (F1 = 0.837). Subsequent research should pursue multi-
center validations incorporating advanced sampling techniques
and composite metrics like AUC-PR to better handle skewed
distributions.

However, we are also acutely aware of several limitations
in our study. First, the extreme class imbalance (95.84% non-
stroke cases) and potential biases from self-reported data may
affect model accuracy and generalizability, particularly for low-
prevalence predictors like e-cigarette use. Second, the cross-
sectional design precludes causal inference and cannot account
for reverse causality. Third, our analysis revealed no significant
association between exclusive e-cigarette use and stroke risk
in fully adjusted models, which may reflect methodological
limitations such as insufficient capture of long-term cumulative
exposure, underreporting of dual use with combustible products,
or lack of granularity on e-cigarette consumption patterns.
Additionally, the biological latency of cerebrovascular damage from
e-cigarettes may exceed our observational timeframe, suggesting
potential long-term harm that warrants further investigation
using available long-term clinical and animal data. These findings
underscore the need for comprehensive tobacco cessation strategies
prioritizing complete nicotine abstinence over e-cigarette use
alone.

In terms of future research directions, multi-center validations
across diverse countries and ethnic groups are essential to
confirm the generalizability of our model and findings. Large-scale
prospective studies incorporating repeated exposure measurements
are necessary to establish temporal precedence between e-
cigarette use and stroke outcomes, thereby clarifying causal
relationships. Long-term follow-up of participants will provide
more precise insights into the temporal progression of stroke
development.

In summary, our predictive model represents a significant
advancement in stroke risk assessment, providing healthcare
professionals with a robust tool for informed decision-making.
The potential for widespread application in clinical settings holds
promise for improving stroke prevention strategies, ultimately
leading to better health outcomes for individuals at risk. We look
forward to the continued exploration of this model’s utility across
diverse clinical scenarios and its role in enhancing patient care.

5 Conclusion

This study establishes that distinct tobacco consumption patterns
differentially elevate stroke risk, with combustible tobacco products

demonstrating the strongest association. Through machine learning-
driven feature selection, we developed and validated a clinical
prediction tool achieving in stroke risk stratification. The integration
of this model into an open-access web platform enables real-time,
individualized stroke risk assessment, offering clinicians a practical
tool for targeted intervention strategies.These findings underscore the
importance of smoking cessation in stroke prevention and provide a
scalable solution for risk stratification in high-risk populations. Future
studiesshouldfocusonmulti-centervalidationandfurtherexploration
ofdose-dependenteffectsoftobaccousetoenhancethegeneralizability
and precision of the model.
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