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The most common degenerative condition affecting the musculoskeletal
system, and the leading cause of persistent low back pain, is intervertebral disc
degeneration (IDD). IDD is increasingly common with age and has a variety of
etiologic factors including inflammation, oxidative stress, extracellular matrix
(ECM) degradation, and apoptosis that interact with each other to cause IDD.
Because it is difficult to determine the exact pathogenesis of IDD, there is a lack
of effective therapeutic agents. Melatonin has been intensively studied for its
strong anti-inflammatory, antioxidant, and anti-apoptotic properties. Melatonin
is a pleiotropic indole-stimulating hormone produced by the pineal gland, which
can be used to treat a wide range of degenerative diseases. Therefore, melatonin
supplementation may be a viable treatment for IDD. This article reviews the
current mechanisms of IDD and the multiple roles regarding melatonin’s anti-
inflammatory, antioxidant, anti-apoptotic, and mitigating ECM degradation in
IDD, incorporating new current research perspectives, as well as recent studies
on drug delivery systems.
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1 Introduction

One of the main causes of disability and a significant socioeconomic burden is low back
pain (LBP), which is acknowledged worldwide. It is well known that 80% of people will
experience low back pain at some point in their lives. In the past 20 years, the prevalence
of LBP has increased by 50% worldwide, and it is one of the main causes of disability
(Violante et al., 2015; Diwan and Melrose, 2023; Hartvigsen et al., 2018). Moreover, one
of the main causes of LBP, intervertebral disc degeneration (IDD), accounts for about 40%
of all cases of LBP (Cheung et al., 2009). Currently, conservative and surgical approaches
are the primary methods used to treat IDD. These two treatment modalities have formed
a more mature system and have achieved good results in the clinic (Wu et al., 2020;
Xin et al., 2022). Analgesics, anti-inflammatory medications, and physical therapy are the
mainstays of conservative treatment, nevertheless, these approaches are only effective in
treating symptoms, which merely conceal or postpone the progression of IDD (Xin et al.,
2022; Kamali et al., 2021). As a last resort, surgery is used for procedures like spinal fusion
or total disc replacement. Modern surgical methods are highly advanced and appropriate
for the great majority of individuals with IDD. However, there are dangers associated with
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surgical treatment as well, such as operative site infection or
problems from neighboring segment disease (Xin et al., 2022;
Phan et al., 2021; Takahashi et al., 2006). To make up for the
limitations of the current clinical therapeutic approaches, a novel
therapeutic technique for suppressing IDDmust be developed. Small
molecules, which are organic substances with a molecular weight
of less than 900 Da, have been shown to have regenerative effect on
IDD recently. In order to treat discogenic pain and repair damaged
intervertebral disks (IVD) by reestablishing tissue homeostasis,
several small molecules have demonstrated encouraging outcomes
in both in vivo and in vitro studies (Kamali et al., 2021; Pan et al.,
2018; Liu MY. et al., 2022; Krupkova et al., 2014), which provided
ideas for follow-up research.

As a small molecule drug, melatonin has been proved to
promote osteochondral development, repair (Zhang et al., 2010;
Gao et al., 2014). Except that melatonin has anti-inflammatory,
antioxidant and anti-apoptosis effects, this is consistent with the
direction of IDD treatment research. Melatonin has great potential
in treating IDD (Tian et al., 2021; Zhang Y. et al., 2019; He et al.,
2018; Chen et al., 2020a). Thus, the purpose of this review was
to give a thorough theoretical foundation for future pertinent
research while concentrating on the possible therapeutic principles
of melatonin in IDD (Table 1).

2 Anatomy and mechanisms of IDD

The annulus fibrosus (AF), endplate cartilage (EP), and nucleus
pulposus (NP) make up IVD (Zhang et al., 2010; Gao et al., 2014).
Nucleus pulposus cells (NPCs) and ECM rich in collagen II and
proteoglycans make up NP (Zhang et al., 2010; Gao et al., 2014).
The presence of negatively charged side chains in proteoglycans
causes the NP to become very hydrated at high osmotic pressures,
enabling the IVD to withstand compressive stresses and experience
reversible deformation (Zhang et al., 2010; Gao et al., 2014).
The passage of fluid and solutes into and out of the disc is
intimately linked to the CEP, a layer of hyaline cartilage covering
the caudal and cephalad ends of the disc (Zhang et al., 2010;
Gao et al., 2014). AF surrounding the outer region of the IVD, is
a highly fibrous and well-organized tissue. It consisted of multiple
layers of concentric lamellae, angularly laminated in the fiber
direction, which restrict the mobility of the IVD and contain the
internal NP (Torre et al., 2019). AF is significant in biomechanical
characterization of IVDs, because its structural integrity is vital for
limiting NP and maintaining physiologic intradiscal stress under
load, IDD is the result of degenerative changes in the biomechanical
and structural features of the IVD, such as AF cracking and NP
volume loss (Chu et al., 2018).

Extracellular matrix (ECM) breakdown, oxidative
inflammation, and apoptosis are the most common pathogenic
alterations linked to IDD (Clouet et al., 2009; Chen et al.,
2024). According to the current study, NPCs (IVD Cells in the
central region) keep the ECM in a balanced state. The anabolism
and catabolism of ECM are in dynamic balance in a healthy
IVD. The maintenance of ECM integrity depends on type I
and type II collagens, which give tensile strength, and water-
bound proteoglycans, such as aggregated proteoglycans. However,
dysregulation of NPC metabolism results in a reduction in their

capacity to synthesize ECM components and an increase in the
secretion of molecules that promote ECM degradation, such
as matrix metalloproteinases (MMP) and metalloproteases with
platelet-responsive protein motifs (ADAMTS). IDD typically
happens when the ECM’s balance is upset (Vo et al., 2013;
Roberts et al., 2000; Liang et al., 2022; Le Maitre et al., 2007).

The inflammatory response also has a significant impact.
IVD degeneration is characterized by increased levels of the pro-
inflammatory cytokines tumor necrosis factor (TNF), interleukin
(IL)-1α, IL-1β, IL-6, and IL-17 secreted by IVD cells, which
promote ECM degradation, chemokine production, and IVD cells
cellular phenotypic change. Concurrently, chemokines released
by degenerative discs encourage immune cell infiltration and
activation, so intensifying the inflammatory cascade response
(Xin et al., 2022; Risbud and Shapiro, 2014).

This process is also influenced by oxidative stress, which
interacts with the inflammatory response. Excess reactive oxygen
species (ROS) trigger the nuclear factor kappa-B (NF-κB) and
mitogen-activated protein kinase (MAPK) pathways, causing an
imbalance in the synthesis and breakdown of ECM in IVD cells
as well as an increase in the secretion of pro-inflammatory factors.
These alterations eventually cause NPCs to undergo apoptosis and
maintain an inflammatory microenvironment, which exacerbates
IVD disruption and ROS production (Zhou et al., 2010; Zhu et al.,
2019). Cellular senescence is an irreversible cell cycle arrest caused
by various external stimuli or telomere unraveling. Senescent cells
exhibit a variety of morphological changes as they aggregate into
clusters, increase in size, and become flattened and vacuolated.
In addition, these cells will also fail to replicate in response to
mitotic stimuli and abnormally secrete pro-inflammatory cytokines
and matrix-degrading proteases (Acosta et al., 2008). Senescent
cells alter the balance of catabolic and anabolic pathways produced
by the ECM, a potential cause of IDD (Gruber et al., 2009).
Increased ROS in the IDD is linked to NPCs senescence, and it
has been demonstrated that raised surface ROS and activated NF-
κB cause NPC senescence (Wang J. et al., 2022; Li F. et al., 2021).
IVD cells experience senescence, irreversible growth arrest, the
synthesis ofMMPs and pro-inflammatory cytokines, and overstress,
which culminates in programmed cell death, as they age and
degenerate (Yurube et al., 2023).

In conclusion, although there is no clear standard explanation
for the mechanism of IDD, current studies have demonstrated that
multiple factors such as ECM degradation, inflammation, oxidative
stress, and apoptosis are interconnected and interact with each other,
and work together to promote the progression of IDD (Figure 1).

3 Pharmacologic effects of melatonin

A naturally occurring hormone, melatonin is mostly secreted
by the pineal gland (Wang SY. et al., 2020). Melatonin, also
known as N-acetyl-5-methoxytryptamine, is a neurohormone
that maintains circadian rhythms (Pévet, 2016). It is well known
that melatonin is widely used for its ability to improve circadian
rhythms (Cajochen et al., 2003; Vasey et al., 2021; Zisapel,
2018; Hirayama et al., 2023). Meanwhile, melatonin is safe and
widely used in various diseases (Vine et al., 2022; Esposito et al.,
2019; Reiter et al., 2002) such as cancers, cardiovascular
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TABLE 1 Effect of melatonin on IDD in different models.

Model Dosage Model of administration Effects References

mouse NPCs  0.01, 0.1,1 μM Incubation with melatonin Melatonin inhibits inflammatory response,
oxidative stress, and ferroptosis in NPCs

Dou et al. (2023a)

rat NPCs 0.1,1,10,100 μM Incubation with melatonin Melatonin inhibits apoptosis in NPCs Chen et al. (2019)

rats NPCs 1 mM Incubation with melatonin Melatonin inhibits myeloid apoptosis by
suppressing autophagy in the PI3K/Akt pathway
in a high glucose environment

Li et al. (2021a)

human NPCs 0.1,0.5,1,5,10,50,100 μM Incubation with melatonin Melatonin activates the ERK1/2 signaling
pathway to improve cell survival and function

Ge et al. (2019)

human NPCs .5,1,2 μM Incubation with melatonin Melatonin inhibits NLRP3 inflammatory vesicle
activation and attenuate NPCs degeneration
through the EGR1/DDX3X pathway

Zhao et al. (2024)

human NPCs 1 mM Incubation with melatonin Melatonin activates autophagy through the
NF-κB signaling pathway and alleviates ECM
degradation

Chen et al. (2020a)

human NPCs / / Melatonin reverses TNF-α-induced metabolic
disorders in human myeloid cells through
MTNR1B/Gαi2/YAP signaling

Qiu et al. (2022)

rats 5 mg/kg-MLT, 10 mg/kg intraperitoneal injection Melatonin reduces the degree of IDD in rats Dou et al. (2023b)

rats 0,1,3,5 mg/kg intradiscal injection Melatonin attenuates degenerative disc
degeneration by down-regulating DLX5 via the
TGF/Smad2/3 pathway in NPCs

Zhang et al. (2024)

rats 30 mg/kg/per week intraperitoneal injection Melatonin reduces the progression of pain and
IDD

Chen et al. (2020b)

rats 50 mg/kg/d intraperitoneal injection Melatonin alleviates inflammation and IDD
processes in rats

Zhang et al. (2019a)

rats 500 μM intradiscal injection Melatonin restores BMAL1 expression and
ameliorates the IDD process in a
compression-induced rat model

Wang et al. (2022a)

plasma / / Decreased plasma melatonin levels are
associated with increased pro-inflammatory
cytokines

Tian et al. (2021)

NPMSCs 1 μM Incubation with melatonin Melatonin attenuates NPMSCs damage by
activating the PI3K/Akt pathway

Huang et al. (2023)

rats AF Cells 1 mM Incubation with melatonin Melatonin regulates the ROS/NF-κB pathway to
ameliorate the inflammatory environment and
mitigate cellular senescence

Li et al. (2021b)

rats EP Cells 0,0.5,1,2,5 μM Incubation with melatonin Melatonin reduces oxidative stress-induced
apoptosis in EPCs by promoting autophagy

Zhang et al. (2019b)

rats EP Cells 1.10 mM Incubation with melatonin Melatonin delays the degeneration of EPCs by
inhibiting the NF-κB pathway

Wu et al. (2021)

disease, gastrointestinal disorders, mood disorders (Talib, 2018;
Bhattacharya et al., 2019; Ahmad et al., 2023; Favero et al., 2018).
Moreover, melatonin has been extensively documented to have
a role in the prevention of a number of degenerative illnesses,
such as Parkinson’s, Alzheimer’s, osteoporosis, osteoarthritis,

IDD, and others (Shen et al., 2022; Sumsuzzman et al., 2021;
Tamtaji et al., 2020; Li et al., 2019; Hardeland et al., 2015;
Zhang et al., 2022; Li et al., 2022).

Melatonin works in a variety of ways. From an anti-
inflammatory standpoint, it inhibits inflammation-promoting
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FIGURE 1
Mechanisms of IDD (by Figdraw). Inflammation, oxidative stress, apoptosis, and ECM degradation, promote the progression of IDD.

processes. TNF-α, IL-6, and IL-1β are among the inflammatory
factors whose release is inhibited by melatonin (Zhang Y. et al.,
2019). Furthermore, it initiates the anti-inflammatory network
through SIRT1 activation, nuclear factor erythroid 2 related factor
(Nrf2) upregulation and NF-κB downregulation, as well as the
production of IL-4 and IL-10, two anti-inflammatory cytokines
(Hardeland, 2019; Arioz et al., 2019). In addition, melatonin acts
as an antioxidant with powerful antioxidant properties. Unlike
certain classical antioxidants, melatonin reacts with free radicals
in a cascade and can be generated under mild oxidative stress.
These characteristics of melatonin shield organisms from harmful
oxidative damage (Tan et al., 2015; Reiter et al., 2018). Apart from
its anti-inflammatory and antioxidant properties, research suggests
that melatonin may also have anti-apoptotic effects, it had also been
shown that melatonin inhibited apoptosis through activation of the
Sirt1/Nrf2 pathway (Zhang W. et al., 2023). All in all, the potent
anti-inflammatory, antioxidant, and anti-apoptotic properties of
melatonin have been acknowledged in a variety of fields.

The safety of exogenous melatonin is also well established;
in a 1967 study, mice survived the administration of a dose
of 800 mg/kg of melatonin without experiencing any notable
side effects, and its lethal dose is currently unknown in clinical
practice (Author anonymous, 2004). However, there is no proof of
ophthalmotoxicity, hepatotoxicity, nephrotoxicity, or myelotoxicity.
In fact, “melatonin has been given to humans at relatively high
doses (1 g per day orally) for 1 month” and researchers have noted
high plasma concentrations of melatonin, headaches, dizziness, and
drowsiness (Schomerus andKorf, 2005). In summary,melatonin has
a good safety record and is being studied extensively in the areas
of anti-inflammatory, antioxidant, and anti-apoptotic properties.
Therefore, melatonin offers potential as a drug for the treatment of
IDD because these effects align with the path of research on IDD
treatment.

4 Melatonin and IDD

4.1 Melatonin regulates inflammation

IDD is largely caused by an inflammatory response, and
inflammatory mediators are essential to IDD (Li Z. et al., 2023).
According to the study, several pro-inflammatory cytokines such
as TNF-α, IL-1β, IL-17, IL-1α, and IL-8 are increased significantly
in IDD (Li Z. et al., 2023; Li H. et al., 2023; Shao et al., 2021).
These cytokines encouraged IVD cell phenotypic alterations and
ECM degradation. Furthermore, the deteriorated disc’s production
of chemokines encourages immune cell infiltration and activation,
which intensifies the inflammatory cascade response. Inflammatory
processes exacerbated by cytokines IL-1β and TNF-α are considered
to be key mediators of IDD, and therefore, IL-1β and TNF-α are
the most important pro-inflammatory cytokines (Wang Y. et al.,
2020). According to recent research, the development of IDD is
substantially correlated with the activation of NOD-like receptor
thermal protein domain associated protein 3 (NLRP3) inflammatory
vesicles (Chao-Yang et al., 2021). It has been reported that
NLRP3 inflammatory vesicles promote the release of IL-1β, and
in addition, IL-1β upregulated the initiation and activation of
NLRP3 inflammatory vesicles by enhancing NF-κB signaling and
mitochondrial reactive oxygen species (mtROS) production, which
constitutes the NLRP3-IL-1β inflammatory loop (Chen et al.,
2020b; Chao-Yang et al., 2021; Huang et al., 2021; Fu and Wu,
2023). Melatonin was found by Chen et al. to downregulate NF-
κB signaling and mtROS generation, which in turn reduced the
activation of NLRP3, IL-1β, and prevented the IL-1β-NLRP3
positive feedback loop in NPCs (Chen et al., 2020b). Nicotinamide
phosphoribosyl transferase (NAMPT) is an intracellular enzyme
with pro-inflammatory properties (Martínez-Morcillo et al., 2021;
Audrito et al., 2020). According to previous studies, NAMPT
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was involved in the process of IDD, it could contribute to the
pathogenesis of IDD (Shi et al., 2022; Yi et al., 2023). Huang et al.
revealed that melatonin inhibits the activity of NLRP3 and NAMPT
inflammasomes, which may mitigate the matrix degradation caused
by TNF-α. Furthermore, by blockingNLRP3 inflammasome activity
via MAPK and NF-κB signaling in NPCs, NAMPT downregulation
inhibited TNF-α-induced matrix degradation (Huang et al., 2020).
Macrophage (Mφ) was rapidly polarized to M1-type in the
inflammatory state, and degenerating IVD cells could also secrete
inflammatory mediators to activate Mφ, accompanied by a rise
in pro-inflammatory factors (Nakazawa et al., 2018; Yang et al.,
2019; Takada et al., 2004).Dou et al. showed that lipopolysaccharide
(LPS) induced M1-type Mφ polarization with pro-inflammatory
properties. Melatonin could suppress M1-type Mφ polarization
and alleviate inflammation at the same time. Melatonin inhibited
M1-type Mφ polarization and ameliorates inflammation-induced
nasopharyngeal carcinoma injury (Dou et al., 2023b). Furthermore,
Wu et al. discovered that lipopolysaccharide (LPS) stimulation
caused damage to EP cartilaginous cells (EPCs).However,melatonin
reduced inflammation and ECM degradation of EPCs via the
nuclear factor Kappa-B pathway, lessening the detrimental effects of
LPS on EP (Wu et al., 2021). Apart from NPCs and EPCs, Li et al.
discovered that melatonin significantly decreased the ROS content
andNF-κB pathway activity in TNF-α-treatedAF cells. Additionally,
the protein expression of p16 and p53, which indicate cellular
senescence, was also decreased.These findings imply that melatonin
inhibits AF cellular senescence by controlling the ROS/NF-κB
pathway in an inflammatory setting (Li et al., 2021b). According
to a clinical trial by Tian et al., melatonin supplementation raised
plasma melatonin, which may have major therapeutic effects
by reducing inflammation. Higher plasma melatonin was also
linked to lower levels of IL-6 and TNF-α (Tian et al., 2021).
Taken together, these effects attenuated inflammatory damage and
prevented inflammation-mediated IDD by interfering with the
production of pro-inflammatory cytokines, specifically IL-1β and
TNF-α, and suppressing M1-type Mφ polarization.

4.2 Melatonin relieves oxidative stress

Oxidative stress has a high correlation with inflammation
(Reuter et al., 2010). Inflammation results from oxidative stress,
which is an imbalance between the generation of ROS and
their removal by defense mechanisms. Numerous transcription
factors can be activated by oxidative stress, which results
in the differential expression of several genes involved in
inflammatory pathways (Hussain et al., 2016).

ROS as a major performer of oxidative stress, is a class of
unstable, highly reactive molecule (Feng et al., 2017; Nasto et al.,
2013). It has been found that the progression of IDD is closely
related to ROS accumulation and oxidative stress. Oxidative
stress promoted apoptosis, triggered inflammatory response, and
exacerbated ECMdegradation, thereby exacerbated the IDDprocess
(Wang Y. et al., 2023). Melatonin, a potent antioxidant, can reduce
oxidative stress damage (Tan et al., 2015; Morvaridzadeh et al.,
2020). ROS levels and malondialdehyde (MDA) as important
indicators for assessing oxidative stress (Hu et al., 2021). He
et al. revealed that melatonin maintains cell viability of NPCs

under oxidative stress, leading to decrease in apoptosis rate,
ROS levels and MDA, reducing damage from oxidative stress
(He et al., 2018). Mesenchymal stem cells (MSCs) have become a
novel treatment option in recent years because of their paracrine
actions, capacity to develop into intervertebral disc cells, and
ability to restore degraded cells (Bhujel et al., 2022; Vadalà et al.,
2016). Mesenchymal stem cells from the nucleus pulposus were
identified and grown by Risbud et al. (2007), offering a novel
strategy for endogenous healing of degenerative disc degeneration.
Nucleus pulposus mesenchymal stem cells (NPSC) were present in
normal and degenerative NP tissues. NPSCs were better adapted
to the hypoxic hypertonic microenvironment of degenerative
discs than exogenous stem cells (Huang et al., 2019; Liu et al.,
2019). Huang et al. revealed that accumulation of ROS in the
intervertebral disc would cause to senescence and apoptosis
of NPSCs, ultimately leading to irreversible disc degeneration.
Melatonin could effectively alleviate oxidative stress-induced
excessive apoptosis of NPSCs and mitochondrial dysfunction by
activating the PI3K/Akt pathway (Huang et al., 2023). In conclusion,
it can be said thatmelatonin prevented inflammation-mediated IDD
by interfering with the production of pro-inflammatory cytokines
like TNF-α and IL-1β. Additionally, melatonin is able to lower ROS
levels and reduce oxidative stress damage. These findings suggest
that melatonin may be a promising treatment for IDD.

4.3 Melatonin inhibits IVD cell death

IDD has a very complicated pathophysiology, and one of
the main causes of the disease is the death of IVD cells, such
as NPCs or EPCs, as a result of the apoptotic pathway being
activated (Zhang XB. et al., 2021). Therefore, a viable therapeutic
strategy for the therapy of IDD is the suppression of IVD cell death.

According to previous studies, melatonin had several
antioxidant and anti-inflammatory effects. In addition to this,
melatonin regulated apoptosis and autophagy (Fernández et al.,
2015; Zhi et al., 2020; Wang L. et al., 2023). Chen et al. found
that melatonin reversed the expression of apoptosis-associated
proteins, such as cleaved caspase 3, cytochrome c, Bax, and
Bcl-2, and prevented tert-butyl hydroperoxide (TBHP)-induced
apoptosis in NPCs in a dose-dependent manner. Subsequent
investigation revealed that melatonin prevented NPCs from dying
by causing and reducing IDD via mitochondrial autophagy, offering
a possible treatment for IDD (Chen et al., 2019). Extracellular
regulatory protein kinases (ERK) signaling has been linked to
apoptosis, senescence, migration, differentiation, and proliferation
of cells (Sun et al., 2015). Ge et al. found that discovered that
ERK1/2 activity was considerably elevated by melatonin above
a 1 μM concentration, and furthermore, the addition of an
ERK inhibitor nearly entirely reversed the effects of melatonin
therapy, which prevented NPC apoptosis by cleaving cystatin-
3, reducing Bax expression, and boosting Bcl-2. In addition,
melatonin (<5 μM) preserved cell cycle arrest in NP cells while
increasing the proportion of S-phase cells and lowering the G0/G1
population (Ge et al., 2019). While Zhang et al. was examining
the function and mechanism of lncRNA MEG3 in melatonin-
mediated NPC action, they discovered that the melatonin-regulated
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MEG3-miR-15a-5p-PGC-1α/SIRT1 pathway may prevent IL-1β-
induced inflammation and NPC apoptosis (Zhang C. et al., 2023).

Previous studies have suggested that diabetes-related
hyperglycemia may be one of the risk factors for IDD (Jin et al.,
2023; Cannata et al., 2020; Alpantaki et al., 2019). Li et al. observed
an increased apoptosis rate of NPCs in a high glucose culture
environment compared to the normal environment. This increase
was mainly characterized by increased expression of apoptosis
marker proteins such as cleaved Caspase-3 and cleaved PARP. In
addition, melatonin was found to inhibit apoptosis of NPCs in
high glucose environment. Notably, the researchers looked at the
protein expression of p-Akt to explore the potential involvement
of the PI3K/Akt pathway in IDD. The findings revealed that,
in comparison to control NPCs, high-sugar culture significantly
decreased the protein expression of p-Akt, but that melatonin
addition partially promoted the expression of p-Akt protein inNPCs
cultured in medium supplemented with high sugar concentrations.
Furthermore, the PI3K/Akt pathway inhibitor LY294002 was added
tomelatonin-treatedNPCs to prevent the activation of this signaling
pathway. The findings demonstrated a large rise in the mRNA
expression of autophagy-related genes (Beclin-1, Atg3, and Atg5)
and a significant drop in the mRNA expression of anti-apoptotic
genes (Bcl-2). Pro-apoptotic genes (Bax and cystatin-3) showed the
lowest level of mRNA expression. In conclusion, melatonin reduced
apoptosis in NPCs by blocking excessive autophagy in high glucose
cells via the PI3K/Akt pathway (Li et al., 2021a). Zhang et al. fond
that melatonin therapy decreased the frequency of calcification
and apoptosis in EPCs. Notably, melatonin increased autophagy
and Sirt1 expression and activity in EPCs. The protective effects
of melatonin on apoptosis and calcification were reversed when 3-
methyladenine blocked autophagy. Conversely, the Sirt1 inhibitor
EX-527 decreased both melatonin-induced autophagy and the
protective effects of melatonin on calcification and cell death. This
indicated that the Sirt1 autophagy pathway mediated the favorable
effects of melatonin on EPCs (Zhang Z. et al., 2019). In conclusion,
the above studies suggested that melatonin had protective effect on
IVD cells, including NPCs, EPCs. Cysteine asparaginase activation
and inflammatory vesicles cause cellular pyroptosis, a form of lytic
programmed cell death.

In contrast to apoptosis, cellular pyroptosis is characterized by
the rupture of the plasmamembrane and the release of inflammatory
mediators, which speeds up the ECM’s decomposition. According
to recent research, as IDD worsens, NLRP3 inflammatory vesicle-
mediated pyroptosis is triggered. Targeting cellular pyroptosis in
IDD also revealed the ECM’s amazing remodeling capabilities
and anti-inflammatory qualities, indicating that cellular pyroptosis
plays a role in the IDD process (Luo et al., 2022). Zhao et al.
discovered that melatonin protects cells from cellular death and
ECM degradation by reducing EGR1-induced overproduction of
DDX3X and activation of NLRP3 inflammatory vesicles (Zhao et al.,
2024). Xie et al. discovered that while melatonin dramatically
inhibited the activity of NLRP3 inflammatory vesicles and decreased
pain behavior in a rat model of radiculopathy, NLRP3 inflammatory
vesicles were raised in both a dorsal root ganglion model and a
rat model of radiculopathy (Xie et al., 2021). In conclusion, there
is some study potential for melatonin’s ability to prevent cellular
pyroptosis.

According to previous studies, apoptosis and pyroptosis are one
of the ways of cell death (Yan et al., 2021; Newton et al., 2024).
Apart from apoptosis, ferroptosis has also been linked to IDD
(Ohnishi et al., 2022). Ferroptosis is a recently discovered novel form
of regulatory cell death (RCD) characterized by iron-dependent
mechanisms and accumulation of lipid ROS. Ferroptosis has a high
correlationwith numerous degenerative illnesses, and its function in
the pathogenesis of IDD has drawn more attention (Yan et al., 2021;
Fan et al., 2023). In addition, SLC7A11, GPX4, ACSL4, and LPCAT3
are altered during ferroptosis and can be used as marker proteins to
detect ferroptosis (Seibt et al., 2019; Chen et al., 2021; Cui et al., 2021;
Liu J. et al., 2022). It was shown that in a model of oxidative stress
NPCs induced by TBHP, the levels of ferroptosis marker proteins
were altered, ferroptosis was observed in this model of NPCs, as
evidenced by changes in the expression of PTGS2 and ACSL4 and a
decrease inGPX4 and FTH, but the addition of ferroptosis inhibitors
reversed these manifestations (Fan et al., 2023; Zhu et al., 2023).
This suggested that ferroptosis may be involved in the process of
IDD, therefore, studying the relationship between ferroptosis and
IDD had become a new research topic.Dou et al. revealed that LPS-
stimulated macrophages' conditioned medium (CM) produced a
ferroptosis-like environment with alterations in ferroptosis marker
proteins, such as downregulation of GPX4 and SLC7A11 levels
but upregulation of ACSL4 and LPCAT3 levels, which encouraged
damage to NPCs. Subsequently, melatonin subsequently attenuated
the damage caused by CM to NPCs, in part because it blocked
ferroptosis, as evidenced by the overexpression of GPX4 and
SLC7A11 levels and the downregulation of ACSL4 and LPCAT3
levels. The ferroptosis-inducing agent erastin further reduced the
protective effect of melatonin in NPCs, while ferritin inhibitor-1
(Fer-1) increased it. This finding highlights the role of ferroptosis in
the pathophysiology of IDD and raises the possibility that melatonin
could be used as a medication for the clinical treatment of IDD.
Despite the fact that a number of ferroptosis-related molecules,
including GPX4, SLC7A11, ACSL4, and LPCAT3, contribute to
the reduction of NPCS injury through the use of melatonin, the
study was restricted to cellular experiments and lacked precise and
in-depth research on the mechanism of ferroptosis. Additionally,
there were no studies involving higher concentrations of melatonin
(Dou et al., 2023a). But research on melatonin and ferroptosis is
still in its early stages, and many questions remain unanswered. The
present research on ferroptosis in melatonin has just touched the
surface of the findings; the precise mechanisms, target molecules,
and related signaling pathways remain unknown. More research
is needed to determine how melatonin, ferroptosis, and IDD
are related (Figure 2).

4.4 Melatonin regulates ECM remodeling

The ECM’s both catabolism and anabolism are in a state
of dynamic equilibrium during normal IVD. Disc degeneration
typically happened when multiple stressors upset the balance
(Liang et al., 2022; Le Maitre et al., 2007). Collagen II and
aggregated proteoglycans are the primary constituents of ECM that
preserve its elasticity and volume (Craddock et al., 2018). ECM-
degrading enzymes, such as MMP-3, MMP-13, and ADAMTS-4,
are upregulated in degenerative IVD specimens in proportion to the
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FIGURE 2
Ferroptosis of IDD (by Figdraw). Mechanisms of iron death and changes in the effects of melatonin on indicators of iron death are described.

FIGURE 3
Melatonin and IDD (by Figdraw). Effects of melatonin on IDD through modulation of inflammation, oxidative stress, ECM degradation, and cell death,
and changes in each indicator.
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degree of degenerative alterations (Vo et al., 2013). Therefore, one
of the most important aspects of treating IDD is to keep the ECM
stable and avoid its disintegration.

It has been demonstrated that the PI3K/Akt signaling pathway
contributes to IDD and that preventing ECM degradation can be
achieved by activating this signaling system (Ouyang et al., 2017). By
activating the PI3K/Akt pathway, IGF-1 dramatically reducedMMP-
13 production and activity in rat endplate chondrocytes, increasing
the amount of type II collagen (Zhang et al., 2009). Furthermore,
by increasing Akt activity, IGF-1 and bone morphogenetic protein
7 treatment of bovine NP cells synergistically encouraged the
buildup of aggregated proteoglycans (Zhang et al., 2009). To sum
up, PI3K/Akt pathway activation is critical for reducing ECM
degradation. Melatonin also has a role in the regulation of this
signaling pathway, as reported by Li et al., melatonin interacts with
the membrane receptor MT1/2, regulates the PI3K-Akt signaling
pathway, and enhances the expression of Collagen II and aggregated
proteoglycans in NPCs, and downregulates the expression of MMP-
3 and MMP-9, all of which lead to remodeling of the extracellular
matrix (Li et al., 2017). NF-κB pathways have long been recognized
as a causative factor in IDD (Zhang GZ. et al., 2021), Chen et al.
found that melatonin treatment of NPCs for 24 h resulted in
a significant increase in the expression of type II collagen and
aggregated proteoglycans inNPCs, with a corresponding decrease in
the levels of ADAMTS-4, ADAMTS-5 and MMP-3, the underlying
mechanism for this discovery, which was also confirmed in animal
tests, may be that melatonin reduces ECMdegradation by triggering
autophagy via the NF-κB signaling pathway (Chen et al., 2020a).
Furthermore, by decreasingmelatonin receptor-mediated activation
of the PI3K/AKT and NF-κB pathways, Liang et al. discovered that
melatonin decreasedNPCs catabolism and death (Liang et al., 2024).

Shen et al. discovered thatmelatonin facilitated the expression of
markers associated with the extracellular matrix, such as COL2A1,
ACAN, and SOX9. Meanwhile, cell proliferation in melatonin-
treated group increased from day 3 (Shen et al., 2020). Zhang et al.
discovered that melatonin downregulates matrix MMP-3 levels and
increases the expression of collagen II and aggrecan to modify IL-
1β-induced ECM remodeling (Zhang Y. et al., 2019). According to
certain research, melatonin’s suppression of ECM disruptionmay be
achieved via reducing oxidative stress, inflammation, and apoptosis
as well as by influencing autophagy in IVD cells (Hemati et al., 2022).

When considered collectively, these findings imply that
melatonin was a medication that preserved ECM homeostasis in
IVD and offer fresh perspectives on treating.

5 New advances in drug delivery
systems

Because of their lack of vascularization, IVD have a limited
capacity to heal themselves after injury. Therefore, we need to
find a new drug delivery system to better utilize the role of
drugs in IVDs. Hydrogel injection, a minimally invasive technique,
may represent a novel approach to regenerating or restoring the
biological function and structure of IVD. In IVD tissue engineering,
hydrogels are widely used due to their high biocompatibility,
regulated degradation rates, and non-toxic breakdown products.
IVD regeneration is a novel and promising strategy, according to

Hu et al., who discovered that implantation ofmelatonin-containing
hydrogels improved in situ regeneration of AF tissue and might
be utilized to prevent IVD degeneration by maintaining hydration
of rat NPs in a rat model of IVD abnormalities (Hu et al.,
2023). Even though hydrogel can increase NPCs self-renewal and
restore disc height, its poor mechanical qualities could prevent
it from being used further (Liu et al., 2021). Wu et al. created
the composite hydrogel Mel-MBG/SA, an injectable mesoporous
bioactive glass/sodium alginate hydrogel loaded with melatonin.
This system was validated in rats and offered a hybrid system
with sustained melatonin release to reduce inflammation linked
to IDD pathology and attenuate oxidative stress caused by IL-1β.
successfully reduced rat tail inflammation.This method preserved
their injectability and anti-inflammatory benefits while enhancing
theirmechanical qualities (Wuet al., 2023). In conclusion,melatonin
and biomaterials science can be combined to improve drug delivery,
but there aren't many studies on the topic. It can be used in
a variety of ways in the future, including combining melatonin
with hydrogels, melatonin with nanoparticles, and many more.
Additionally, as artificial intelligence (AI) advances, it will be
possible to use AI to predict drug-material interactions, optimize
formulation design, and significantly improve drug delivery through
multidisciplinary crossover.

6 Conclusions and prospects

IDD is the pathologic basis of degenerative spinal diseases and
also one of the main causes of LBP. The pathological changes of
IDD include ECM degradation, apoptosis of NPCs, and AF rupture.
Mechanistically, IDD is associated with increased MMP in IVD, in
addition to oxidative stress, involvement of inflammatorymediators,
and activation of apoptotic pathways contribute to IDD. Melatonin
is widely used for its ability to improve circadian rhythms and its low
toxicity. Notably, it also has potent anti-inflammatory, antioxidant,
and anti-apoptotic properties. Many studies have shown that
melatonin slows the development of IDD through these pathways.

Notably, ferroptosis, as an emerging research hotspot, has been
shown to be involved in the progression of IDD based on existing
research evidence. It has been shown that melatonin regulates
several iron death-related molecules, such as GPX4, SLC7A11,
ACSL4 and LPCAT3, and reduces the damage ofNPCs, but the exact
and detailed mechanisms and pathways of iron death in this process
are not fully understood.There are still several aspects of the specific
link between melatonin and ferroptosis that need to be investigated
in future studies, first, the sensitivity of NPCs to ferroptosis in
the presence of different concentrations of melatonin. Second, the
specific mechanisms and pathways between ferroptosis, IDD and
melatonin. Third, validation by animal experiments is needed.

Although a large number of studies have shown that melatonin
has a role in IDD, its specific clinical application still requires the
following work. First, large-scale randomized controlled trials are
needed to determine the optimal dose and mode of administration
for the prevention or treatment of IDD. Second, detailed studies
are needed to report the side effects, resistance to long-term
administration and therapeutic effects of melatonin. In addition, the
specific mechanism of melatonin’s modulating effect on IDD needs
further in-depth study.
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In the future research on melatonin and IDD, single-cell
sequencing and proteomics technology can be combined to
clarify the targeting mechanism of melatonin in different cell
subpopulations of the intervertebral disc (e.g., NPCs and annulus
fibrosus cells), and in the animal modelling, old animals (e.g., 16-
month-old mice) are suitable for long-term melatonin intervention
due to the natural degeneration close to the pathological process
of human beings; moreover, the absence of vascular properties
of the disc limits drug penetration and requires the development
of a more penetrating nanocarrier, which can be combined with
material science. Moreover, due to the absence of blood vessels in
the intervertebral disc, it is necessary to develop nanocarriers with
stronger penetration, which can be combined with material science.
In conclusion, this review contributes to the understanding of the
role of melatonin in IDD, describes the advantages of melatonin
that may be used as a potential new treatment for IDD as well as
the work needed as a conventional therapy, and helps to stimulate
further research on melatonin and IDD (Figure 3).
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