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Background: Amyloid-β protein (Aβ) accumulation is a defining characteristic
of Alzheimer’s disease (AD), resulting in neurodegeneration and a decline in
cognitive function. Given orexin’s well-documented role in enhancing memory
and cognition, this study investigates its potential to regulate Aβ-induced
neurotoxicity, offering new perspectives into AD management.

Methods: This paper simulated Aβ accumulation in the hippocampus of AD
patients by administering Aβ1-42 oligomers into the bilateral hippocampal
dentate gyrus of ICR mice. Inflammatory cytokines (IL-6, TNF-α) and orexin-
A levels were measured by ELISA. Additionally, the excitability of orexinergic
neurons was assessed by IHC targeting c-Fos expression. These methodologies
evaluated the Aβ-induced neuroinflammation, orexinergic system functionality,
and dexamethasone’s (Dex) effects on these processes.

Results: Injection of Aβ1-42 oligomer resulted in elevated levels of IL-6,
TNF-α, and orexin-A in the hippocampus, as well as increased excitability of
orexinergic neurons in the lateral hypothalamus (LH). Dex treatment reduced
neuroinflammation, causing a reduction in orexin-A levels and the excitability of
orexinergic neurons.

Conclusion: Aβ-induced neuroinflammation is accompanied by enhanced
levels of orexin-A and orexinergic neuron excitability. These findings suggest
that the enhanced functionality of the orexinergic system may become a
compensatory neuroprotective mechanism to counteract neuroinflammation
and enhance cognitive function.
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Alzheimer’s disease, orexin (hypocretin), amyloid-β protein, cognitive impairment,
neuroprotection

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1529981
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1529981&domain=pdf&date_stamp=2025-03-20
mailto:liyanzg@yzu.edu.cn
mailto:liyanzg@yzu.edu.cn
https://doi.org/10.3389/fphys.2025.1529981
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1529981/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1529981/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1529981/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1529981/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1529981/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhuang et al. 10.3389/fphys.2025.1529981

1 Introduction

Alzheimer’s Disease (AD) is the most prevalent form of
dementia, posing a significant challenge and having a profound
impact on the health and quality of life of the elderly population.
In recent years, China has witnessed an increase in the incidence,
prevalence, and mortality rates of AD, imposing a considerable
economic burden on patients’ families, society, and the healthcare
system (Li et al., 2022; Ren et al., 2022; Ji et al., 2024).
Despite advancements in diagnostic techniques and a deepening
understanding of its pathology, the lack of a clearly defined
underlying mechanism has hindered the development of effective
treatments to slow the progression of AD. Pathologically, AD is
featured by substantial atrophy and death of brain cells.The primary
cause of this degeneration is the accumulation of extracellular
amyloid-β protein (Aβ) plaques, coupled with intraneuronal
neurofibrillary tangles (NFTs) composed of hyperphosphorylated
tau proteins (Braak and Braak, 1991; Winblad et al., 2016). The
presence ofAβplaques andNFTs disrupts neuronal communication,
resulting in synaptic loss and ultimately causing widespread
neuronal death (Selkoe, 2002; Mattson, 2004). Further pathological
features include gliosis, neuroinflammation, and significant synaptic
changes (Itagaki et al., 1989; Calsolaro and Edison, 2016; Tönnies
and Trushina, 2017).

Orexin, also referred to as hypocretin, is a neuropeptide
synthesized in the hypothalamus and consists of two isoforms:
orexin-A and orexin-B (de Lecea et al., 1998; Sakurai et al.,
1998). Orexinergic neurons are primarily located in the lateral
hypothalamus (LH) and extensively project their fibers to different
regions of the brain (Vraka et al., 2023). The orexinergic system is
essential in regulating sleep-wake cycles, feeding behavior, energy
homeostasis, as well as reward processing (Chemelli et al., 1999;
Edwards et al., 1999; Volkoff et al., 1999; Willie et al., 2001;
Carter et al., 2009; Tsujino and Sakurai, 2009; Leinninger et al.,
2011). Extensive research has demonstrated that the orexinergic
system exerts an influence on the pathophysiology of AD,
particularly in relation to the generation and accumulation of
Aβ. Kang et al. discovered that injecting orexin into the ventricles
of APP/PS1 mice elevates the levels of Aβ in the brain ISF,
while infusion of a dual orexin receptor antagonist (DORA)
effectively decreases Aβ levels (Kang et al., 2009). Similarly,
studies have indicated that knocking out the orexin gene in
APP/PS1 mice results in a reduction of Aβ deposition in the brain
(Roh et al., 2014). Human studies have revealed that patients with
moderate to severe AD present higher levels of orexin in their
CSF compared to the control individuals (Liguori et al., 2014).
However, there remains some disagreement regarding whether the
orexinergic system actually promotes the progression of AD. On
one hand, focal overexpression of orexin in the hippocampus of
APP/PS1/OR−/− mice did not alter the levels of Aβ accumulation
(Roh et al., 2014). Additionally, postmortem analysis of hypothalamic
tissue from patients with AD displayed a 40% reduction in
orexin-immunoreactive neurons, accompanied by a slight decrease
in the ventricular cerebrospinal fluid (CSF) levels of orexin-
A. (Fronczek et al., 2012).

On the other hand, some physiological functions of orexin
are inconsistent with a role in the development of AD. Orexin
plays a crucial role in hippocampus-dependent social memory

consolidation, and the introduction of exogenous orexin can
ameliorate this deficit by modulating synaptic plasticity in the
hippocampal region (Yang et al., 2013). By regulating the activity
of various neurotransmitter systems, including cholinergic and
dopaminergic pathways, orexin can enhance learning processes,
facilitate the retrieval of memories, as well as support the
consolidation of acquired information (Telegdy and Adamik, 2002;
Palotai et al., 2014; Piantadosi et al., 2015). The administration
of orexin-A via the nasal cavity or directly into the hippocampus
has been shown to alleviate memory deficits in orexin/ataxin-
3 transgenic mice (Yang et al., 2013; Mavanji et al., 2017). The
impairment of memory caused by orexin deficiency has been
confirmed in humans. For instance, patients with narcolepsy
frequently exhibit memory and cognitive decline that is associated
with the disease (Henry et al., 1993; Naumann et al., 2006;
Witt et al., 2018). Other studies have demonstrated that orexin
exerts neuroprotective effects. Specifically, orexin-A inhibits
neuroinflammation by decreasing astrocyte proliferation, microglial
activation, as well as the expression of chemokines and cytokines
(Becquet et al., 2019). Orexin receptors hinder excessive autophagy
through the MAPK/ERK/mTOR signaling pathway and confer
neuroprotective benefits inADvia heterodimerizationwithGPR103
(Davies et al., 2015; Xu et al., 2021).

In summary, considering the diverse physiological functions
of orexin, it is unreasonable to regard it as a direct causal factor
in AD. The function of orexin in bolstering cognitive abilities,
particularly memory and learning, fundamentally contradicts the
underlying pathological mechanisms of AD. Although some studies
suggest that orexin influences Aβ dynamics, its overall beneficial
effects indicate a protective, rather than pathogenic, role in AD.
Therefore, we hypothesize that the increased orexin levels observed
in the brains of AD patients may represent a compensatory
neuroprotective mechanism, rather than a causative factor. The
accumulation of Aβ stimulates a compensatory increase in orexin,
which, in turn, enhances a range of neuroprotective mechanisms,
thereby mitigating the memory and cognitive impairments related
to Aβ deposition. To certify this hypothesis, the pathological
characteristics of Aβ accumulation in the hippocampus of AD
patients were simulated in this study by injecting Aβ1-42 oligomers
into the bilateral hippocampal dentate gyrus. Subsequently, we
observed the impact of various concentrations of Aβ1-42 oligomers
on neuroinflammation in the hippocampus and the functionality of
the orexinergic system in the brain. Additionally, the intervention
effects of dexamethasone (Dex) on these impacts were evaluated.

2 Materials and methods

2.1 Experimental reagents and main
apparatus

Human Amyloid Peptide (1–42) (P9001, Beyotime
Biotechnology, Shanghai, China) was dissolved in dimethyl
sulfoxide (DMSO; ST038, Beyotime Biotechnology, Shanghai,
China) to prepare a 3 mM stock solution. This solution was
then diluted in sterile phosphate-buffered saline (PBS; PYG0021,
Boster Biological Technology, Wuhan, China) to achieve the
desired concentration for Aβ oligomers formation. Dexamethasone

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1529981
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhuang et al. 10.3389/fphys.2025.1529981

sodium phosphate solution (Hefei Zhonglong Shenli Animal
Pharmaceutical Co., Ltd., Hefei, China) was administered to specific
mouse groups to investigate its effects on neuroinflammation and
orexin-A expression. Injections were performed using a Mouse
Brain Stereotaxic apparatus (STW-3, Chengdu Instrument Factory,
Chengdu, China) and Microliter Syringes (PYG0021, Shanghai
High Pigeon Industry & Trade, Shanghai, China). The injection
rate was controlled by a Dual-channel Intelligent Syringe Pump
(XMSP-2B, Ximai Nanotech, Shanghai, China). Quantification
of IL-6, TNF-α, and orexin-A levels in hippocampal tissues was
performed using Mouse IL-6, TNF-α, and orexin-A ELISA Kits
(BYabscience, Nanjing, China; Catalog Numbers: BY-EM220188,
BY-EM220852, BY-EM228148). Immunohistochemical analysis to
assess orexinergic neuron excitability used an Anti-c-Fos antibody
(ab222699, Abcam, Cambridge, United Kingdom) and the SABC-
POD (F) rabbit IgG kit (SA1028, Boster Biological Technology,
Wuhan, China) to detect c-Fos protein expression.

2.2 Prepare Aβ oligomers

Drawing on prior reports on preparing Aβ oligomers (Kim et al.,
2016), we made a 3 mM stock of Aβ1-42 in dimethyl sulfoxide
(DMSO) and then diluted it 10-fold in phosphate-buffered saline
(PBS) (300 μM Aβ, 90% PBS, 10% DMSO). The Aβ1-42 monomer
solution was then incubated at 37°C for 24 h to promote the
formation of oligomers. After incubation, the solutionwas dispensed
and frozen at −80°C for later use.

2.3 Animals

Male ICR mice (8–10 weeks old, weight 25 ± 3 g) were sourced
from the Comparative Medicine Center of Yangzhou University
(Yangzhou, China). These mice were housed in standard laboratory
conditions, with a temperature maintained at 25°C ± 1°C, humidity
levels kept between 45% and 50%, and a controlled light cycle
from 6 a.m. to 6 p.m. The animal protocol followed the ethical
guidelines and scientific standards approved by the Institutional
Animal Care and Use Committee of Yangzhou University (ethical
approval code: YXYLL-2024-111, date: 21 May 2024). The animals
were randomly assigned to seven groups: aDex group, a shamgroup,
a low-concentration Aβ1-42 group, a medium-concentration Aβ1-42
group, a high-concentration Aβ1-42 group, a high-concentration
Aβ1-42 + Dex group, as well as sham + Dex group, with 6 animals
in each group.

The sham group received an injection of 1 μL of 0.9% saline
solution into the bilateral hippocampal dentate gyrus. The groups
receiving low, medium, and high concentrations of Aβ1-42 oligomers
were injected with 125 μM, 250 μM, and 375 μM of the oligomers,
respectively, all at the same volume and injection site. For seven
consecutive days, the Dex group, sham + Dex group and the high-
concentration Aβ1-42 + Dex group underwent daily intraperitoneal
injections of Dex (2 mg/kg). In contrast, the remaining groups
received an equivalent volume of saline. On the seventh day,
4 hours following the intraperitoneal injection, the brains of the
mice were collected for further analysis. For the purpose of
conducting an enzyme-linked immunosorbent assay (ELISA), the

brain was promptly excised, snap-frozen, and then stored at
−80°C to ensure the preservation of its biological activity. For
immunohistochemistry (IHC) analysis, the mice were anesthetized
and underwent transcardial perfusion with 0.9% saline, followed
by 4% paraformaldehyde (PFA). Subsequently, the brains were
extracted and immersed in 4%PFA overnight for fixation. Following
fixation, the brains were dehydrated, embedded in paraffin blocks,
and then sectioned into 4 μm sagittal paramedian slices using a
microtome. The sections were positioned between 0.7 and 0.74 mm
lateral to the brain midline, which corresponds to the location of the
LH. For each brain tissue, three consecutive sections were retained,
and the average ratio of the positive area from these sections was
computed to serve as the representative value for each individual
sample (as illustrated in Figure 1).

2.4 Bilateral intrahippocampal injection of
Aβ1-42 oligomers in mice

The mice are first weighed and then anesthetized using 1%
pentobarbital sodium (50 mg/kg) via intraperitoneal injection.
Adequacy of anesthesia is confirmed by assessing the absence of a
response to a pinch on the tail tip. Subsequently, the hair on the head
of eachmouse is cut off, and themouse is fixed onto the ear bar of the
brain stereotaxic apparatus. To prevent corneal dryness, sterile PBS
is instilled into both eyes. The skin of the head is disinfected with
iodophor, and a 1 cm incision ismade in the center using ophthalmic
scissors. The incision is then put open, and the mucosa covering
the skull surface is peeled away using two injection needles, which
help to dry the skull surface and facilitate the identification of the
bregma. Once the bregma is identified, a point 2.0 mm posterior
and 1.4 mm lateral to it is marked. At this marked location, a
hole with a diameter of 1 mm is created using a grinder. Different
concentrations of Aβ1−42 oligomers are drawn into a bilateral
microsyringe and fixed onto the brain stereotaxic instrument. The
needle tip is then moved to the drilled hole and inserted 2.5 mm
from the skull surface to reach the hippocampus dentate gyrus. Aβ is
injected simultaneously into both hippocampi over 5 min at a rate of
0.2 μL/min. Following the injection, the needle is left in place for an
additional 5 min to aid in the diffusion of Aβ.The injection needle is
thenwithdrawn, and the incision is sutured closed. After the surgery,
each mouse is placed in a recovery box at 29°C until it has fully
regained consciousness. During the first 3 days post-surgery, each
mouse receives a daily subcutaneous injection of acetaminophen
(200 mg/kg) for pain relief and enrofloxacin (5 mg/kg) for infection
prevention, while closely monitoring the wound healing and overall
health. If necessary, sterile PBS is applied to the wound area to
maintain cleanliness. During the recovery period, the mice are
housed individually in clean cages to prevent interference from
other animals.

2.5 Enzyme-linked immunosorbent assay
(ELISA)

The mouse ELISA kit should be removed from the refrigerator
and allowed to equilibrate at room temperature for 30 min. The
steps outlined in the kit manual should be strictly adhered
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FIGURE 1
The design of experiments (created with BioRender.com).

to, using a microplate reader to ascertain the optical density
(OD) values for IL-6, TNF-α, and orexin in mouse hippocampal
tissue samples. Subsequently, standard linear regression curves
should be plotted, with the horizontal coordinate representing the
standard concentration of IL-6, TNF-α, and orexin, and the vertical
coordinate corresponding to the respective OD values. Based on the
curve equation derived, the concentrations of these biomarkers in
the mouse hippocampal samples can then be calculated.

2.6 Immunohistochemistry (IHC)

The paraffin-embedded sections of brain tissue underwent
deparaffinized in xylenes andwere subsequently rehydrated through
a graded series of alcohol solutions. After a 15-min pretreatment
with 3% H2O2 to inactivate endogenous peroxidase activity,
antigen retrieval was performed using citrate buffer. The sections
were subsequently blocked with 5% BSA for 20 min and then
incubated at 4°C overnight with the primary anti-c-Fos protein
(1:500 dilution). The slices were then incubated with a secondary
antibody for 30 min at 37°C, followed by the application of
streptavidin-biotin complex (SABC) droplets. Between each step,
the sections were thoroughly rinsed 3 times in Tris Buffered Saline
(TBS) for 5 min each. The sections were then developed using
diaminobenzidine (DAB) and counterstained with hematoxylin.
Lastly, the sections underwent washing, dehydration, and clearing,
as well as were mounted with cover slips.

Images of the sections were captured utilizing NIS Elements
F 3.0 software (Nikon Corporation, Tokyo, Japan). Before
photography, a blank site was evaluated with automatic white
balancing. The immunohistochemical images were processed using
ImageJ software (ImageJ 1.8.0, Rawak Software Inc., Stuttgart,
Germany) to determine the ratio of positive areas.

2.7 Statistical analysis

Statistical analyses were conducted using GraphPad Prism
version 10.1.2 (GraphPad Software, San Diego, CA, United States).
Thedata for each groupwere presented asmean± standard deviation
(SD). One-way analysis of variance (ANOVA) was employed to

compare data among multiple groups, followed by Tukey’s post hoc
test for multiple comparisons. P < 0.05 was deemed statistically
significant, whereas P > 0.05 was considered statistically non-
significant (NS).

3 Results

3.1 Aβ1-42 oligomers induce an increase in
the secretion of pro-inflammatory
cytokines

The levels of IL-6 and TNF-α in the hippocampus of mice were
detected by ELISA to assess the expression of proinflammatory
cytokines. Compared to the sham group, both IL-6 and TNF-α
levels were significantly increased in the Aβ groups (p < 0.05,
Figures 2A,B), indicating that injection of Aβ oligomers induces
neuroinflammation. Dex treatment markedly decreased the Aβ-
induced elevation of IL-6 and TNF-α levels (p < 0.05, Figures 2A,B),
demonstrating its effectiveness in inhibiting pro-inflammatory
cytokines and mitigating neuroinflammation in AD. No significant
differences were observed in the levels of IL-6 and TNF-α among
Dex, Sham, and Sham + Dex groups.

3.2 Elevated orexin-A levels induced by
Aβ1-42 oligomer injection exhibited a clear
concentration-dependency

The levels of orexin-A in the hippocampus of mice continued
to be monitored using the ELISA method. The results revealed
that, compared to the sham group, orexin-A levels in the Aβ group
were significantly evaluated (p < 0.05, Figure 3C), demonstrating
a concentration-dependent relationship (p < 0.05, Figure 3C). Dex
treatment significantly reduced orexin-A levels in the Aβ groups
(p < 0.05, as displayed in Figure 3C), but the treatment had no
significant effect on orexin-A levels in the sham + Dex group (p
> 0.05, as shown in Figure 3C). No significant differences were
observed in the levels of orexin-A among Dex, Sham, and Sham +
Dex groups. This suggested that the increase of orexin-A was driven
by the neuroinflammation induced by Aβ.
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FIGURE 2
Aβ1-42 oligomers induce an increase in the secretion of
pro-inflammatory cytokines. ELISA was utilized to measure the
concentrations of inflammatory cytokines in hippocampal extracts
obtained from each group. Injections of Aβ oligomers led to an
upregulation in the expression of IL-6 (A) and TNF-α (B), while Dex
treatment significantly decreased their levels. Statistical analysis was
performed using one-way ANOVA followed by Tukey’s test. For IL-6,
the ANOVA F = 6.250, with Tukey’s post hoc test showing p > 0.9999
for Dex (112.9 ± 13.39, n = 6) vs. Sham (114.3 ± 43.64, n = 6), p =
0.9977 for Dex vs. Sham + Dex (103.1 ± 24.17, n = 6), p = 0.9524 for
Sham vs. 125 μM Aβ (132.1 ± 39.71, n = 6), p = 0.0365 for Sham vs.
250 μM Aβ (172.6 ± 25.24, n = 6), p = 0.0054 for Sham vs. 375 μM Aβ
(185.7 ± 32.32, n = 6), p = 0.9954 for Sham vs Sham + Dex, and
p= 0.0309 for 375 μM Aβ vs. 375 μM Aβ+Dex (126.2 ± 28.16, n = 6). For

(Continued)

FIGURE 2 (Continued)
TNF-α, the ANOVA F = 11.44, with Tukey's post hoctest showing p=
0.9532 for Dex (495.4 ±133.8, n = 6) vs. Sham (552.1 ±103.1, n = 6),
p= 0.9986 for Dex vs. Sham + Dex (466.4 ±67.31, n = 6), p= 0.0847
for Sham vs. 125 μM Aβ(717.9 ±98.02, n = 6), p= 0.0185 for Sham vs.
250 μM Aβ(754.2 ±78.35, n = 6), p= 0.0006 for Sham vs. 375 μM
Aβ(824.1 ±98.51, n = 6), p= 0.7457 for Sham vs. Sham + Dex, and p=
0.0066 for 375 μM Aβvs. 375 μM Aβ+ Dex (599.5 ±102.0, n = 6). Data
represent mean ±SD (n = 6); ∗: p< 0.05, ∗∗: p< 0.01, ∗∗∗: p< 0.001,
∗∗∗∗: p< 0.0001.

FIGURE 3
Elevated orexin-A levels induced by Aβ1-42 oligomer injection exhibited
a clear concentration-dependency. The ELISA assay was used to
evaluate the concentrations of orexin-A in hippocampal extracts
obtained from different groups. The results demonstrated that
injections of Aβ oligomers upregulated the expression of orexin-A (c),
while Dex treatment reduced its level. Statistical analysis was
performed using one-way ANOVA followed by Tukey’s test. The
ANOVA F = 6.797, with Tukey’s post hoc test showing p = 0.9875 for
Dex (105.2 ± 10.41, n = 6) vs. Sham (97.95 ± 16.99, n = 6), p = 0.9992
for Dex vs. Sham + Dex (100.8 ± 15.31, n = 6), p = 0.2528 for Sham vs.
125 μM Aβ (120.2 ± 18.12, n = 6), p = 0.0158 for Sham vs. 250 μM Aβ
(132.1 ± 17.19, n = 6), p = 0.0003 for Sham vs. 375 μM Aβ (145.8 ±
22.05, n = 6), p > 0.9999 for Sham vs. Sham + Dex, and p = 0.0230 for
375 μM Aβ vs. 375 μM Aβ + Dex (113 ± 12.65, n = 6). Data are presented
as mean ± SD (n = 6); ∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001, ∗∗∗∗: p <
0.0001.

3.3 The excitability of orexinergic neurons
in the lateral hypothalamus (LH) of AD
mouse models induced by Aβ1-42 oligomers
was increased

Orexinergic neurons are predominantly located in the LH. To
further assess functional changes in the orexinergic system, IHC
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was used to detect c-Fos positive neurons in the LH of mice.
C-Fos gene, an immediate early gene transcribed in response to
neuronal activation, is commonly used as a marker for identifying
active neurons (Joo et al., 2016). The results demonstrated that
compared to the sham group, injection of Aβ oligomer led to an
increase in both c-Fos protein expression and the count of c-Fos-
positive neurons (p < 0.05, Figures 4A,B), displaying a heightened
excitability of orexinergic neurons. Additionally, the number of
activated orexinergic neurons increased in correlation with higher
concentrations of Aβ injection (p < 0.05, Figures 4A,B). Although
Dex treatment significantly reduced c-Fos protein expression in the
Aβ groups (p < 0.0001, Figures 4A,B), there was no measurable
impact in the sham + Dex group (p > 0.05, Figures 4A,B), indicating
that Dex does not affect the excitability of orexinergic neurons. No
significant differences were observed in the count of c-Fos-positive
neurons among the Dex, Sham, and Sham + Dex groups.

4 Discussion

Neuroinflammation is widely recognized as a central
mechanism underlying the accumulation of amyloid-β protein
(Aβ)-induced pathology in Alzheimer’s disease (AD). Research
has shown that Aβ can stimulate microglia, causing them to
shift towards the pro-inflammatory M1 phenotype and triggering
the secretion of various pro-inflammatory factors, such as IL-
6 and TNF-α, thereby initiating neuroinflammatory responses
(Heneka et al., 2015; Tang andLe, 2016).This inflammatory response
disrupts neuronal signal transmission, decreases synaptic plasticity,
and enhances oxidative stress reactions, ultimately exacerbating
neuronal damage (Block et al., 2007; Cai et al., 2019). Synaptic
plasticity is a fundamental process that underlies learning and
memory. The persistent release of pro-inflammatory factors can
disrupt neuronal signaling pathways, causing synaptic loss and
ultimately contributing to significant cognitive impairment in AD
(De Strooper and Karran, 2016; Ransohoff, 2016). In this study, we
successfully induced a significant upregulation of pro-inflammatory
factors by injecting Aβ1-42 oligomers into the dentate gyrus of the
mouse hippocampus, effectively simulating the neuroinflammatory
pathological features of AD.

Previous studies have suggested that elevated orexin levels may
lead to increased Aβ levels. For instance, Kang et al. found that
injecting orexin into APP transgenic mice resulted in higher Aβ
deposition, whereas administering a dual orexin receptor antagonist
(DORA) reduced Aβ levels (Kang et al., 2009). Similarly, Roh et al.
observed reduced Aβ deposition following the knockout of the
orexin gene in APP/PS1 transgenic mice (Roh et al., 2014). These
studies, along with our research, demonstrate a positive correlation
between orexin and Aβ, although the causal relationships differ.
It is important to note that the orexin system plays a key role in
promoting and maintaining wakefulness (Arrigoni et al., 2010),
facilitating voluntary activity (Kiwaki et al., 2004), and supporting
energy metabolism (Tsujino and Sakurai, 2009). On one hand,
during wakefulness, metabolic products such as adenosine and Aβ
inevitably accumulate in the brain (Huang et al., 2011; Spira et al.,
2014). On the other hand, there is literature showing that Aβ-
degrading enzymes, such as neprilysin (NEP), exhibit increased
activity during sleep when orexinergic neurons are inhibited,

thereby enhancing Aβ degradation (Ogawa et al., 2005). However,
previous studies seem to have overlooked the impact of metabolic
product accumulation during wakefulness and the corresponding
decrease in Aβ-degrading enzyme activity.

Recent research has demonstrated that the orexinergic system
enhances cognitive functions. Specifically, orexin-A promotes
the transformation of microglia into the anti-inflammatory M2
phenotype (Duffy et al., 2015), which exhibits anti-inflammatory
and neuroprotective properties, improving cognitive deficits (Saijo
and Glass, 2011; Wang et al., 2020). The role of the orexinergic
system in regulating the body’s energy metabolism is well-established
(Tsujino and Sakurai, 2009). From the survival perspective, it
also fundamentally aids humans and animals in adapting to their
environmentandmaintainingsurvival capabilities.Forexample,when
animals are hungry or hypoglycemic, the excitability of orexinergic
neurons increases (Risold et al., 1999), resulting in increased secretion
of orexin-A (Ouedraogo et al., 2003). The enhanced functionality of
the orexinergic system fosters and maintains wakefulness, augments
autonomous activity, and boosts muscle energy consumption.
Furthermore, it also enhances alertness and cognitive functions
(Kiwaki et al., 2004; Yang et al., 2013). Collectively, these effects
promote feeding behavior to fulfill energy requirements.This adaptive
mechanism underscores the crucial role of the orexinergic system
in ensuring survival by modulating physiological and behavioral
responses according to the environment.

Neuroinflammation induced by the accumulation of Aβ results
in cognitive impairments in both humans and animals, evidently
compromising their adaptability and survival capabilities. To
counteract the cognitive toxicity induced by Aβ, the body inevitably
initiates compensatory responses. Our study demonstrates that
intracerebral injection of Aβ led to a concentration-dependent
increase in both orexin-A levels in the hippocampus, as well as an
enhancement in the excitability of orexinergic neurons in the lateral
hypothalamus (LH). This suggests that the accumulation of Aβ not
only triggers neuroinflammation but also simultaneously augments
the functionality of the orexinergic system.

Dexamethasone (Dex) is a glucocorticoid anti-
inflammatory agent capable of penetrating the blood-brain
barrier (BBB) (Vohra et al., 2021). In our study, intervention with
Dex significantlymitigatedAβ-inducedneuroinflammation, leading
to decreased levels of orexin-A in the hippocampus and reduced
excitability of orexinergic neurons in the LH. These findings further
affirm that the elevation in orexin-A levels is a consequence of
Aβ-induced neuroinflammation, and they bolster the hypothesis
that the orexinergic system serves as a neuroprotective mechanism
against Aβ-induced cognitive toxicity.

While our study provides valuable insights into the
compensatory role of the orexinergic system in AD, there are several
limitations that should be considered. First, although we focused on
malemice to reduce variability caused by hormonal fluctuations, this
choice limits our ability to fully assess potential sex-based differences
in the impact of Aβ and the orexinergic system. Future studies
should include both male and female animals to explore whether
sex-based differences influence the compensatory mechanisms
observed in AD. Furthermore, while our study utilized c-Fos as
a marker of neuronal excitability, it is worth noting that more
advanced techniques, such as electrophysiological recordings or
calcium imaging, could offer a more comprehensive understanding
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FIGURE 4
The excitability of orexinergic neurons in the lateral hypothalamus (LH) of AD mouse models induced by Aβ1-42 oligomers was increased. (a)
Representative IHC staining images of c-Fos-positive neurons in the LH for each group, showing sagittal sections. Scale bar is indicated as 100 μm. The
enlarged view is provided for better clarity. The 200 μm view can be viewed in the supplementary files link (https://www.frontiersin.org/articles/10.
3389/fphys.2025.1529981/full#supplementary-material). The quantitative analysis of the area positive for c-Fos in neurons, conducted using ImageJ
software, is presented in (b). The results demonstrated that the injection of Aβ oligomers increased c-Fos protein expression, resulting in an increased
excitability of orexinergic neurons. Dex treatment specifically reduced the excitability of orexinergic neurons in the Aβ groups, without affecting the
sham + Dex group. Statistical analysis was performed using one-way ANOVA followed by Tukey’s test. The ANOVA F = 62.8, with Tukey’s post hoc test
showing p > 0.9999 for Dex (0.049 ± 0.01476, n = 6) vs. Sham (0.04633 ± 0.02271, n = 6), p = 0.9415 for Dex vs. Sham + Dex (0.06383 ± 0.009368, n =
6), p = 0.0189 for Sham vs. 125 μM Aβ (0.09667 ± 0.03789, n = 6), p < 0.0001 for Sham vs. 250 μM Aβ (0.2012 ± 0.02764, n = 6), p < 0.0001 for Sham vs.
375 μM Aβ (0.2533 ± 0.02904, n = 6), p = 0.8801 for Sham vs. Sham + Dex, and p < 0.0001 for 375 μM Aβ vs. 375 μM Aβ + Dex (0.1160 ± 0.02071, n = 6).
Data are presented as mean ± SD (n = 6); ∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001, ∗∗∗∗: p < 0.0001.
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of the dynamic activity of orexinergic neurons.This limitation could
be addressed in future studies.

Besides, caution is needed when applying these findings to
humans due to the inability of animal models to fully replicate the
complexity of human AD, particularly in terms of genetics and the
multifactorial nature of the disease. Further research is required to
clarify the molecular mechanisms and signaling pathways through
which the orexinergic system regulates AD pathology. Additionally,
it is crucial to consider the implications of dosage, treatment
duration, and long-term effects when exploring the orexinergic
system as a therapeutic target. These considerations will help guide
future research directions and their potential clinical applications.

The latest studies have explored various anti-inflammatory
treatment strategies forAD.Both lupeol, anatural compound,andNB-
02, a botanical therapeutic drug, have demonstrated neuroprotective
effects by regulating neuroinflammation (Lee et al., 2021; Choe,
2024). Additionally, the activation of the receptor TREM2 on
microglia has been proven to reduce neuroinflammation and improve
cognitive outcomes in AD, while monoclonal antibodies targeting
TREM2 further support its therapeutic potential (Fassler et al.,
2021). Methylprednisolone and low-dose aspirin have also shown
promise in regulating neuroinflammation and mitigating cognitive
decline (Vallés et al., 2020; Sun et al., 2023). Furthermore, GLP-
1 receptor agonists have been found to reduce neuroinflammation
and amyloid precursor protein (APP) deposition, while improving
memory and synaptic function (Nowell et al., 2022). In summary,
these studies underscore the potential of targetingneuroinflammation
as a therapeutic strategy for AD, and the findings of our study are in
alignment with this growing body of work.

5 Conclusion

Neuroinflammation induced by Aβ is accompanied by an
augmentation in the functionality of the orexinergic system, featured
by an increase in the excitability of orexinergic neurons and
an elevated secretion of orexin-A. The enhanced functionality
of the orexinergic system acts as a compensatory response to
counteract Aβ-induced neuroinflammation, ultimately aiming to
improve cognition. This study contributes to our understanding of
the pathophysiological mechanisms underlying AD.
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