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Introduction: Emergency rescue scenes and pre-hospital emergency stages
commonly encounter trauma victims. Life-saving measures must be taken at
the scene if a trauma patient has pneumothorax; if the patient is not evaluated
and diagnosed right away, their life may be in jeopardy. Ultrasound, which
has the advantages of being non-invasive, non-radioactive, portable, rapid,
and repeatable, can be used to diagnose pneumothorax. However, those
who interpret ultrasound images must undergo extensive, specialized, and
rigorous training. Deep learning technology allows for the intelligent diagnosis
of ultrasound images, allowing general healthcare professionals to quickly and
with minimal training diagnose pneumothorax in lung ultrasound patients.

Methods: Previous studies focused primarily on the lung-sliding characteristics
of M-mode images, neglecting other key features in lung ultrasonography
pneumothorax, and used similar technological techniques. Our study team used
video understanding technology for medical ultrasound imaging diagnostics,
training the TSM video understanding model on the ResNet50 network with 657
clips and testing the model with untrained 164 lung ultrasound clips.

Results: The model’s sensitivity was 99.21%, specificity was 89.19%, and average
accuracy was 96.95%. The F1 score was 0.929, and the AUC was 0.97.

Discussion: This study is the first to apply video understanding models to the
multi-feature fusion diagnosis of pneumothorax, demonstrating the feasibility
of using video understanding technology in medical image diagnosis.

KEYWORDS

pneumothorax, lung ultrasound, medical imaging, intelligent diagnostics, deep
learning, video understanding

1 Introduction

Trauma is one of the most prevalent reasons for emergency room visits,
as well as a leading cause of death (Qian and Zhang, 2019). Pneumothorax
(PTX), or lung collapse, is a life-threatening respiratory emergency that can
occur in trauma patients as well as individuals with acute and chronic diseases
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(Duclos et al., 2019; Weissman and Agrawal, 2021) and must
be treated immediately (Lichtenstein, 2015). Ultrasonography has
the virtue of being quick, repeatable, and noninvasive, and it has
become an essential injury detection tool in the emergency room
(Valenzuela et al., 2020). PTX can be recognized early and promptly
using the E-FAST (Extended Focused Assessment with Sonography
in Trauma) technique and treated symptomatically (Hefny et al.,
2019). Despite the fact that lung ultrasound (LUS) has higher
diagnostic accuracy than chest X-ray for PTX (Nagarsheth and
Kurek, 2011; Alrajhi et al., 2012) and offers additional benefits, a lack
of training opportunities and clinician-centered workflows continue
to impede widespread use (Brady et al., 2021).

AI-powered ultrasound interpretation eliminates training and
workflowbottlenecks, allowing non-specialists to use the technology
to provide fast, portable imaging on a large scale (VanBerlo et al.,
2022). This study is built on this objective, and it uses deep
learning networks to learn and recognize pneumothorax features
in ultrasound images, as well as to achieve automatic recognition
and diagnosis of pneumothorax ultrasound images. An auxiliary
tool is supplied to healthcare workers to ease the process of
interpreting ultrasound images, shorten the learning cycle, and
lower the barrier to using ultrasound equipment. Our goal is for
even general healthcare workers with basic training to be able
to operate ultrasound equipment proficiently for pneumothorax
diagnosis and obtain diagnostic accuracy comparable to that of
specialized imaging physicians. This will not only help improve
accessibility and efficiency of healthcare butwill also improve patient
outcomes by providing rapid and reliable diagnostic information in
emergencies.

Because PTX assessment is a critical component in the
identification of complex life-threatening patient situations such
as trauma (Blaivas et al., 2005), cardiac arrest (Hernandez et al.,
2008), and respiratory distress (Wallbridge et al., 2018), detecting the
existence of PTX is a crucial component of lung ultrasonography. At
the time of writing, there is a limited amount of relevant literature
on the diagnosis of pneumothorax byAI ultrasound, and no publicly
available datasets on ultrasound pneumothorax have been collected.
The majority of studies on PTX are based on publicly available CT
chest radiograph datasets or X-ray chest radiograph datasets, with a
few based on private ultrasound datasets (animal experimental data,
simulated material data, real-life ultrasound data).

Some recognized research claims to have produced
relatively good results for automated PTX detection in animal
ultrasonography investigations (Mehanian et al., 2019; Kulhare et al.,
2018; Summers et al., 2017; Lindsey et al., 2019), but human
accuracy is unknown. Boice et al. (2022) used synthetic gelatin
models cast in 3D-printed rib molds and a simulated lung. M-
mode ultrasound pneumothorax simulation images were obtained
and used to train the pneumothorax detection model, which was
tested using animal ultrasound data and ended up with an overall
accuracy of 93.6%. Jaščur et al. (2021) employed a convolutional
neural network (CNN) model on a restricted dataset with 82%
sensitivity to missing lung sliding. VanBerlo et al. (2022) used a
large labeled LUS dataset from two academic institutions to classify
images after converting B-mode movies to M-mode images, and
the model had a sensitivity of 93.5% to lung sliding, specificity
of 87.3%, and AUC of 0.973. Kim et al. (2023) proposed an
AI-assisted pneumothorax diagnosis framework that simulates

clinical workflows through sequential steps, including pleural
line localization under B-mode ultrasound, B-to-M-mode image
reconstruction, and lung sliding detection. Utilizing lightweight
models (<3 million parameters), they achieved pleural line quality
assessment (Dice coefficient: 89%) and sliding classification
individually, with single-model AUCs exceeding 95% and an overall
workflow AUC of 89%.

However, Lichtenstein andMenu (Lichtenstein andMenu, 1995)
clearly stated that although the disappearance of lung sliding
is observed in 100% of PTX cases, the disappearance of lung
sliding may have other causes. Additionally, the BLUE procedure
(Lichtenstein, 2015), which is commonly used by doctors, does
not validate the diagnosis of PTX based just on the absence
of lung sliding; other diagnostic techniques, such as lung point
detection, are required to validate the diagnosis. Thus, the binary
classification of seashore/barcode signs in M-mode images, as well
as the classification of visceral and parietal pleural motion in B-
mode videos, is not pneumothorax detection, but rather a test for
the presence or absence of lung-sliding motion (Jaščur et al., 2021).

Currently, the authors’ knownultrasoundpneumothorax studies
primarily determine the presence of PTX by detecting the presence
or absence of lung sliding, whereas our team, after discussion,
concluded that using the absence of lung sliding as the sole basis for
determining the positivity of PTX was insufficient. Therefore, after
conducting the research and discussion, we attempted to introduce
video understanding technology and applied it for the first time in
the detection of pneumothorax through ultrasound. By learning the
sliding characteristics of the lungs in pneumothorax ultrasound and
other related features, we were able to classify the ultrasound video
clips of pneumothorax and non-pneumothorax, thereby achieving
the goal of pneumothorax detection. Subsequent experiments have
proved that this cross-domain application has certain research value
in achieving multi-feature detection of medical images.

2 Methods and materials

2.1 Selection of PTX diagnostic features

To accurately diagnose lung ultrasound pneumothorax,
our team initially investigated the ultrasound pneumothorax
diagnostic procedure. The process of diagnosing lung ultrasound
pneumothorax (Zhao et al., 2023a) is divided into two stages.
①Diagnostic exclusion stage: Sweep both lungs one by one at
each intercostal gap, check ultrasonography signs in the order of
“solid lung lesion → B-line → pleural sliding sign → pleural pulsation
sign,” and exclude pneumothorax if one of the signs is present.
② Definitive diagnosis stage: If none of the above four indicators
exist, use the “lung point sign → stratospheric sign” in order to
check for the presence of one or both signals, which can indicate
pneumothorax. Refer to Figure 1 for the specific approach.

The diagnostic accuracy of the lung ultrasound pneumothorax
diagnostic procedure for PTX was 99.1%, sensitivity was 97.8%,
and specificity was 100.0% (Zhao et al., 2023b). There is no pleural
slide or pulsation symptom because PTX occurs in only one layer
of wall pleura. As a result, the pleural pulsation sign is an essential
sign in ruling out PTX and is classified as grade A evidence in
the lung ultrasonography evidence-based guidelines (Zhao et al.,
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FIGURE 1
General flow of pneumothorax diagnosis by lung ultrasound (In the clinic, ultrasound pneumothorax characterization is usually performed following
the steps and sequence in the figure to rule out or confirm the diagnosis. All of the diagnostic features appearing in the diagnostic process are images
under B-mode ultrasound, except for the stratospheric sign, which is an M-mode ultrasound image).

2023b). In this study, we feel that when a pleural sliding sign or a
pleural pulsation sign is present, we can rule out the potential of
a positive PTX and identify it as a negative PTX. As a result, we
chose pleural sliding and pleural pulsation signs as crucial criteria
for diagnosing negative pneumothorax. When pleural sliding and
pulsation disappeared, as well as the existence of lung points or
other signs (in clinically verified pneumothorax-positive patients),
we used the aforementioned characteristics to diagnose a positive
pneumothorax.

2.2 Database establishment

This study’s database was created using real clinical data. We
formed a collaboration with two hospitals to collect video data from
lung ultrasound cases (ultrasound video images from convex and
line array probes) accumulated over the previous few years, and
all positive and negative instances have been clinically identified
and confirmed. We rigorously filtered these clinical data using
pre-selected diagnostic features of pneumothorax-negative and
pneumothorax-positive to retrieve genuine data that satisfied the
study requirements. Given the limited number of clinical cases, we
used a data segmentation approach to increase the size of the dataset.

A healthy adult breathes approximately 12–20 times
per minute (Wan and Chen, 2015). As a result, we can estimate
that each breath lasts three to 5 seconds. Based on this concept,
when processing lung ultrasound video clips, we used a 5-second
sliding window for segmentation with a 3-second time interval to
trim numerous 5-second video clips. As a result, each video segment
used for deep learning network training is 5 s long and can ensure
that at least one breathing cycle is included in each data segment,
allowing for pneumothorax diagnosis. Because the time interval is
set to 3 s, there is a 2-second overlap between the two adjacent video
clips before and after, but their contents are not exactly the same.This

strategy decreases the risk of overfitting while maximizing training
data, effectively increasing the amount of data available to us.

By segmenting the raw video data, we were able to collect
additional training samples, which improved the model’s training
and diagnosis accuracy. After the data segmentation was done,
we cleansed the segmented data again to verify its usability and
dependability in the research results. We invited two specialized
sonographers with more than 8 years of experience in the field
to independently screen and clean the data (one with 12 years of
experience). They carefully analyzed each segmented video clip
to confirm that both positive and negative PTX data utilized for
training had acceptable diagnostic features, and they eliminated 17
positive invalid clips and 16 negative invalid clips. Following these
data processing processes, we were able to create a dataset with 188
positive clips and 633 negative clips.

To ensure the model’s training efficacy and generalization
capacity, we partition the dataset into training, validation, and test
sets in a 6:2:2 ratio for further model training and evaluation. This
type of data split method allows the model to learn a wider range
of characteristics during the training process while also testing its
performance on the validation and test sets. Table 1 lists information
about the data set. Figure 2 shows many examples of data. Figure 3
details the unique data processing flow, clearly showing each step
from data collection to data cleaning to data segmentation.

2.3 Network structure

Over the years, deep learning has become the norm for video
comprehension (Tran et al., 2015; Wang et al., 2016; Carreira and
Zisserman, 2017; Wang et al., 2018; Zolfaghari et al., 2018; Xie et al.,
2018; Zhou et al., 2018). One important difference between image
and video recognition is the need for temporal modeling. For
example, altering the order of opening and shutting a box yields the
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TABLE 1 Data Information. The table contains information about the dataset such as the number of datasets, the division ratio of the training validation
test data, the features corresponding to the positive data and their number (Multiple features may exist for the same instance of data), the features
corresponding to the negative data and their number (Multiple features may exist for the same instance of data) as well as the image resolution, the type
of ultrasound probe used, the frame rate of the video, and the device information.

Clips label Class Training data (Train
and Val)

Holdout data (Test)

Number of clips
Negative 379 (train) 127 (val) 127(Test)

Positive 113 (Train) 38(Val) 37(Test)

Number of features (There is a crossover of features)

Negative
B-line Lung sliding Lung pulse Lung consolidation

22 573 70 41

Positive
A-line Lung point No Lung sliding or pulse No lung consolidation

136 53 161 1

Duration of data clips All data segments have a duration of 5 s

Total frames per clip MAX: 62 frames∗5 s; MIN: 16 frames∗5 s

Resolution (of a frame) 800∗600; 1,200∗900; 1960∗910

Transducers Curved and Linear

Machine Vendors Mindray

FIGURE 2
Example of negative-positive data. Negative (A): lung sliding feature, white pleural lines that slide regularly with respiration. The bat sign is a normal
ultrasound manifestation in the lungs. Negative (B): lung pulse feature, bright white pleural lines indicated by the arrows in the figure, appear as wavy
lines in response to the heartbeat. Positive (A): no lung sliding lung booting feature; bright white pleural lines indicated by the arrows in the figure are
straight and non-displaced or in a relatively static state. Positive (B): lung pointing feature; pleural lines appear as discontinuous breakpoints, half of
which are sliding and generally not sliding.

opposite effect, highlighting the importance of temporal modeling
(Lin et al., 2019). TSM (Temporal Shift Module) is a generalized
and effective time-shift module that may be based on an existing
network model to incorporate the temporal shift module technique
(the base model used in this paper is ResNet-50, and ResNet-50 is
utilized by default in all subsequent sections). It has the performance
of a 3D CNN while keeping the intricacy of a 2D CNN. Information
can move across adjacent frames thanks to TSM’s transmission of
a piece of the channel along the time dimension. For temporal
modeling, it may be added to a 2D CNN with no parameters and
no processing (Lin et al., 2019).

The video model’s activation is written as A ∈ RN×C×T×H×W,
where N is the batch size, C is the number of channels, T is
the temporal dimension, and H and W are the spatial resolutions
(Lin et al., 2019). Conventional 2D CNNs function independently
in the T dimension and so do not exhibit temporal modeling
effects, as shown in Figure 4A. The Time Shift Module (TSM), on
the other hand, alternately transfers the channels along the time
dimension. Following time-shifting, the information from nearby
frames is combined with the information from the present frame,
as seen in Figure 4B (Lin et al., 2019). To represent offline video
recognition, a bidirectional TSM is used. Given a video V, the first T
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FIGURE 3
Data Processing Procedure (See the database establishment section for the detailed process).

FIGURE 4
(A) depicts the original feature without time shifting; (B) depicts the bidirectional time shifting operation (also known as offline time shifting).

frames Fi, F1,…FT are sampled. After sampling the frames, the 2D
CNN baseline processes each frame separately before averaging the
logarithm of the outputs to generate the final prediction.

The model’s data input consists of a batch of ten RGB images
with a tensor form of (10, 3, 224, 224), indicating that each image
is 224 × 224 pixels with three color channels. Following a series of
convolution, batch normalization, ReLU activation, and maximum
pooling, the data successfully passes through the initial feature
extraction stage and enters the first residual block, where it is
reshaped to (10, 64, 56, 56). The information fusion between frames
is then realized by performing “right shift” and “left shift” operations

on this tensor, which replace the corresponding part of the first nine
frames with one-eighth of the data chosen from each channel of the
last nine frames, and then replacing the corresponding part of the
last nine frames with one-eighth of the data of the first nine frames.
This tactic creates the impression that “you are in me, I am in you”
and improves the information exchange across frames. The residual
block is then used to learn from the tensor following the shift.
Notably, the model’s sensory field doubles with each embedding
of the time-shift module in the temporal dimension, much like
when a convolution with a kernel size of three is applied to the
time series. Figure 5 illustrates the model’s structure. Therefore, the
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FIGURE 5
TSM video recognition model. (A) The structure of the model. (B) TSM residual shift: in order to tackle the degraded spatial feature learning problem,
the TSM is positioned within the residual branch of the residual block. This ensures that, following temporal shifting by constant mapping, all of the
information from the initial activation is still available. (C) Bidirectional TSM inference map for video identification. In order to construct the next layer of
features, the first 1/8 feature maps of each residual block are retained for each frame throughout the inference phase. These are then substituted with
the frames that came before and after.

model using TSM has a broad spatio-temporal sensory field and
is capable of modeling fine spatio-temporal relationships, which is
an extremely effective technological tool for video analytics and
other tasks that require simultaneous consideration of spatial and
temporal dimensions.

2.4 Model training framework

The training structure is depicted in Figure 6.Themodel used in
the code is a TSM network structure based on a single RGB picture,
and the backbone network is the traditional ResNet-50 design.
Each training video is divided into 10 segments (each lasting 0.5 s)
during the data preparation step. One frame is randomly selected
from each segment (10 frames total), and the data is then fed into
the training model following uniform processing (random scaling,
cropping, flipping). The model initially extracts features from the
input ultrasound image data using a convolutional neural network,
which yields a rich feature representation. These features are then
fed into a classifier, which calculates the probability distribution of
each video feature class. A loss function is built during training based
on the discrepancy between the model’s output probability values
and the real sample labels, and the model is then optimized. In
order to reduce the discrepancy between the expected and actual
values, this stage is essential to model learning. In the inference

stage, the model will produce the final prediction for the category
with the highest probability, ensuring that ultrasound image data is
accurately classified.

2.5 Training configuration and parameters

Training was performed on a server configured with Ubuntu
16.04 operating system, using a single GPU, model TITAN RTX.
Model construction was based on the PaddlePaddle 2.6 framework.
In order to improve the starting performance of the model, we used
the ResNet-50 model weights pre-trained on the ImageNet dataset
as initialization parameters for the backbone network.

We established the following parameters for the dataset’s
training configuration: A total of 100 training cycles (epochs) were
carried out, with eight samples in each batch (batch size). To avoid
overfitting, the dropout ratio was set to 0.8, and the optimizer’s
momentum parameter was set to 0.9. With an initial learning rate
of 0.001, the decay strategy for the learning rate (LR) was set
up as follows. It was carried out on a boundary of 10–20 epochs,
and anytime the decay boundary was reached, the learning rate
was decreased to 0.1 times its initial value. Additionally, we froze
the Batch Normalization (BN) layer (Zolfaghari et al., 2018) and
adjusted the pre-trained weights from ImageNet throughout model
training to ensure stability.
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FIGURE 6
Model training framework (The video data were randomly scaled, cropped, and flipped before being entered into the model).

FIGURE 7
The training and validation curves after 100 epochs of training using the TSM-ResNet50 model [(A) shows the process of accuracy change, and (B)
shows the process of loss value change].

3 Result

3.1 Result of training

After 100 rounds of training using the above training parameter
settings, the learning curve of the TSM-ResNet50 model is shown
in Figure 7A and the loss curve is shown in Figure 7B. The training
accuracy of the model is up to 98.15% and the model also achieves
92.5% accuracy on the validation set. The value of the loss value for
the training of the model stabilized around 0.1, and the value of
the loss for the validation set stabilized around 0.3, and from the
training metrics, the model learned the features we picked as we
expected it to. For comparison, the samedataset was used to train the
ResNet-50 model without adding the TSM module and the CNN-
LSTM model, and the tests were conducted on the same test set.
The training curve of the ResNet-50model is shown in Figure 8, and
its highest accuracy on the validation set was 94.15%. The training
curve of the CNN-LSTMmodel is shown in Figure 9, and its highest
accuracy on the validation set was 86.03%.

3.2 Result of test

In order to the actual performance of the TSM-ResNet50 model
and to evaluate it, we tested the trainedmodel using 164 cases of data
(37 positive and 127 negative) from the test set (data not involved
in the training) that was kept before the training. Of the 164 cases
of test data, 159 cases of data were correctly predicted, 33 cases
were positive and 126 cases were negative. There were 5 cases of
incorrectly predicted data, one negative and four positive cases, and
the model achieved an overall recognition accuracy of 96.95%, a
precision (check rate) of 97.06%, a recall (sensitivity) of 89.18%,
a specificity of 99.21%, and an F1_score of 0.9692, the confusion
matrix of the TSM-ResNet50 model is shown in Figure 10, and
the ROC curve is shown in Figure 11. The confusion matrix of the
ResNet-50 model without using the TSM module on this test set is
shown in Figure 12, while the confusion matrix of the CNN-LSTM
model on this test set is shown in Figure 13. The test performance of
all the trained models on the independent test set is listed in Table 2.
Taking all these evaluation indicators into consideration, the test
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FIGURE 8
Training and validation curves of the ResNet-50 model for 100 epochs.

FIGURE 9
The training curve and validation curve of the CNN-LSTM model over 100 cycles.

results of the TSM-ResNet50 model are all superior to those of the
ResNet-50 model and the CNN-LSTM model.

3.3 Misanalysis

In the test, there was one case where negative data was predicted
to be positive. Ourmodel considered the likelihood of the data being
negative to be 29.63% and the likelihood of the data being positive

to be 70.37%, so the data was labeled as positive, and we extracted
and analyzed the data from that case. The image of the example data
is shown in Figure 14. The feature of this data that was labeled as
negative by the expert was the presence of lung sliding, andwe found
that there was indeed lung sliding in this data after reviewing the
raw data, but the lung sliding appeared between 3.5 and 5 s, and the
pleural line was almost at a standstill before 3.5 s, which was a large
percentage of the positive features and an inconspicuous percentage
of the negative features, which led to the prediction error.
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FIGURE 10
Results of the confusion matrix for prediction on the test set using the
ResNet-50 model with the TSM module (final results of the test set
classification, TP=33, TN=126, FP=1, FN =4).

FIGURE 11
By making predictions on the test set and obtaining the prediction
probabilities, the ROC curve of the TSM-ResNet50 model was plotted.

There were four cases of positive data in the test that were
predicted to be negative, and we also analyzed them separately.
Figure 15A, positive data labeled by the expert as no lung sliding
and no pleural pulsation but predicted by our model to be negative
with a 94.47% probability, was analyzed to show that the pleural line
in the picture did not undergo lung sliding but produced a large
movement (a movement similar to lung sliding), which resulted
in the model incorrectly judging the movement of the pleural line
to be lung sliding. Figure 15B, again positive data without lung
sliding and lung pulsation, but the pleural line produced a wavy
line of pulsation (very similar to the pleural pulsation sign), and the
presence of pleural pulsation was negative, so the model incorrectly

FIGURE 12
Confusion matrix results of making predictions on the test set using
the ResNet-50 model (final results of the test set classification, TP=24,
TN=126, FP=1, FN =13).

FIGURE 13
Confusion matrix results of making predictions on the test set using
the CNN-LSTM model (final results of the test set classification, TP=27,
TN=114, FP=13, FN =10).

judged it as negative. Figure 15C, the expert gave this data the
classification feature of A line, but the pleural line in the picture is
too blurred, the contrast with other lung tissues is low, there is a large
movement in the picture, and themodel did not accurately recognize
the diagnostic feature and misjudged it as negative. Figure 15D,
the data situation of this case is similar to that in Figure 15A, the
pleural line in the picture showed a large degree of lateralmovement,
which was recognized as negative by the model. By analyzing the
data of the above prediction errors, the following conclusion can
be deduced: when the position of the pleural line in the positive
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TABLE 2 The test performance of all models on the same test set.

Indicator

Modelm
TSM-

ResNet50
ResNet-50 CNN-

LSTM

Accuracy 0.9695 0.9146 0.8597

Precision 0.9706 0.9600 0.6750

Recall 0.8919 0.6486 0.7297

Specificity 0.9921 0.9921 0.8976

F1_score 0.9296 0.7742 0.7013

Model parameter 94,289,074 94,367,681 192,999,414

data frame is shifted to a large extent, it is easy for the model to
misdiagnose. The reason for this may be that the weight of positive
data is small compared to negative data, the weight of negative
features is too high, and the model is not fine enough to recognize
the positive features.

4 Discussion

Interpretation of medical images is often performed by
professionals, and compared to other medical images, ultrasound
images aremore difficult to interpret. Ultrasound plays an important
role in the initial screening of medical conditions. Therefore, if
the diagnostic threshold of ultrasound can be lowered, ultrasound
technology can play a greater role in more fields, and in the future,
ultrasound can be operated remotely in real-time or unmanned
automated diagnosis. Our work is based on the above objectives and
focuses on the intelligent diagnosis of ultrasound pneumothorax.

In this report, we propose a technical solution for accurately
recognizing ultrasound pneumothorax, a first attempt to directly
use video comprehension techniques for ultrasound pneumothorax
diagnosis, and the results of the study show that AI models also
have an extremely great potential for the interpretation of ultrasound
images.Through deep learning algorithms, themodel is able to learn
the abstract features of PTX in ultrasound images, thus realizing
a more accurate diagnosis. This finding is of great significance in
lowering the threshold of ultrasound image diagnosis, especially
in scenarios where medical resources are limited. The AI-assisted
diagnosis system is expected to improve the diagnostic capability of
primary care organizations.

From the current point of view, deep learning research in
ultrasound diagnostic PTX still lags behind more traditional chest
imaging techniques such as CT or X-ray, in which organized and
labeled data are easier to acquire (Thian et al., 2021; Taylor et al.,
2018; Röhrich et al., 2020) while lung ultrasound data acquisition
is still difficult. Although some scholars have begun to engage
in research related to lung ultrasound pneumothorax, they have
adoptedmuch the same approach, starting fromB-mode ultrasound
and focusing on the interpretation of lung sliding of M-mode
images after reconstruction of B-mode ultrasound images into
pseudo-M-mode images (VanBerlo et al., 2022; Boice et al., 2022;

Jaščur et al., 2021). The difference is what kind of model or strategy
is used to reconstruct and categorize M-mode images from B-
mode ultrasound. Our work starts from another angle, applying the
video understanding technology in the field of ultrasound diagnosis,
directly classifying and diagnosing the B-mode ultrasound images,
just like a doctor who has been practicing medicine for many
years, directly reading the ultrasound images without the need of
reconstructing M-mode ultrasound images, and our experimental
results show that this technical route is feasible. With the advantage
of this technique, we can save a lot of time and labor costs in
data annotation, and this advantage will be more obvious in large
databases. VanBerlo et al. believe that it is better to include pleural
pulsation sign in the detection of PTX (VanBerlo et al., 2022), but
their study focuses on a single judgment of pleural sliding like
previous studies. Our work not only focuses on pleural sliding but
also adds some other key features used to diagnose pneumothorax,
such as pleural pulsation sign, lung points (Zhao et al., 2023a), and so
on.The diagnosis of ultrasound pneumothorax by fusion ofmultiple
features has been realized using video comprehension techniques,
and good results have been achieved. By learning the fusion
of multiple key features in the diagnostic process of ultrasound
pneumothorax, the positive and negative abstract features in the
ultrasound pneumothorax video are directly categorized, which
further improves the accuracy of pneumothorax diagnosis.

Extrapolating from the existing findings of our current work, as
well as the research results related to video understanding in the field
of natural imagery, theoretically, if we have a large enough variety of
cases in our database and a large enough amount of image data, we
can perform the diagnostic classification work of multiple diseases at
the same time, and the diagnostic accuracy will be further improved,
and this research will become even more meaningful. However, as
with other medical models, the lack of interpretability of the models
is an issue that needs to be addressed to ensure that clinicians can
understand and trust the diagnostic results of the models. Therefore,
currently AImodels are only used as auxiliary tools to help doctors do
their jobs more efficiently. How to combine AI models with doctors’
expertise to achieve human-machine collaboration is also another
important direction for future research. However, the amount of data
available for training is still limited by the size of the dataset. As a
result, we think that future studies will concentrate on growing the
database, including additional disease categories, enhancing model
performance, and resolving the model’s interpretability. Despite the
fact that the diagnosis of ultrasonic pneumothorax was the main
focus of our work, the model and technique that were developed may
have wider uses. In the future, we can use this method to diagnose
additional ultrasound images, like liver and heart diseases, expanding
the applications of ultrasound technology and giving patients faster,
more precise medical care.

5 Conclusion

In conclusion, the development of a straightforward and
user-friendly ultrasound image acquisition and diagnosis system
will tremendously aid general medical staff in the pre-hospital
emergency stage for prompt diagnosis, hence increasing patient
survival rates. Ultrasound technology’s ease of use and effectiveness
in emergency medical settings will guarantee that patients can
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FIGURE 14
Cases predicted as positive by the model in negative data (Picture frames from the ultrasound video were intercepted at 1-second intervals and
stitched together into 1- to 5-second screenshots, with the bright white pleural line in the center of each image almost at rest).

FIGURE 15
The data of (A–D) in the figure are all positive, but the model previously predicted their results as negative (the circled parts in the figure represent the
pleural lines present in each image).

be quickly evaluated, screened, and triaged, improving medical
institutions’ emergency response capabilities. The current study is
a component of the intelligent diagnostic system called E-FAST
(Extended Focused Assessment with Sonography for Trauma),
which is designed to determine whether a patient has a PTX.
Looking ahead, our next plan is to optimize the training strategy and
expand the database in order to build diagnostic models with more
generalization ability for diagnosis of a wide range of diseases. To
give users a more practical and effective diagnostic experience, we
will also investigate integration with portable handheld ultrasound
instruments. We anticipate that these initiatives will transform
the healthcare industry and advance the adoption of diagnostic
ultrasonography technology.
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