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Purpose:This paper aims to review the literature on 12-lead ECG reconstruction,
highlight various algorithmic approaches and evaluate their predictive strengths.
In addition, it investigates the implications of performing reconstruction in
particular ways.

Methods: This narrative review analysed 39 works on the reconstruction of 12-
lead ECGs, focusing on the algorithms used for reconstruction and the results
gotten from using these algorithms.

Results: The works analysed featured the use of as little as one lead and as
much as four leads for reconstruction of the other leads. Linear and nonlinear
(including artificial intelligence) algorithms showed promising performances.
Their outputs had correlations of greater than 0.90 depending on how the
reconstruction models were built.

Conclusion: Three leads are optimal as input predictors for minimal
reconstruction errors, but there is no universal algorithm that applies to every
reconstruction task. Both linear and nonlinear algorithms can achieve high
correlations, and minimal root means square errors. Hence, planned steps are
needed when deciding how to manipulate the data and build the models to
achieve high accuracies.
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1 Introduction

Electrocardiogram (ECG) is a non-invasive and painless method for quickly examining
the electrical activity of the heart (Einthoven, 1912).The basic concept is for electrodes to be
strategically placed on parts of a patient’s body to record the electrical activity of the heart.
These electrodes are passive components; that is, they do not produce any form of electrical
signal (Lewis, 1912), they only record the signals sensed. Over the years, there has been
research into various electrode positions to acquire the best information in the simplest
form (Frank, 1956; Mason and Likar, 1966; Dower et al., 1988). Some of the common
systems developed include theMason-Likar lead system (Mason and Likar, 1966), the Frank
Vectorcardiogram (VCG) lead system (Frank, 1954), and the EASI lead system (Dower et al.,
1988). Amidst these systems, a standard 12-lead system (S12) has been agreed upon
(Wilson et al., 1954) (Figure 1). This standard has shaped the nature of electrocardiography
ever since and is the commonly used method for diagnosis (AlGhatrif and Lindsay, 2012).
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The S12 leads (limb leads - I, II, III, aVR, aVL, aVF and
precordial/chest leads – V1, V2, V3, V4, V5, V6) are generated by
a mathematical combination of 10 electrodes. Since these electrodes
are passive, they record noise artefacts in addition to heart signals.
These artefacts can come from the movement of patients during
recording, wrong placement of electrodes, electrical interference, or
even no-contact between the electrode and the patient’s skin. This
has led researchers to consider alternative methods to acquire S12
with fewer electrodes. This can help to recover missing or noisy
leads, or even reduce the number of electrodes needed for recording.
Moreso, this can help with patients who need to be monitored
outside the hospital.

In line with this, devices such as the Holter monitor (Holter,
1961), patch devices, and smart watches have been designed to
acquire heart data with minimal contact with the human body.
However, they do not provide as much information as S12. This has
led researchers to focus on predicting S12 leads with fewer leads.
For example, two leads can be used to predict the remaining ten
leads (Vemishetty et al., 2019). Over time, many algorithms ranging
from linear to non-linear algorithms have been developed for this
purpose. These have included the use of linear regression, principal
component analysis, independent component analysis, and even
neural networks, to create patient-specific or generic models. The
patient-specific models aimed at creating algorithms specific to
a patient (Schreck et al., 1998), while the generic models aimed at
building algorithms that could be used for any patient irrespective of
age, race, gender or ailment. None of these algorithms have a perfect
reconstruction capability and all have their strengths and drawbacks.
It is noteworthy that the inability to perfectly reconstruct ECG is
partly due to the complexity, diversity and everchanging nature of
the heart (especially with the generic models).

The differences in algorithm capabilities have inspired this work.
This paper aims to narratively review the literature on 12-lead
ECG reconstruction, highlight various algorithmic approaches and
evaluate their predictive strengths. In addition, it investigates the
implications of performing reconstruction in particular ways.

The publications chosen for this review were selected from
various databases including Institute of Electrical and Electronics
Engineers (IEEE), Medline, Scopus, Web of Science, and The
Cochrane Library. The time frame chosen for this review was from
the year 1980–2023 (spanning 43 years), to capture the traditional
methods that were used for ECG reconstruction and the transition
into the more recent algorithms that have been adopted. The
inclusion criteria for the selected publications were all publications
in English language, using either simple mathematical or machine
learning methods, and were journal articles or conference papers.
The keywords used for the search queries were:

(ECG OR Electrocardiogra∗OR EKG) AND (Reconstruct∗OR
recover∗OR regenerat∗OR extrapolat∗OR retriev∗OR reduc∗OR
predict∗OR calculat∗OR estimat∗OR approximat∗OR comput∗)
AND (12 lead OR twelve lead OR electrode OR reduced electrode).

2 Lead importance in reconstruction

To reconstruct S12, it is paramount to know the leads
that provide the best extrapolatory significance. Using factor
analysis, Schreck et al. (1998) aimed to find the smallest set of leads

necessary to describe S12. They derived 12 eigenvalues that had a
magnitude that correlated to the significance of its eigenvector. Since
leads III, aVR, aVL, and aVF could be calculated from leads I and II,
theywere not used in this analysis. A patient-specific transformation
matrix was obtained for this analysis, and the predictive power
was tested with varying numbers of leads. They found that using
three leads to reconstruct the other leads accounted for most of the
information content in S12 (99.12%± 0.92%).Usingmore than three
leads added very little information to the reconstruction.

Nelwan et al. (2000), in line with Scherer et al. (1989),
recommended the use of I, II and V2 (4 electrodes) for
reconstruction. A substantial decrease in the correlation between the
reconstructed S12 (RS12) and the original S12 was observed when
three leads and four leads were used as predictors. The decrease was
from an average of 0.994 to 0.983 in the patient-specific models and
from 0.963 to 0.926 in the generic models. Nelwan et al. (2004a)
proposed that a dependable patient-specific model can be built with
I, II and V2, but when a generic model is designed, V5 should be
included (5 electrodes). To substantiate the reconstructive power
of these four leads, Nelwan et al. (2007) assessed the root mean
squared error (RMSE) of the RS12 of four lead systems at the time
(Dower et al., 1988; Nelwan et al., 2000). They found that I, II, V2,
and V5 had the lowest RMSE. Nelwan et al. (2008a) revisited the
significance of various frontal leads in reconstruction and found
that, although minute, combination of limb leads other than I and
II may improve the results based on the lead being predicted.

However, Wang et al. (2005) argued that only two precordial
leads were enough to reconstruct S12. By generating a coefficient
matrix using two precordial leads, they reproduced other leads
with a minimum coefficient of 0.954. Although there were
no specific leads that could reconstruct all leads, it showed
that two leads were capable of reliable reconstruction in lead-
specific cases. Matyschik et al. (2020) supported this finding
when they used only one precordial lead to reconstruct S12
with the help of a more complex patient-specific model. They
used a variational autoencoder decoder (VAE) combined with a
convolutional neural network (CNN) and either V2, V3, or V4 to
reconstruct S12 depending on the patient in question. With the
advancement of computing power and the development in machine
learning (ML), one precordial lead could be enough to provide a
reliable RS12 (Matyschik et al., 2020).

Butchy et al. (2023) decided to determine the lead importance by
comparing the correlation between each lead. They found that limb
leads were highly correlated with themselves and with V1, V4, V5,
and V6. V2 and V3 were more strongly correlated with themselves
than with other leads. By comparing the R2 of the reconstruction
of other leads with or without each of the electrodes, it was found
that RA, LA, LL, and V3 had the worst outcomes when excluded as
inputs and the best outcomes when included as inputs. This, in their
opinion, points to the importance of the limb leads and V3 as the
most important leads for reconstruction of S12.

Furthermore, the misplacement of electrodes by physicians due
to various reasons requires attention.This causes incorrect signals to
be recorded and inadvertently cause incorrect models to be created
or poor reconstructions from the available models. Finlay et al.
(2009) reported that reconstruction errors become evident when
electrodes are placed at least 15 mm from the correct positions.
This was when I, II, V2, and V5 were used for reconstruction.
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FIGURE 1
Left-Electrode positions for standard 12-lead system. Right-Lead output from a healthy patient using standard 12-lead system. Below–Mathematical
derivation of each lead.

In contrast, when EASI electrodes were used for reconstruction,
significant errors were not evident until 5 cm from the correct
electrode position.

Nonetheless, it is easy to fall into the assumption that there
should be a single perfect lead set to reconstruct the remaining
S12 leads. It is paramount to consider the complexity of the
reconstruction situation (Feild et al., 2008). When choosing the lead
set it is important to consider the lead that needs to be reconstructed.
Each lead has an optimal lead combination unique to them for the
best reconstruction (Yoo et al., 2023). Additionally, choosing a lead
set that is in the region that needs to be reconstructed would yield
better results than a generic lead set.

3 Algorithms for reconstruction

In the 39 studies reviewed in this paper, reconstruction
algorithms are broadly categorized into linear and non-linear types
to draw on the different ways in which these algorithms have
been used and their limitations. To assess the performance of
these algorithms, the studies employed various metrics such as
correlation coefficient, similarity coefficient, mean squared error
(MSE), RMSE and r-squared (R2), though not all were used
simultaneously in each study. These metrics provide a basis for

evaluating how well the algorithms perform in reconstruction.
Correlation defines how well the RS12 changes with respect to
the original S12, while RMSE defines the average error over time.
These become important when considering the shape of segments
of the signal. Additionally, it is important to recognise that the type
of model affects the performance of the model. A patient-specific
model usually performs better than a generic model. Depending
on the application, if a patient-specific model can be designed, it is
advisable to do so.

3.1 Linear algorithm

This type of algorithm follows the assumption that
body surface potentials are linearly related to each other.
Mathematically speaking:

y = c1x1 + c2x2 +…+ cnxn + d

where:y = thepotential to be reconstructed

c1,c2,…,cn = constant coe f ficients

x1,x2,…,xn = the available body sur face potentials

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1532284
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Obianom et al. 10.3389/fphys.2025.1532284

d = constant

Dower et al. (1988) approached the reconstruction with a
spatial transform. The vector loops were rotated prior to being
transformed. They showed that this algorithm works especially well
when extrapolating from VCG. They used previously published
generic constants (Dower et al., 1980) to predict S12. Nelwan et al.
(2001) argued otherwise. They claim that the basic linear regression,
without spatial transform, was enough to give reliable results. This
claim was supported by comparing the reconstruction correlation
of both algorithm on the same patient sets. Linear regression
performed better than using inverse Dower transformation.

Scherer et al. (1989) used a patient-specific linear model to
reconstruct V1, V3, V4, V5, and V6 from I, II and V2. They found
that a trained model could be used for three consecutive days with
a correlation greater than 0.96 on all leads. There was also good
similarity between RS12 and S12, with a consistent p value greater
than 0.5 (Scherer and Willems, 1992; Maheshwari et al., 2013).
Vemishetty et al. (2019) deviated slightly in how they used the
same leads for reconstruction. They used I and V2 to reconstruct
II and then used I, V2 and reconstructed II to reconstruct the
other leads. The average R2 and correlation coefficient of the RS12
for healthy patients were 0.919 and 0.957, respectively, for healthy
patients but decreased with bundle branch block and myocardial
infarction. Least square (LS) fit and Heart-Vector Projection (HVP),
which are common transformation matrix generation methods
were used. Other matrix transform generation tools that make
use of singular value decomposition (SVD) have also shown
promising results (Padhy and Dandapat, 2016).

There is also the assertion that generic algorithms perform
worse than patient-specific algorithms, but this does not mean the
generic models are not useful (Nelwan et al., 2004b; Nelwan et al.,
2004c; Nelwan et al., 2008b). It was found that the two approaches
were capable of reconstructing S12 with a high degree of accuracy
from leads I, II, V2 and V5 while using a linear transformation
matrix. The RS12 could be used to predict certain heart conditions
(Nelwan et al., 2004c; Guldenring et al., 2012). Xue (2007) showed
that RS12 predicted from leads I, II, V1 and V5 could be used an
MLmodel to classify ischemia patients.Their RS12 was gotten using
linear regression equations for each lead.

Various combinations of leads have also been used to
predict S12. Horácek et al. (2008) compared the predictive capability
of all the possible combinations (15) of two precordial leads from
both standard 12-lead ECG and Mason-Likar 12-lead ECG. These
leads, with I and II, were used to predict other leads. Although V2
and V4 had the best correlation, 14 of the 15 lead sets performed
with a mean similarity coefficient above 99%. The average RMSE
was also consistently less than 52 mV.

Many researchers have also explored unconventional electrode
placements. RS12 from these systems is also capable of predicting
(with a high level of accuracy) health conditions (Babic et al., 2023).
Hadzievski et al. (2004) proved a that linear transformation matrix
was sufficient to transform unconventional potential recordings into
S12 (Vukajlovic et al., 2010; Vukcevic et al., 2010; Vukajlovic et al.,
2011; Ivanovic et al., 2019; Grande-Fidalgo et al., 2021). They
found that 80.2% of the RS12 were identical to S12 without
visible discrepancy. Additionally, this lead system allows for a
single patient-specific transformation matrix to be used reliably for
reconstruction for up to 6 months (Gussak et al., 2012).

Some researchers have approached reconstruction by piling
different stages of linear equations. A snippet of this can be seen in
the work of Vemishetty et al. (2019), where they had to reconstruct
II and use it to reconstruct other leads.The piling strategy developed
by Burnes et al. (1998) is called inverse-forward interpolation. This
algorithm involves inversely reconstructing an arbitrary interior
surface from body potentials, then using a forward model to
reconstruct S12. Bear et al. (2017) used this algorithm to interpolate
252 body surface potentials (BSPMs) to reconstruct S12.Their result
showed correlations greater than 0.88 across leads between RS12 (of
a generic model) and S12.

Independent component analysis (ICA) is anothermethodology
(Ostertag and Tsouri, 2011; Tsouri and Ostertag, 2014). This
algorithm involves finding independent features of the signal that
can be used to reconstruct them in future signals. The complexity
here is that a single output is assumed to be the product of a
mixing matrix and an independent component matrix, which are
both unknown to researchers. The best way to find these unknowns
is to start with an initial guess and then keep changing their values,
smartly, until they converge based on the training data. A problem
faced is deciding the number of independent components that these
variables should have. Depending on the leads used as input and
the number of independent components used, correlations greater
than 0.95 can be achieved (Ostertag and Tsouri, 2011; Tsouri and
Ostertag, 2014).

A similar algorithm is the heart-dipole model (Sindreu et al.,
2023). This model assumes that each body surface potential is a
linear combination of three-dipole components of the heart. This
implies that at any given time, the electric field in the body is in
equilibrium with its source in the heart. If these dipole components
can be found in conjunction with the lead vectors, any given
lead can be derived. Sindreu et al. (2023) reported that a patient-
specific heart-dipole model was able to produce RS12 with a 0.966
correlation to S12.

Another important approach was the use of state-space
modelling by Lee et al. (2016). This model can capture nonlinear
properties of signals. It is also able to predict real-time events of
the output signals with respect to the input signals. They found that
this model performed better than linear transform models. It had a
greater mean correlation (0.937 compared to 0.843) and lower mean
RMSE (86.33 µV compared to 128.17 µV).

The use of linear models seems promising. However, Gregg et al.
(2008) shed more light on the down sides of this model. In
accordance with the suggestion of Feild et al. (2008), Gregg et al.
(2008) expressed how this model failed when dealing with multiple
heart conditions. That is, coefficients deduced during optimal
operation of the heart may not stand during abnormal readings
(Vemishetty et al., 2019; Guldenring et al., 2012). It is either various
models are designed for various heart conditions, or amore complex
model is designed to accommodate these conditions. A summary of
the linear approaches examined in this paper is shown in Table 1.

3.2 Nonlinear algorithm

Unlike the latter, this type of algorithm recognises that the
relationship between leads of S12 could be more complex than
what simple linear transformations can explain due to artefacts
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TABLE 1 Summary of Linear Approaches taken in the Reconstruction of ECGs including the kind of algorithm adopted, the input leads used, either they
used generic models (True), patient-specific models (False), or analysed both (Both), the average correlation (r), and the source of the dataset (the name
of the source, private database, or personally acquired).

S/N Paper Input Algorithm Generic model r Dataset

1 Dower et al.(1980) Frank Spatial transform True - Personal

2 Dower et al. (1988) EASI Spatial transform True - Personal

3 Scherer et al. (1989) I, II, V2 Linear transformation False 0.988 Personal

4 Nelwan et al. (2004c) I, II, V2, V5 Linear transformation Both - REPAIR

5 Maheshwari et al. (2013) I, II, V2 Linear transformation False 0.982 INCART (Goldberger et al.,
2000) and PTBDB

(Goldberger et al., 2000;
Bousseljot et al., 1995)

6 Padhy and Dandapat (2016) I, II, V5 Linear transformation SVD False 0.947 PTBDB (Goldberger et al.,
2000; Bousseljot et al., 1995)

7 Vemishetty et al. (2019) I, V2 Linear transformation LS
HVP

False 0.957 PTBDB (Goldberger et al.,
2000; Bousseljot et al., 1995)

8 Guldenring et al. (2012) I, II, V2, V5 Linear transformation Both - Personal

9 Xue (2007) I, II, V1, V5 Linear regression True - Private

10 Horácek et al. (2008) I, II, and 2 posterior leads Linear transformation Both - Personal

11 Babic et al. (2023) 5 electrode system Linear transformation Both - Personal

12 Hadzievski et al. (2004) 5 electrode system Linear transformation False - Personal

13 Vukajlovic et al. (2010) 5 electrode system Linear transformation False - Personal

14 Vukcevic et al. (2010) 5 electrode system Linear transformation False - Personal

15 Gussak et al. (2012) 5 electrode system Linear transformation False - Personal

16 Bear et al. (2017) 252 BSPM Inverse-forward
interpolation

True >0.880 Simulated and 6 patients

17 Ostertag and Tsouri (2011) V2, V5 ICA False 0.955 PTBDB (Goldberger et al.,
2000; Bousseljot et al., 1995)

18 Tsouri and Ostertag (2014) I, II, V2 vs. Frank ICA False 0.980 PTBDB (Goldberger et al.,
2000; Bousseljot et al., 1995)

19 Sindreu et al. (2023) I, II, and 2 posterior leads Heart dipole model False 0.966 Personal

20 Lee et al. (2016) I, II, III State space model False 0.992 PTBDB (Goldberger et al.,
2000; Bousseljot et al., 1995)

that are recorded alongside and variations in lead locations. As
many researchers have suggested, a more complex algorithm
could improve the likelihood of a more reliable reconstruction
(Vemishetty et al., 2019; Feild et al., 2008; Guldenring et al., 2012;
Lee et al., 2016; Gregg et al., 2008).

With the increase in computing power, more complex statistical
models have begun to appear in the last 2 decades. One of
such models is the support vector machine (SVM) model. This
model maps the input data into a higher dimension and then
estimates a function capable of reconstructing the output data.
Using a large dataset, this model can be trained to effectively

reconstruct S12. Yodjaiphet et al. (2012) reconstructed V2, V3, V4,
and V5 using SVM, with inputs I, II, V1, and V6. They trained this
model on 14 patients and obtained an RMSE of less than 0.29 mV.

3.2.1 Neural networks
Artificial Neural Networks (ANNs) are among the more

complex and nonlinear models used today. Variations in ANNs
exist, but the basic concept of connecting inputs to various decision-
making neurons remains the same. A common ANN is the feed-
forward network (FFN). This network has no feedback, such that it
makes predictions based on only the present input given. Atoui et al.
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(2004) showed that a patient-specific model built with the FFN,
using I, II and V2 as inputs, outperformed the linear transformation
algorithm. Some years later, they showed that scrutiny of the
input data can improve the outcome of the network (Atoui et al.,
2010). They improved the correlation of RS12 from median of
0.957 in patient-specific linear transform model to median of 0.975
in patient-specific FFN model. This model has also been shown
to work with patch electrodes to predict RS12 with a median
correlation of 0.92 (Lee et al., 2020).

Chen et al. (2015) built a similar patient-specific network
but used the combination of genetic algorithm (GA) and back
propagation (BP) training techniques to achieve better results than
using only BP for training which produced a mean correlation of
0.948. Xu et al. (2018) argued that training an FFN with a general
vector machine (GVM) creates a more stable and reliable algorithm.
Theirmodel achieved correlations higher than 0.81 (compared to the
GA-BP correlation of as low as 0.79) on their dataset. The GVM is a
methodology built on the Monte Carlo algorithm. It is useful when
the dataset is very large, as in the S12 reconstruction. However, in
contrast to Feild et al. (2008) and Atoui et al. (2004), Xu et al. (2021)
claimed that linear regression outperforms FFN with an average
correlation of 0.901 compared to 0.879. The inputs used were I,
II, and V1.

Mulyadi and Supriyanto, (2019) introduced a novel approach to
how the FFN was used. Since the ECG is a combination of different
repolarisation and depolarisation segments, these segments should
be derived separately and fused together. Using the EASI electrodes
as input, they showed that this segment-specific reconstruction had
a greater correlation than the full cycle reconstructions with an
average RMSE reduction of 65.17% on all leads.

Long short-term memory (LSTM) is another methodology in
ANNs used for time-series data. Unlike the FFN, the predictions are
made based on both the present and past inputs. By predicting V1,
V3, V4, V5, and V6 from I, II, and V2, average correlations of 0.95
in generic models can be attained with this algorithm (Zhang and
Frick, 2019; Dhahri et al., 2022; Kapfo et al., 2022). Patch electrodes
have also been shown to produce correlations greater than 0.92 on all
leads with the patient-specific model of this algorithm (Sohn et al.,
2020). Using other time-series focused networks and changing the
number of inputs could also be highly important. Smith et al. (2021)
showed that using all limb leads, and V2 as inputs and a focused
time-delay neural network (FTDNN), correlations higher than 0.861
could be achieved. It is important to note that thework of Smith et al.
(2021) still uses 4 electrodes, similar to other researchers, but with
seven leads as compared to the three leads of most.

A widely known ANN method used for image recognition is
CNNs. Panda et al. (2014) showed that this can be applied in
reconstruction. They built a patient-specific model which could
predict V1, V3, V4, V5, and V6 from I, II, and V2 with an R2 greater
than 0.71. This algorithm is well supported by Wang et al. (2019),
who achieved correlations greater than 0.938 on a database with 290
patients with a generic model.

The autoencoder-decoder U-Net ANN has also been used for
S12 reconstruction. It is a complex ANN that compresses the input
and decompresses it while comparing it to the expected output.
Combining a generative adversarial network (GAN) and a U-Net,
Yoon et al. (2022) built an ANN with all limb leads as input.
They had a mean MSE of 0.038. Expanding the capabilities of ML,

Beco et al. (2022) showed that S12 could be predicted with only
lead II. They also used an autoencoder-decoder U-Net ANN to do
this.They obtained promising results, but they also showed that lead
II did not perform particularly well in predicting aVR, aVL, and
aVF. Other single lead input U-Net architecture have been explored
and have shown better results in predicting aVR, aVL, and aVF
(Garg et al., 2023). Gundlapalle and Acharyya, (2022) also used lead
II but used a different network architecture. Their method involved
creating various generic models that combined CNN and LSTM
to reconstruct various leads. Outstanding mean values of 0.936 R2

and 0.973 correlation was achieved. A summary of the nonlinear
approaches examined in this paper is shown in Table 2.

4 Discussion

Reconstruction of standard ECG leads has been a major
consideration in the field of electrocardiography, aimed at reducing
the number of electrodes and recovering missing leads. Feild et al.
(2008) outlined a step-by-step procedure of things for this purpose
and several key points need to be considered based on related
studies seen in this paper. Firstly, the decision of the best input
lead set is critical. As seen from all previous works, this affects the
model used for transformation. Every model is built with respect
to what the inputs and outputs will be. Most models, irrespective
of the input leads, demonstrate promising performance based on
the nature and size of the data used to build the model. Despite
this, the most common input leads that have been used were
proposed by Nelwan et al. (2000), in line with Scherer et al. (1989).
They recommended the use of I, II and V2 (4 electrodes) for the
reconstruction of V1, V3, V4, V5, and V6.

In contrast, Butchy et al. (2023) reported that the best input
leads were I, II and V3 (4 electrodes). They found this by comparing
the correlation between each lead. They found that limb leads were
highly correlated with themselves and with V1, V4, V5, and V6,
while V2 andV3weremore strongly correlated with each other than
with other leads. Clearly, three leads (including both limb leads, and
chest leads) are optimal for the reconstruction. Nevertheless, the
model built also plays a large role in determining the accuracy of
the reconstruction.

Secondly, a major question that many researchers overlooked
is the long-term reliability of their models. The heart is
an everchanging organ, it is important to consider how
often a new model needs to be designed. Fortunately, a few
researchers have commented on this. A model, either generic
or patient-specific, can be used for a few days to a few months
without notable performance degradation (Scherer et al., 1989;
Gussak et al., 2012; Maheshwari et al., 2016). However, more
research needs to be conducted to ascertain the timewise reliability
of any given model.

The kind of data used to train a model is also important.
Though it has been shown that unprocessed ECG can be used
as input data with good reconstructions (Obianom et al., 2024),
models tend to perform worse in patients with cardiac disorders,
than in healthy patients (Vemishetty et al., 2019; Feild et al., 2008;
Guldenring et al., 2012; Lee et al., 2016;Gregg et al., 2008).Therefore,
the kind of data used during the training of a model is essential
to determining the performance of the model. While building a
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TABLE 2 Summary of Nonlinear Approaches taken in the Reconstruction of ECGs including the kind of algorithm adopted, the input leads used, either
they used generic models (True), patient-specific models (False), or analysed both (Both), the average correlation (r), and the source of the dataset (the
name of the source, private database, or personally acquired).

S/N Paper Input Algorithm Generic model r Dataset

1 Yodjaiphet et al. (2012) I, II, V1, V6 SVM True - PhysioNet (Moody et al.,
2000)

2 Atoui et al. (2004) DI, DII, V2 FFN False 0.974 Personal

3 Atoui et al. (2010) I, II, V2 FFN Both 0.930/0.962 Personal

4 Lee et al. (2020) 3 lead 4 electrode patch
device

FFN True 0.893 Personal

5 Chen et al. (2015) I, II, V2 FFN False 0.948 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

6 Xu et al. (2018) I, II, V2 FFN True 0.892 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

7 Xu et al. (2021) I, II, V1 FFN True 0.879 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

8 Mulyadi and Supriyanto
(2019)

EASI (4) FFN False 0.999 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

9 Zhang and Frick (2019) I, II, V2 LSTM False 0.830 MITBIH (Goldberger et al.,
2000; Moody and Mark,

2001) and PTBDB
(Goldberger et al., 2000;
Bousseljot et al., 1995)

10 Dhahri et al. (2022) I, II, V2 LSTM True 0.950 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

11 Kapfo et al. (2022) I, II, V2 LSTM False 0.980 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

12 Sohn et al. (2020) 3 lead 4 electrode patch
device

LSTM False 0.949 Personal

13 Smith et al. (2021) Limb leads and V2 FTDNN True 0.903 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

14 Panda et al. (2014) I, II, V2 CNN False - PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

15 Wang et al. (2019) I, II, V2 CNN True 0.950 PTBDB (Goldberger et al.,
2000; Bousseljot et al.,

1995)

16 Yoon et al. (2022) Limb leads GAN and U-Net True - China DB (Zheng et al.,
2020) and PTBXL

(Goldberger et al., 2000;
Wagner et al., 2020)

(Continued on the following page)
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TABLE 2 (Continued) Summary of Nonlinear Approaches taken in the Reconstruction of ECGs including the kind of algorithm adopted, the input leads
used, either they used generic models (True), patient-specific models (False), or analysed both (Both), the average correlation (r), and the source of the
dataset (the name of the source, private database, or personally acquired).

S/N Paper Input Algorithm Generic model r Dataset

17 Beco et al. (2022) II Autoencoder decoder True 0.672 INCART (Goldberger et al., 2000) and
PTB-XL (Goldberger et al., 2000;

Wagner et al., 2020)

18 Garg et al. (2023) II U-Net True 0.805 PTBXL (Goldberger et al., 2000;
Wagner et al., 2020)

19 Gundlapalle and Acharyya (2022) II LSTM-CNN True 0.973 PTBDB (Goldberger et al., 2000;
Bousseljot et al., 1995)

model, a researcher could consider using data from many patients
with various heart conditions. This would require a large amount
of patient data (thousands) to ensure that the right transforms
are made. Conversely, a researcher can consider using data from
a particular heart condition group. This would be a population-
specific model and would not require as many patients.

More emphasis should also be drawn to the nature of the
model. As much as the patient-specific models tend to always have
better results, there are cases where the generic or population-
specific models might be of great importance (Nelwan et al., 2004b;
Nelwan et al., 2004c; Nelwan et al., 2008b). They can be especially
useful in cases where quick information needs to be acquired.
They can also be used to aid in the prediction of certain heart
conditions (Nelwan et al., 2004c;Guldenring et al., 2012). Xue (2007)
showed that RS12 predicted from leads I, II, V1 and V5 could be
used to train an ML model to classify ischemia patients. Regarding
the influence of datasets the model’s nature, any dataset can be
employed to develop either a patient-specific or a generic model.
For instance, the publicly available PTB database (Goldberger et al.,
2000; Bousseljot et al., 1995) have been used to construct both types
of models (Table 1, 2). The key takeaway is that patient-specific
models typically produce more accurate results because no two
human hearts are identical, and a patient’s own heart is the most
precise model for itself.

There is the argument of nonlinear models being more effective
than linear models in the reconstruction of S12. Many researchers
have considered that the complexity of human physiology cannot
be summed up in simple linear transforms (Feild et al., 2008).
Feild et al. (2008) stresses that the complexity of the models needs
to increase to models like Matyschik et al. (2020) and Yoo et al.
(2023), beyond the linear transformation models (Dower et al.,
1988; Scherer et al., 1989; Scherer and Willems, 1992; Nelwan et al.,
2004c). This is attributed to significant limitations of linear models,
such as their inability to account for noise artifacts. Counter to
that, Xu et al. (2021) claims that linear regression performs better
than FFN. Clearly, it is not about the complexity of the equations
used in reconstruction, it is about how the equations were used
for reconstruction (Mulyadi and Supriyanto, 2019). It is also worth
noting that in device development and deployment, neural networks
tend to require larger computing power, larger memory size, and
have longer building time than classical algorithms. Therefore,
choosing a nonlinear algorithm has its down sides particularly in
device development.

Smith et al. (2021) also showed that using leads I, II, III, aVR,
aVL, aVF, and V2 as inputs, correlations higher than 0.861 could be
achieved. Although this might increase the processing power and
the complexity of the models being used, this is worth considering.
Like the popular I, II, and V2 inputs, these inputs still consist of
four electrodes. Butchy et al. (2023) also noted that limb leads
are highly correlated with V1, V4, V5, and V6. Therefore, this
may provide a greater chance of better accuracy in reconstruction.
Additionally, it is worth noting that various leads have stronger
correlations with specific leads (Yoo et al., 2023). Therefore,
providing all available leads as input may enable the models
to give various weight to the necessary leads for reconstructing
specific leads rather than relying on a minute lead set for the
reconstruction of all leads.

It would also be valuable to analyse the performance of the
models reviewed in this paper under a standardised framework.
However, it is regrettable that the studies referenced in this
paper utilised different databases and inconsistent performance
metrics. Additionally, those that employed the same database may
have not utilised the complete dataset provided. Nonetheless,
the PTB database was predominantly used across various
algorithms, input lead combinations, and both patient-specific
and population-specific models, and can offer valuable insights
(Table 1, 2). The trends discussed throughout this section are
evident within these studies; patient-specific models generally yield
better results, the nature of the training data affects the model
performance, models performed worse with arrhythmic ECG than
with rhythmic ECG, and input leads are very key to achieving
accurate results.

Finally, the reconstruction of leads is clinically relevant in
areas such as cardiac disease prediction systems. Since S12 has
considerable redundant information, a model could be built to
focus on reconstructing specific information in other leads which
can be used as input for prediction models (Nelwan et al., 2004c;
Guldenring et al., 2012; Xue, 2007). Furthermore, since the nature
of data influences the reconstruction, this factor can be leveraged
to reconstruct arrhythmic ECG signals. For instance, Gundlapalle
and Acharyya (2022) and Vemishetty et al. (2019) trained models
with only myocardial infarction patients and achieved an average
correlation of 0.973 (population-specific approach) and 0.889
(patient-specific approach) respectively across all reconstructed
leads. This demonstrates that models can reliably reconstruct
arrhythmic ECG signals when trained on such data; however,
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FIGURE 2
Factors to consider while building an ECG reconstruction Model.

their generalizability remains limited, as a single model has yet
to demonstrate efficient reconstruction of both rhythmic and
arrhythmic ECG signals (Feild et al., 2008; Guldenring et al., 2012;
Lee et al., 2016; Gregg et al., 2008). For clinical applications,
there is a need for either a sophisticated ensemble of models
tailored to specific ECG rhythm types or a more advanced,
unified model capable of reconstructing a broad spectrum of
ECG patterns. ECG reconstruction is also highly relevant in
the context of telemedicine. Given that most wearable devices
have limited number of leads, these models can be used to
reconstruct other leads from the recorded leads either on-site or
via cloud processing. This enhances the availability of critical ECG
information for physicians and prediction models to make accurate
diagnosis (Babic et al., 2023; Gussak et al., 2012; Kapfo et al.,
2022; Sohn et al., 2020; Panda et al., 2014). Moreover, it has

been proven that these reconstruction models remain reliable
from a few days to several months. As a result, they can
be updated automatically or with scheduled checks to prevent
performance degradation.

5 Conclusion

This paper considered the varying algorithms employed for the
reconstruction of ECG from a subset of leads. ECG reconstruction
is necessary for a variety of reasons. They are important for out-of-
hospitalmonitoring,where patients are able enough to be discharged
but constant monitoring is still needed. They are also important in
emergency monitoring, where quick and minor decisions need to
be made and can be used for disease prediction to gain quick insight
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into the plausible conditions of the heart. However, the accuracy of
the reconstructions currently varies due to the different perspectives
being taken.

This review identified that no single algorithm consistently
outperforms others. To develop a reliable reconstruction model,
careful consideration must be given to the selection of input
leads, model architecture, the characteristics of the training data
(particularly the patients’ heart conditions) and the intended
purpose of the reconstruction. Following a structured and
systematic approach in model development and data processing
is essential to achieving high accuracy (Figure 2). These factors
collectively contribute to the effectiveness and reliability of the
reconstruction process and model.
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