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Background: Assessing real-time stress in individuals to prevent the
accumulation of stress is necessary due to the adverse effects of excessive
psychological stress on health. Since both stress and circadian rhythms affect
the excitability of the nervous system, the influence of circadian rhythms needs
to be considered during stress assessment. Most studies train classifiers using
physiological data collected during fixed short time periods, overlooking the
assessment of stress levels at other times.

Methods: In this work, we propose a method for training a classifier capable
of identifying stress and resting states throughout the day, based on 10 short-
term heart rate variability (HRV) feature data obtained from morning, noon,
and evening. To characterize the circadian rhythms of HRV features, heartbeat
interval data were collected and analyzed from 50 volunteers over three
consecutive days. The circadian rhythm trends in the HRV features were then
removed using the Smoothness Priors Approach (SPA), and XGBoost models
were trained to assess stress.

Results: The results show that all HRV features exhibit 12-h and 24-h circadian
rhythms, and the circadian rhythm differences across different days for
individuals are relatively small. Furthermore, training classifiers on detrended
data can improve the overall accuracy of stress assessment across all time
periods. Specifically, when combining data from different time periods as
the training dataset, the accuracy of the classifier trained on detrended data
increases by 13.67%.

Discussion: These findings indicate that using HRV features with circadian
rhythm trends removed is an effective method for assessing stress at all times
throughout the day.
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1 Introduction

Psychological stress refers to a mental state in which an
individual feels pressured, tense, or uncomfortable in response to
external stressors. This state can result from various challenges,
threats, or changes that require the individual to adapt and respond
(Folkman, 2013; Selye, 1958). While moderate psychological stress
can be beneficial by enhancing motivation, increasing alertness,
and improving focus, excessive psychological stress may have
detrimental effects. It can contribute to cardiovascular diseases
such as hypertension and heart disease, disrupt normal immune
function, and cause hormonal imbalances (Cohen et al., 2007; Al-
Shargie et al., 2017). Therefore, continuous monitoring of stress
and timely intervention are key to managing both physical and
mental health.

In recent years, the widespread use of smart wearable
devices has facilitated the collection and analysis of physiological
signals. An increasing number of researchers are focusing
on leveraging these physiological signals to objectively detect
psychological stress, enabling timely alerts regarding users’ stress
levels (Marques et al., 2010). Currently, the primary physiological
signals utilized for stress detection include electromyographic
signals, electroencephalographic signals, electrocardiographic
signals, and electrodermal activity signals (Healey and Picard,
2005; Singh et al., 2013; Peng et al., 2012; Al-Shargie et al.,
2016). Among these, heart rate variability (HRV), derived
from ECG signals, has gained increasing utilization in the
assessment of psychological stress in recent years, owing to its ease
of measurement.

Existing research indicates that stress disrupts the homeostasis
of sympathetic and parasympathetic nervous system activity,
thereby altering the oscillations of the cardiac cycle (Pereira et al.,
2017; Petrowski et al., 2010; Camm et al., 1996a; Mukherjee et al.,
2011; Luque-Casado et al., 2016; Beauchaine and Thayer, 2015).
HRV, calculated from the intervals between two consecutive R-
wave peaks (RR intervals) on an ECG, can effectively reflect these
oscillations (Camm et al., 1996a). HRV features encompass a set
of statistical metrics that provide insights into heart activity across
time domain, frequency domain, and non-linear. During periods
of psychological stress, significant alterations in HRV features are
observed (Acerbi et al., 2016; Hynynen et al., 2011; Cinaz et al.,
2013; Taelman et al., 2011; Tharion et al., 2009; Blechert et al.,
2006; McDuff et al., 2016; Bernardi et al., 2000; Lucini et al.,
2002; Schubert et al., 2009; Melillo et al., 2011). HRV analysis can
be conducted over different time intervals, such as 24 h (referred
to as long-term HRV analysis), 5 min (referred to as short-term
HRV analysis), or even shorter intervals (Camm et al., 1996b).
Research findings indicate that both long-term and short-termHRV
features reliably reflect stress-related changes in real-life situations
(Castaldo et al., 2015; Hernando et al., 2016; Delaney and Brodie,
2000; Salai et al., 2016; Munla et al., 2015). In the research process,
the choice between long-term and short-term HRV largely depends
on the research question and the type of stress being studied
(Malik et al., 1996). In response to short-term stress, the autonomic
nervous system (ANS) is influenced, leading to significant changes
in HRV (Castaldo et al., 2015), which subsequently return to
normal levels. Given its ability to capture rapid fluctuations in
ANS activity, short-term HRV has been shown to be particularly

suitable for studying short-term stress (Pereira et al., 2017;
Cipresso et al., 2019).

Over the past few years, to better identify short-term stress
and mitigate the health risks associated with stress accumulation,
short-term HRV analysis (ranging from 5 to 60 s) has become
increasingly utilized. The widespread adoption of wearable sensors
in devices such as smartphones and smartwatches has further
facilitated the convenience of short-term HRV analysis (Athavale
andKrishnan, 2017; Pecchia et al., 2018). Castaldo et al. were the first
to propose a rigorous methodology for assessing the effectiveness
of ultra-short-term HRV features in detecting psychological stress.
They demonstrated that HRV analysis can reliably and accurately
detect psychological stress when transitioning from short-term
(as a reference) to ultra-short-term intervals (Castaldo et al.,
2019). Karthikeyan et al. extracted ultra-short-term (32-s) HRV
features, including both time-domain and frequency-domain
parameters. They used the Fast Fourier Transform (FFT) to
select optimal features for model input, and, based on PNN and
KNN algorithms, identified the best smoothing factor and K
value, achieving high accuracy in classifying stress and normal
states (Karthikeyan et al., 2013). Salahuddin et al. utilized the
Stroop Color Word Test (SCWT) as a stress-inducing task and
successfully collected data from 60 volunteers in both resting and
stress states. Using statistical methods, they analyzed changes in
various time-domain and frequency-domain features of ultra-
short-term HRV under different conditions, providing a theoretical
foundation for the effective monitoring of short-term stress
(Salahuddin et al., 2007).

In addition to stress, the influence of circadian rhythms on
sympathetic and parasympathetic nervous system activity has
been increasingly reported in recent years (Niwa et al., 2011;
Okada et al., 2013). Naturally, HRV and other physiological
indicators have also been observed to follow circadian rhythms
(Lee et al., 2023; Stangherlin et al., 2020). However, many existing
studies either overlook the effects of these rhythms or mitigate
them by selecting a fixed short time window for experimental
assessments of stress based on HRV. For instance, Hemakom et al.
developed a machine learning model to classify various stress
levels using ECG and EEG data, with data collection limited to
the hours between 10 a.m. and 12 p.m. to control for circadian
influences (Hemakom et al., 2024). Similarly, da Estrela et al.
studied low high-frequency HRV to determine whether they can
predict stress-related sleep disturbances. To account for diurnal
variations in HRV, all testing sessions were conducted in the
morning (da Estrela et al., 2020). Despite these efforts, classifiers
trained on physiological data collected during fixed short time
periods often perform poorly when applied to stress assessment
across other times of the day. Hayano et al. demonstrated that,
due to the presence of both circadian and ultradian rhythms,
applying short-term HRV analysis methods to long-term HRV
data collected in free-living conditions can lead to inaccurate
conclusions (Hayano and Yuda, 2021). Therefore, it is essential to
mitigate the influence of circadian rhythms when evaluating stress
based on HRV.

The analysis of the above literature motivated us to explore
whether HRV data, with circadian rhythm trends removed, could
be effectively used to train a classifier capable of accurately
assessing stress levels across all time periods. In this study, we
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employed detrended short-term HRV features to evaluate stress.
To capture circadian rhythm trends, we collected RR interval
data from 50 volunteers continuously over 3 days, during which
stress was induced using the SCWT task (Karthikeyan et al.,
2014; Al-Shargie et al., 2022; Stroop, 1992). We then applied
a smoothing prior method to eliminate the circadian rhythm
trend from the HRV feature data. Subsequently, we trained
XGBoost classifiers using both raw and detrended HRV feature
data collected during the SCWT test, confirming the effectiveness
of the detrended HRV features for assessing stress throughout
the day. The influence of age and participants’ familiarity with
the experiment on the final classification accuracy was also
investigated. We proposed this approach primarily to enhance
the accuracy of stress recognition, making it more applicable in
real-life scenarios.

2 Materials and methods

Briefly, the specific process we established for developing a
classifier to assess stress is as follows:

1. Data collection: RR interval data from 50 volunteers were
collected continuously over 3 days using smartwatches, with
stress induced through the SCWT task at 8:30 a.m., 2:00 p.m.,
and 10:30 p.m. each day.

2. Data preprocessing: Confidence ellipses were used to remove
outliers from the collected RR interval data.

3. HRV feature extraction: HRV feature data for each individual
was calculated throughout the day based on the denoised RR
interval data. Subsequently, circadian rhythm trends in the
HRV feature data were obtained and removed.

4. XGBoost classifier training: The detrended HRV feature data
from the SCWT test sessions were integrated into a training
set, and an XGBoost model was trained as a classifier to
assess stress.

Figure 1 provides an overview of the experimental workflow.
Below are the specific details of each experimental step.

2.1 Participants

During the data collection phase, fifty healthy volunteers
(22 males and 28 females, aged 23–50) were recruited based
on pre-screening questionnaires confirming good overall health,
absence of psychological and cardiovascular diseases, and no
color blindness or color weakness. These participants, comprising
students and teachers, contributed heartbeat interval (RR interval)
data for subsequent HRV analysis (as shown in Figure 2A). To
comprehensively capture circadian rhythm information, RR interval
data were collected continuously over a period of 3 days from
each participant using a smartwatch. If a participant interrupted
the data collection process on any given day, they were asked to
reschedule and complete the data collection on a different day. The
experimental procedure posed minimal impact on participants and
did not interfere with their daily activities. Ethical approval for
the study was obtained from the Ethics Committee of Soochow
University (Approval No. SUDA20230828H01).

2.2 Experiment setup and task sequence

To collect data under stress conditions, stress was induced using
the SCWT task (Karthikeyan et al., 2014; Al-Shargie et al., 2022;
Stroop, 1992). To examine the effect of circadian rhythms on HRV,
each participant completed the SCWT task 9 times over the 3 days,
specifically at 8:30 a.m., 2:00 p.m., and 10:30 p.m. daily. Each SCWT
session consisted of three phases (as shown in Figure 2B). Step 1
(resting phase): Participants were instructed to relax for 5 min prior
to the task, either by closing their eyes or listening to soft music.
Step 2 (stress phase): Participants then performed the SCWT on a
computer, where a word describing a color was displayed with the
font color differing from the word’s meaning. Below the word were
five colored blocks. The participants were required to click the block
that matched the color described by the word. To ensure pressure
conditions during the test, participants are required to complete at
least 140 questions within 2 min, with no more than two errors. If
these criteria are notmet, an immediate retest at the same time point
is administered. The total response time must not exceed 5 min;
otherwise, the test session is considered invalid. Step 3 (resting
phase): Following the test, participants were given time to relax by
sitting quietly to alleviate any residual stress.

In the SCWT test, the incongruent relationship between the
word meaning and its font color could easily mislead participants,
making it challenging to select the correct color block. This required
participants to maintain high levels of concentration to complete
the word-color matching tasks quickly and accurately, effectively
inducing psychological stress. Furthermore, resting phases were
incorporated before and after the SCWT test to minimize the
influence of confounding factors, such as physical exertion, on the
experimental outcomes.

2.3 Data acquisition

To successfully obtain the collected data, RR interval data from
all volunteers were continuously recorded over a 3-day period
using a smartwatch (Huawei Watch GT 2, green light, reflection
pattern). The sensors used in this experimental equipment could
measure ECG to capture RR interval data, with precision down to
the millisecond. Besides, collecting ECG data using a smartwatch is
very convenient and has minimal impact on participants’ daily lives.
Around midnight each day, the collected data from the previous day
was uploaded to the database via Bluetooth. Finally, we downloaded
all the experimental data from the database for subsequent analysis.

2.4 Pre-processing

After the data collection was completed, we accounted for
the potential impact of daily activities on the collection of RR
interval data—such as intense wrist movements during activities
like running, which can cause the smartwatch to produce
unstable measurements, leading to missed or extra heartbeat
values and, in turn, excessively large or small RR intervals—we
converted the collected one-dimensional RR interval data into
two-dimensional data. Specifically, the first dimension represents
the previous RR interval value, RRi, and the second dimension
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FIGURE 1
The workflow for obtaining the classifier that identify stress across all times throughout the day. The XGBoost model is used as a classifier and trained
on detrended HRV feature data from the SCWT experiment.

represents the subsequent adjacent RR interval value, RRi+1, where
i = 1,2,…,N. The final two-dimensional dataset obtained was
{(RR1,RR2), (RR2,RR3),…,(RRN−1,RRN)}, where N is the total
number of RR intervals. Since the distribution of these two-
dimensional data points was approximately elliptical, we applied
confidence ellipses to remove noise from the data.

Generally, the mathematical expression for an ellipse is:

(
x−R1p

a
)

2

+(
y−R2p

b
)

2

= 1,

where (R1p,R2p) is the center of the ellipse. The covariance matrix of
the transformed two-dimensional RR interval data is:

C = [

[

COV (R1,R1) COV (R1,R2)

COV (R2,R1) COV (R2,R2)
]

]
,

where COV(Ri,Rj) represents the covariance between the variables
Ri and Rj. Then, the elliptical equation that measures the error of
each data point can be derived.

(R1 −R1p)
2

λ1
+
(R2 −R2p)

2

λ2
= s, (1)

λ1 and λ2 are the largest and smallest eigenvalues of the covariance
matrix C, respectively, and s is the scale of the ellipse. Additionally,
based on the chi-square distribution, we can obtain P(s < 5.991) =
0.95. Therefore, we set the value of s to be 5.991 to obtain a 95%
confidence ellipse. According to Equation 1, the long axis of the
confidence ellipse is length 2√5.991λ1, and the short axis is length

2√5.991λ2. If we denote the eigenvector corresponding to the largest

eigenvalue λ1 of the covariance matrix as ν1, then the angle between
themajor axis of the ellipse and the positive direction of the x-axis is:

α = arctan
ν1 (y)
ν1 (x)
.

ν1(y) and ν1(x) respectively represent the magnitudes of the
projections of ν1 onto the positive y-axis and the positive x-axis.

Finally, based on the center of the ellipse (R1p,R2p), the
eigenvalues λ1 and λ2 of the data covariance matrix, the scale of the
ellipse s, and the angle α between the major axis and the x-axis, we
can establish a confidence ellipse to filter out noise from the data.

We randomly selected 50 data points from the collected RR
interval dataset to illustrate the results of noise removal using
confidence ellipses. As shown in Figure 3, the two-dimensional
RR interval data within the confidence ellipse indicate that the
differences between adjacent RR intervals are minimal. In contrast,
data points outside the confidence ellipse exhibit significant
differences between adjacent RR intervals and are therefore
considered noise to be removed.

In this work, we employed a sliding window confidence ellipse
method to remove noise from each volunteer’s RR interval data.
The window length was set to 50 data points, with an overlap of
25 data points between consecutive windows. Specifically, the first
50 data points of each volunteer’s RR interval data were used to
form the initial window. After applying the confidence ellipse to
remove noise, the windowwas shifted back by 25 points to create the
second window, where the confidence ellipse was established again
for noise removal. This procedure was repeated until the window
encompassed all data points. Figure 4 illustrates the results of the
noise removal process applied to one volunteer’s RR interval data.
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FIGURE 2
Details of data collection. (A) The age distribution and work status of volunteers participating in the SCWT experiment. (B) The process of the SCWT
task. The RR interval data for each volunteer was collected over three consecutive days (marked by blue blocks). A Stroop Color Word Test was
conducted at 8:30 a.m., 2:00 p.m., and 10:30 p.m. each day to induce stress (indicated by red vertical lines within the blue blocks).

The blue line represents the distribution of the original RR intervals,
which exhibits significant fluctuations, while the red line indicates
the distribution of theRR intervals following noise removal, showing
a much smoother profile. Additionally, we quantified the dispersion
of the RR interval data in the dataset by calculating the coefficient of
variation (CV), using the following formula:

CV = σ
μ
,

where σ is the standard deviation and μ is the mean of the RR
interval data. Figure 5 displays the CV of the original RR interval
data across all volunteers (average CV = 0.28) and the CV of the
RR interval data following noise removal (average CV = 0.2). These
results indicate that the sliding window confidence ellipse method
effectively reduced abnormal fluctuations in the RR intervals.

2.5 Feature extraction

To evaluate HRV based on the collected RR interval data,
we introduced five statistical metrics to extract the time-domain
features of the RR interval data. The mean (meanNN) was used to

reflect the average level of the RR intervals. The calculation formula
is as follows:

meanNN = ̄RR =
N

∑
i=1

RRi

N
,

where N is the number of RR intervals within a 2-min period, ̄RR is
the average value of the RR intervals within a 2-min period and RRi
represents the ith RR interval.

The average heart rate (HR) was used to reflect the average level
of heart rate.

HR =
∑N1

i=1
N1
RRi
+∑N2

i=1
N2
RRi

2
,

N1 and N2 represent the number of RR intervals in the first and
second minutes, respectively.

The overall standard deviation (SDNN)was introduced to reflect
the overall variation in HRV:

SDNN = √ 1
N

N

∑
i=1
(RRi − ̄RR)

2,
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FIGURE 3
Diagram illustrating the removal of outliers in RR intervals using confidence ellipses. The blue points represent the distribution of the transformed
two-dimensional RR interval data, where the values of each point’s two dimensions correspond to the lengths of two consecutive RR intervals. The red
area indicates the 95% confidence ellipse interval.

FIGURE 4
Effect of outlier removal. Comparison of 72-h RR interval data (RRI) before and after outlier removal for a volunteer. The blue part represents the data
distribution before outlier removal, and the red part represents the data distribution after outlier removal.

and the root mean square of successive differences (RMSSD) was
used to estimate the fast component variations in HRV:

RMSSD = √ 1
N− 1

N−1

∑
i=1
(RRi+1 −RRi)

2.

Additionally, we used the proportion of the number of successive
RR interval differences greater than 50 milliseconds to the total

number of RR intervals (PNN50) to reflect sudden changes in RR
intervals. The calculation formula is as follows:

PNN50 = NN50
TotalNN

,

where NN50 represents the number of successive RR interval
differences greater than 50milliseconds, andTotalNN represents the
total number of RR intervals within a 2-min period.
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FIGURE 5
Comparison of CV coefficients before and after outlier removal for the RR interval data of all volunteers. After outlier removal, the average CV
coefficient decreased from 0.28 to 0.2.

To perform frequency domain analysis of HRV based on the RR
interval data, we first estimated the power spectral density (PSD( f))
using an autoregressive (AR) model. Subsequently, we integrated
the power spectrum over different frequency bands to extract three
frequency domain features. The details of the power spectral density
estimation are provided in Supplementary Material. Based on the
frequency spectral density, we extracted the very low frequency
power (vl f).

vl f = ∫
0.04

0.0033
PSD ( f)d f,

low frequency power (l f)

l f = ∫
0.15

0.04
PSD ( f)d f,

and high frequency power (h f)

h f = ∫
0.5

0.15
PSD ( f)d f.

To further analyze HRV from a nonlinear perspective, we
extracted two parameters based on the Poincare plot of the two-
dimensional RR interval data (Brennan et al., 2001). The first
parameter is the length of the minor axis (ST1) of the scatter plot
distribution area within a specified time period, which is associated
with vagal nerve activity. The second parameter is the length of the
major axis (ST2) of the scatter plot distribution area within the same

time period, which is indicative of changes in sympathetic nervous
system activity. Their calculation formulas are as follows:

ST1 = √ 1
N− 1

N−1

∑
i=1
(RRi +RRi−1 − 2 ̄RR)

2.

ST2 = √ 1
N− 1

N−1

∑
i=1
(RRi −RRi−1)

2,

2.6 Detrending of data

Since both stress and circadian rhythms influence the activity
of the sympathetic and parasympathetic nervous systems, which
in turn alter heart rate oscillations, HRV, as a reflection of these
oscillations, is naturally related to both stress and circadian rhythms.
To better observe the contribution of stress to HRV changes,
we considered removing the circadian rhythm trends from each
volunteer’s HRV feature data to improve the accuracy of stress
detection. The Smoothness Priors Approach (SPA) is a nonlinear
detrending technique for signals (Karjalainen, 1997). This method
assumes that the original data signal, i.e., the time series X, is
composed of two parts:

X = Xs +Xt,
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where Xs is the stationary component and Xt is the nonlinear
periodic trend component, which can be expressed as:

Xt =Hθ+ ν,

where H ∈ ℝN×M is the observation matrix, θ ∈ ℝM is the regression
parameter, ν is the observation error. We estimated the parameter θ
such that X̂t =Hθ̂ to estimate the trend component in the original
data. The estimating of θ was commonly done using the method of
least squares.The SPA introduced a differential term ‖Dd(Hθ)‖ in the
process of finding the optimal solution, minimizing it to ensure that
θ filtered out the trend component of the data.

θλ = arg min
θ
{‖Hθ−X‖2 + λ2‖Dd (Hθ)‖2} , (2)

λ represents the regularization parameter, and Dd is the
matrix of the discretized dth order differential operator. If
the sequence X had N extreme points, represented as a
column vector R = [R1,R2,…,RN]⊤ ∈ ℝN, then the first-order
trend of R was given by R1 = [R2 −R1,R3 −R2,…,RN −RN−1] ∈
ℝN−1, and the second-order trend of R could be expressed
as R2 = [R3 −R2 − (R2 −R1),R4 −R3 − (R3 −R2),…,RN −RN−1−
(RN−1 −RN−2)] ∈ ℝN−2, by analogy, we could obtain the discrete
representation of the trend component R of any order. Then,Dd was
calculated as follows:

Dd =

[[[[[[[[[[[[[

[

d(Rd)1
dR1

d(Rd)1
dR2

⋯
d(Rd)1
dRN

d(Rd)2
dR1

d(Rd)2
dR2

⋯
d(Rd)2
dRN

⋮ ⋮ ⋱ ⋮
d(Rd)N−d

dR1

d(Rd)N−d
dR2

⋯
d(Rd)N−d
dRN

]]]]]]]]]]]]]

]

.

Furthermore, we could obtain the solution to Equation 2 as follows:

θ̂λ = (H⊤H+ λ2H⊤D⊤dDdH)
−1H⊤X,

X̂t =Hθ̂λ,

X̂t is the estimated value of the trend component. For simplicity,
let H be the identity matrix I and the order of Dd be 2. Ultimately,
we could obtain the part of the original sequence without the
trend component:

X̂s = X−Hθ̂λ = [I− (I+ λ2D⊤2D2)
−1]X = LX.

The role of L is akin to a high-pass filter, which filters out the low-
frequency components of the sequence.The parameter λ determines
the frequency of the filtered signal, i.e., the frequency response. To
adequately filter out the rhythmic fluctuations in HRV features, we
chose the parameter λ = 10000, corresponding to a cutoff frequency
of 0.0012, which was approximately a 24-h period.

2.7 State classification

Using the detrended HRV feature data obtained during
the SCWT task as the training set, the next step involves

establishing a classifier to assess stress. Extreme Gradient Boosting
(XGBoost) is a classification model known for its superior accuracy
compared to traditional classifiers and its ability to handle diverse
types of data (Chen and Guestrin, 2016). In this study, we utilized
XGBoost as a classifier to estimate stress states based on the extracted
HRV features. The training process for the XGBoost model is
outlined as follows:

First, we input the training datasetT = {(x1,y1), (x2,y2),…,(xn,yn)},
xi = (xi1,xi2,…,xim) ∈ X, yi ∈ Y into XGBoost. xij represents the jth

feature of the ith sample, and yi represents the label of the ith sample,
i = 1,2,…,n. Then, we can build the classification model.

ŷi =
K

∑
k=1

fk (xi) , fk ∈ F

F = { f (x) = ωq (x)}(q:R
k→ T,ω ∈ Rt) .

where K represents the number of trees, and f is a function from
the function spaceF . We use the squared error as the loss function,
specifically expressed as

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) ,

Ω( fk) = γT+
1
2
λ

T

∑
j=1

ω2
j ,

where l is the loss function, ω is the penalty term, T is the number of
leaf nodes, and γ and λ are regularization parameters used to control
the number of leaf nodes and the output scores of the leaf nodes,
respectively. Since the prediction results of the trees generated in
each iteration during the training process are fitted to the residuals
of the prediction results from the previous iteration, the model at
iteration t can be expressed as

ŷ(t)i = ŷ
(t−1)
i + ft (xi) .

Besides, the corresponding objective function can be expressed as

Obj(t) =
n

∑
i=1

l(yi, ŷ
(t)
i ) +

t

∑
k=1

Ω( fk)

=
n

∑
i=1

l(yi, ŷ
(t−1)
i + ft (xi)) +

t−1

∑
k=1

Ω( fk) +Ω( ft) ,

if we let gi = ∂ŷ(t−1)i
l(yi, ŷ

(t−1)
i ), hi = ∂ŷ(t−1)i

l(yi, ŷ
(t−1)
i ), then the

objective function can be approximated as

Obj(t) =
n

∑
i=1
(l(yi, ŷ

(t−1)
i ) + gi ft (xi) +

1
2
hi f

2
t (xi)) +

t−1

∑
k=1

Ω( fk) +Ω( ft) .

Since the training for the first t− 1 iterations has been completed,
l(yi, ŷ

(t−1)
i ) and ∑

t−1
k=1Ω( fk) are constants, and the objective function

can be further simplified as

Obj(t) =
n

∑
i=1
(gi ft (xi) +

1
2
hi f

2
t (xi)) +Ω( ft)

=
n

∑
i=1
(gi ft (xi) +

1
2
hi f

2
t (xi)) + γT+

1
2
λ

T

∑
j=1

ω2
j

=
T

∑
j=1
((∑

i∈Ij

gi)ωj +
1
2
(∑

i∈Ij

hi + λ)ω2
j)+ γT,
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where ωj represents the value of the jth leaf node. Let Gj = ∑i∈Ijgi,
Hj = ∑i∈Ijhi, then Gj andHj represent the sum of first derivative and
second derivative of the loss function of all samples falling on the
jth leaf node, respectively. Then the objective function can be further
simplified as

Obj(t) =
T

∑
j=1
(Gjωj +

1
2
(Hj + λ)ω2

j )+ γT. (3)

Therefore, the optimal value of ωj is ωj = −
Gj

Hj+λ
, and

substituting in Equation 3 gives

Obj(t) = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT.

In general, when building a regression tree, the best partition point
of the tree is selected based on the following gain:

Gain = ObjL+R − (ObjL +ObjR)

= (−1
2
(GL +GR)2

HL +HR + λ
+ γT)

−(−1
2
(

G2
L

HL + λ
+

G2
R

HR + λ
)+ γ (T+ 1))

= 1
2
(

G2
L

HL + λ
+

G2
R

HR + λ
−
(GL +GR)2

HL +HR + λ
)− γ.

(4)

3 Results

3.1 HRV feature analysis

Based on the RR interval data collected from 50 volunteers, we
calculated the values of 10 HRV features for each participant during
both the rest and stress phases across three SCWT task stages each
day. Our findings indicated that the distribution of all features is
influenced not only by stress but also by circadian rhythms. For
instance, Figure 6 illustrates the distribution of meanNN and HR
for the 50 volunteers during the rest and stress phases at different
times of the day. BothmeanNN andHR exhibited variations in their
median values between stress and rest states over time, with similar
trends in these changes. Furthermore, significant differences were
observed in the distributions of meanNN and HR between the rest
and stress states at the same time periods (p < 0.05). Notably, around
8:30 and 22:30, the distributions of meanNN and HR during the
stress state overlapped with those during the rest state observed at
approximately 14:00.

This finding indicates that meanNN and HR are sensitive
indicators of stress. Additionally, when assessing stress based on
these HRV features, it is essential to further mitigate the influence
of circadian rhythms. Moreover, the effect of circadian rhythms
on the data distribution was also evident for the remaining
eight features (Supplementary Figure S1).

3.2 Circadian rhythm analysis

Given that circadian rhythms influence all HRV features, we
conducted a detailed analysis of the specific periods associated

with each feature, verifying the presence of circadian rhythms
through sinusoidal fitting. Using the 3-day RR interval data from
all volunteers, we extracted the values of 10 HRV features every
2 min. Subsequently, we applied FFT to determine the periods
and amplitudes of all features (Cooley and Tukey, 1965). We then
calculated the mean values of the 10 features for each period
across all volunteers, allowing us to perform interval estimation
of the overall mean. The amplitude of each feature exhibited
significant peaks around 360 min and 720 min, with the 95%
interval estimates aligning closely with the trends in the mean
values (as shown in Figure 7). These results indicate that each
feature demonstrated periodicity, consistently present within the
population. Since feature values were extracted at 2-min intervals,
the actual corresponding periods corresponded to 12 h and 24 h.
This suggests substantial 24-h fluctuations in each feature, alongside
potential 12-h fluctuations during daytime hours.

Furthermore, to quantify the differences in circadian rhythms
both between individuals and within the same individual across
different days, we employed a second-order sine function to fit the
time series of each feature for all volunteers collectively.

y = A0 +A1 sin (ωx) +B1 cos (ωx) +A2 sin (2ωx) +B2 cos (2ωx) ,
(5)

where A0 is a constant, A1, B1, A2 and B2 are the amplitudes,
and ω is the frequency. These parameters described the diurnal
dynamic variations of HRV features, which were fitted using
MATLAB according to Equation 5 to obtain the results. As
illustrated in Figure 8, the fitting results for meanNN, HR, PNN50
and ST1 correspond closely with the variation trends of the original
data over time.The x-axis denotes time, with x values in the intervals
1–501, 735–1,242, and 1,472–1978 corresponding to the time range
of 7:30 a.m. to 12:00 a.m., while the remaining intervals represent the
hours from 12:00 a.m. to 7:30 a.m. These features exhibit significant
diurnal rhythms. For instance, meanNN initially decreases, then
stabilizes, and finally increases throughout the day, exhibiting an
opposite trend at night. Notably, we also observed that the feature
values at night were either significantly higher or significantly lower
than those during the day. This results in substantial differences
between the distributions of rest and stress state data collected
during the day compared to those collected at night. If HRV feature
data from different times are input into the same classifier, it may
not accurately assess the stress state. For the remaining six features,
we similarly applied a second-order sine function for fitting and also
observed clear rhythmicity.

Additionally, we fitted the 10 feature data for each volunteer on
each day separately, obtaining the corresponding fitted parameter
values for each individual on each day (A1, B1, A2 and B2). To
compare the variations in HRV within an individual over 3 days and
across all the participants, we then calculated the mean values of
each parameter across all days for the 50 volunteers (mean), aswell as
the mean standard deviation of each parameter for each individual
over the 3 days (std1), and the overall standard deviation of each
parameter across all days (std2) (as shown in Table 1). By comparing
std1 and std2, we found that the differences in rhythmic parameters
within the same volunteer across different days were relatively small.

These results indicate that the 10 HRV features exhibit a distinct
circadian rhythm trend, and the specific rhythm-related parameters
obtained can be utilized for the subsequent removal of these
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FIGURE 6
Distribution of meanNN and HR during the SCWT tasks at three time points each day: (A) meanNN, (B) HR. The blue box plots represent the data
distribution for the resting state, with blue dots indicating the median. The orange box plots represent the data distribution for the stress state, with
orange stars indicating the median.

FIGURE 7
Period spectrum plots of HRV features for all volunteers. The blue line represents the average amplitude, and the shaded area corresponds to the
interval estimate.

trends. Moreover, the rhythmic patterns of HRV parameters exhibit
minimal fluctuations within individuals over three consecutive days,
reflecting relative intra-individual stability. Consequently, data from
the previous day can be utilized as a reference for detrending

circadian rhythm trends when assessing stress throughout the
day. However, considerable inter-individual variability is observed,
suggesting that the data collected from all volunteers encompass a
certain degree of diversity.
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FIGURE 8
Results of the second-order sine function fitting for HRV features: (A) meanNN, (B) HR, (C) PNN50, (D) ST1.

3.3 Detrended HRV feature analysis

Considering the influence of circadian rhythms onHRV features
in stress assessment, we further investigated the effects of removing
these trends from the HRV feature data. The distribution of the
10 HRV feature values for all volunteers during the rest and stress
phases of the SCWT experiment is illustrated in Figure 9. Each panel
presents two graphs: the left graph displays the value distribution
of each feature during the rest and stress phases before detrending,
while the right graph shows the distribution after detrending.
Notably, distinct differences in the distribution of each feature
between the rest and stress phases are observed both before and
after the detrending process (p < 0.05). To further investigate, we
examinewhether detrending enhances these differences,making the
separation between the two states more pronounced.

First, we quantified the differences in value distributions of each
feature between groups and within groups during the rest and stress
phases using the following equations:

SSA = n1(x̂1 − x̂)
2 + n2(x̂2 − x̂)

2,

SSE =
n1

∑
j=1
(x1j − x̂1)

2 +
n2

∑
j=1
(x2j − x̂2)

2,

where n1 and n2 represent the sample number of the feature data
during the rest and stress phases, respectively, x̂1 and x̂2 represent
the means of the feature data during the rest and stress phases,
respectively, and x̂ is the overall mean of the features. Additionally,
the degrees of freedom for SSA and SSE are 1 and n1 + n2 − 2,
respectively. Then, we can calculate the F-statistic for each feature
using the following formula:

F = SSA
SSE/(n1 + n2 − 2)

.

The larger the F value, the greater the difference in data distribution
between the rest and stress phases for the corresponding feature.

The calculated F-statistic results for each feature before and
after detrending are presented in Table 2. All features exhibited
significantly increased F values following detrending, indicating
that the distribution differences between the rest and stress phases
became more pronounced.

In summary, the influence of circadian rhythms leads to
significant overlap in the HRV feature distributions for stress and
rest states throughout the day. By removing the circadian rhythm
trend, the differences in HRV features between stress and rest states
are enhanced.

3.4 Stress assessment using XGBoost

To investigate the impact of detrended HRV feature data
obtained during the SCWT task on stress assessment throughout
the entire time period, we trained XGBoost models as classifiers.
We determined the optimal hyperparameters of the model through
a grid search approach. Specifically, we adjusted each parameter
individually within a predefined range and utilized these parameters
to train the model. In each training session, 20% of the training
dataset was reserved as the test dataset, with the F1 score serving
as the evaluation criterion for model performance. Ultimately, we
identified the parameter settings that yielded the highest accuracy
on the test dataset as the optimal values for each hyperparameter.

Additionally, XGBoost, as a gradient boosting tree model,
has the capability to output feature importance. Specifically, for
each node of each decision tree, XGBoost calculates the gain
resulting from splitting the node, which reflects the extent to
which the split enhances model performance (Equation 4). The
importance score for each feature is then obtained by weighting
and summing the results across all decision trees, followed by
averaging these scores (as shown in Figure 10). To enhance the
model’s accuracy, we ultimately selected the top seven important
features for classification.

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1535331
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Shen et al. 10.3389/fphys.2025.1535331

TABLE 1 Parameter results of the second-order sinusoidal fitting for HRV feature data of all volunteers. For each fitted parameter, the first row
represents the mean value of the parameters obtained by fitting 3 days of data together for each volunteer, resulting in the mean value for 50
volunteers. The second row represents the mean of the standard deviations of the fitting parameters for each volunteer over 3 days. The third row
represents the standard deviation of the 50 parameters obtained by fitting 3 days of data together for each volunteer.

Parameter Statistic meanNN HR SDNN RMSSD PNN50

A1

mean 77.60 −7.20 −18.72 −32.94 −0.08

std1 11.08 0.99 4.77 10.02 0.09

std2 41.98 4.09 19.67 28.69 0.22

B1

mean −61.04 4.68 11.99 16.53 −0.13

std1 10.80 1.12 3.378 13.45 0.18

std2 35.18 2.28 21.08 22.43 0.47

A2

mean 2.28 −0.43 −1.21 −4.33 −0.03

std1 1.16 1.23 0.69 2.33 0.05

std2 27.12 2.04 13.74 18.56 0.12

B2

mean −37.29 3.40 11.96 13.34 0.06

std1 11.17 1.55 3.25 3.54 0.07

std2 22.41 2.09 17.60 24.69 0.16

Parameter Statistic vl f l f h f ST2 ST1

A1

mean −9.44 −82.62 −551.8 −23.39 −18.42

std1 2.28 19.51 132.1 3.51 1.00

std2 16.13 97.15 341.34 20.39 22.85

B1

mean 10.08 52.62 317.2 11.74 14.91

std1 2.35 22.01 162.9 1.08 9.21

std2 22.33 70.34 458.0 15.95 19.51

A2

mean −1.18 −20.15 −102.4 −3.09 0.95

std1 0.43 8.14 23.0 1.31 0.56

std2 10.24 55.80 151.5 13.19 14.42

B2

mean 10.08 34.07 204.2 9.49 11.53

std1 2.82 13.75 63.9 9.20 2.92

std2 18.32 69.02 195.9 17.56 20.11

The classification accuracy of the XGBoost model trained on
various HRV feature datasets is depicted in Figure 11. Figures 11A–C
illustrate the accuracy of classifiers trained on HRV feature data
obtained from the SCWT experiments conducted in the morning,
afternoon, and evening, respectively, using both raw data and
detrended data for stress assessment across different time periods.
For the raw dataset, classifiers trained on data from a specific
SCWT task exhibit high accuracy in assessing stress during that time
period. However, these classifiers show significantly lower accuracy
in assessing stress for other SCWT tasks compared to those trained

on detrended data. Furthermore, classifiers trained on detrended data
fromeachSCWTtaskdemonstratehigheroverallaccuracyinassessing
stress across all SCWT tasks compared to those trained on raw data
(morning: +1.62%, afternoon: +3.05%, evening: +5.22%) and exhibit
less variation in accuracy across different time periods.

These results indicate that the presence of circadian rhythms
adversely affects stress detection throughout the day, while
detrending significantly enhances classification accuracy.

Furthermore, we trained the XGBoost model using integrated
HRV feature data from all SCWT tasks (as shown in Figure 12). To
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FIGURE 9
Comparison of feature distributions between rest and stress states before and after removing circadian rhythm trends. For each module, the left panel
shows the feature distribution before trend removal, and the right panel shows the distribution after trend removal.

ensure a consistent sample size in the training dataset, we randomly
selected one-third of the data from each SCWT task and combined
them to form the training dataset.

For the non-detrended data, the classifier trained on the
integrated dataset from all SCWT tasks exhibited overall lower
accuracy in assessing stress compared to classifiers trained on
data from each individual SCWT task. This finding indicates that
simply integrating data from different time periods into a single
training dataset does not enhance the overall accuracy of stress
assessment across all periods, highlighting the significant impact of
circadian rhythms.

In contrast, for the detrended data, the classifier trained on
integrated data from different SCWT tasks maintained a high
classification accuracy. As illustrated in Figure 12, the accuracy of

the classifier reaches 74.82% for overall stress assessment across
all SCWT tasks, reflecting a notable improvement of 13.67%
compared to the classifier trained on the raw data. This substantial
enhancement highlights the critical role of detrending in improving
stress recognition performance and underscores its necessity for
achieving more reliable and accurate analyses.

Notably, the detrended data used for training the stress
classification model was collected from all volunteers. In general,
HRVvaries among individuals,withdifferencespotentially influenced
by factors such as age. For instance, the results presented in Table 1
demonstrate the diversity of circadian rhythm trends in HRV features
across individuals. To further investigate this, we examined the impact
of inter-individual HRV differences on the classification accuracy of
the XGBoost model trained on detrended data.
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TABLE 2 The F-statistics for the distribution of each HRV feature in
resting and stress states. The first column shows the results for HRV
feature data without removing circadian rhythm trends, while the
second column shows the results for HRV feature data after removing
circadian rhythm trends.

Features Original F-statistic Detrended F-statistic

meanNN 54.410 151.796

HR 47.975 152.578

SDNN 23.514 33.829

RMSSD 19.352 26.978

PNN50 19.465 30.536

vl f 15.438 20.984

l f 23.298 30.256

h f 16.811 22.750

ST2 19.391 27.030

ST1 25.722 37.384

Since nearly half of the recruited volunteers were 26 years old or
younger (as shown in Figure 2A), we further investigated the impact
of HRV differences across age groups on the classification accuracy.
We categorized all participants into two groups: Group 1 (age ≤ 26)
and Group 2 (age > 26). In Figure 13A, “Model1” and “Model2”
represent the overall classification accuracy of stress assessment across
all timeperiods forall participants, obtained fromclassifiers trainedon
detrended data from volunteers in Group 1 andGroup 2, respectively.
Due to the relatively concentrated age distribution of our recruited
volunteers and the removalof circadian rhythmtrends,whichpartially
reducesHRVfeaturedifferencesacrossagegroups, theoverallaccuracy
of stress assessment using classifiers trained on detrended data from
these two groups remains comparable. However, it is important to
note that when there is a larger age disparity among participants, the
impact of age-related HRV differences on stress assessment accuracy
should be carefully considered.

Moreover, during the data collection phase, as volunteers
become more familiar with the experimental procedure, their
stress levels and patterns may change. To investigate the impact
of this familiarity on the accuracy of the final classifier, we
conducted further analyses. In general, volunteers’ familiarity with
the experiment gradually increases from the first to the third day.
To examine this effect, we trained three classifiers separately using
detrended SCWT task data from the first, second, and third days,
respectively. We then evaluated the accuracy of these classifiers in
assessing stress levels for all volunteers on each individual day, aswell
as their overall accuracy across the 3 days. As shown in Figure 13B,
classifiers trained on detrended data from a specific day achieved
consistently high accuracy in stress assessment for other days, and
the overall accuracy of the three classifiers remained relatively
similar. These findings suggest that changes in stress levels and
patterns due to increased familiarity with the experiment have a
minimal impact on the accuracy of the final classifier in our study.

4 Discussion

This study analyzed the rhythmicity of HRV features influenced
by the autonomic nervous system and examined its impact on stress
detection throughout the day. First, outlier removal was conducted
on the RR interval data collected from 50 volunteers over three
consecutive days using a confidence ellipse with a sliding window.
Next, 10 HRV features were extracted. The rhythmic periods of
these HRV features were calculated using the FFT algorithm, and
the circadian rhythm trends were removed using the SPA method.
Finally, XGBoost classifiers were trained on the detrended HRV
feature data from various SCWT tasks to assess psychological states.

Specifically, during the preprocessing step, a confidence ellipse
with a sliding window was applied to the collected RR interval data
to effectively eliminate outlier data points. The exclusion of these
outliers reduced the average CV of the RR interval data from 0.28
to 0.20, thereby enhancing data quality and reliability. Then, in the
analysis of circadian rhythms in HRV features, we employed FFT
to compute the periods and amplitudes of HRV features, revealing
distinct 12-h and 24-h periodic components. Additionally, a second-
order sine function was utilized to model the diurnal fluctuations of
these features. Subsequently, to eliminate circadian rhythmic trends
in HRV features, we applied the SPA method to filter out these
trends in order to more clearly observe the contribution of stress
to HRV variations. After detrending, the distribution differences
of each HRV feature between resting and testing states were more
distinctly evident. Finally, XGBoost classifiers were trained using the
data collected from the SCWT task to evaluate stress. The classifier’s
accuracy improved by 13.67% when trained on the detrended data.

When analyzing the circadian rhythmic trends in HRV features,
we found that the day-to-day variability within the same individual
was smaller than the variability between individuals. This suggests
that circadian rhythm in individual experimental data can be
removed by using data from the previous day as a reference.
However, these HRV indicators are generally influenced by a variety
of internal and external factors. In this study, the participants were
primarily young students and teachers with relatively regular daily
routines. Given the sample size of 50, further stratification based on
factors such as menstrual cycle and menopausal status in females,
individual intelligence levels, personality traits, occupations, and
day-night work patterns would result in subgroups too small to
yield reliable conclusions. Nevertheless, the potential impact of these
factors should not be overlooked. Studies have found that children
and older adults exhibit longer reaction times and higher error rates
when performing the Stroop task (Ménétré and Laganaro, 2023). In
a small-scale study, it was found that men were consistently slower
than women across trial blocks by approximately 46 milliseconds,
although their error rates did not differ significantly (Mekarski et al.,
1996). In cognitive function tests, patients with Alzheimer’s disease
(AD) performed significantly worse than the normal control group
on the Mini-Mental State Examination (MMSE) scores and various
sub-scores of the Stroop test. Additionally, certain indices showed a
significant correlationwith glucosemetabolism in specific regions of
the prefrontal cortex (Yun et al., 2011). Studies on sleep deprivation
have found that after a night of sleep loss, participants exhibit
significantly prolonged reaction times in the Stroop task (Cain et al.,
2011). The potential roles of these factors in stress detection based
on daily HRV features will be an important focus of future research.
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FIGURE 10
Ranking of the importance of the 10 HRV features obtained using XGBoost.

FIGURE 11
Comparison of the accuracy of stress assessment for different time periods using XGBoost classifiers trained on SCWT experimental data for each time
period. This includes classifiers trained using only morning (A), afternoon (B), or evening (C) experimental data.

Additionally, due to the combined influence of stress and
circadian rhythms on HRV, we ultimately used the HRV
data with the circadian rhythmic trends removed to train the
classifier for stress assessment. It is important to note that
studies have shown stress can also affect circadian rhythms
(Weibel et al., 2002; Tahara et al., 2016), and this influence should
be considered when removing circadian rhythm components

from HRV. However, in our data collection, the stress induced
by the SCWT test was short in duration and the stressors were
controlled, minimizing the impact of stress on circadian rhythms
(Thompson et al., 2013).

In the comparison between the XGBoost classifiers trained on
detrended data and non-detrended data, when SCWT experimental
data from only the morning, afternoon, or evening were used as
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FIGURE 12
Comparison of the accuracy of stress assessment for different time periods using XGBoost classifiers trained on a dataset that randomly samples
one-third of the integrated data from different SCWT tasks.

FIGURE 13
The impact of volunteers’ age and familiarity with the experiment on the accuracy of stress assessment. (A) Comparison of the accuracy of XGBoost
classifiers trained on data from volunteers of different age groups. Model1 and Model2 represent classifiers trained on data from volunteers aged 26
and below and those aged above 26, respectively. (B) Comparison of the accuracy of XGBoost classifiers trained on data from different days. Model1,
Model2, and Model3 represent classifiers trained on volunteer data collected on the first, second, and third days, respectively.

the training dataset, classifiers trained on non-detrended data from
each SCWT task demonstrated high accuracy, but only for stress
assessment within the corresponding time period. This finding
suggests that previous studies, which collected data during fixed
time periods, may have partially reduced the influence of circadian
rhythms (Hemakom et al., 2024; da Estrela et al., 2020). However,
stress classification models developed in this way are less reliable
for detecting stress at other times of the day. In contrast, classifiers
trained on detrended HRV data from each SCWT task exhibited
consistently high accuracy in stress classification across all SCWT
tasks and achieved higher overall accuracy in stress assessment
throughout the day (morning: +1.62%, afternoon: +3.05%, evening:
+5.22%). These results indicate that classifiers trained on detrended
HRV feature data provide a more robust and effective assessment of
stress across different time periods.

Furthermore, when the data from different time periods of
the SCWT task were integrated as the training set, classifiers
trained on the non-detrended data exhibited low accuracy in stress
assessment for each SCWT task, confirming the negative impact

of circadian rhythms on stress evaluation. In contrast, classifiers
trained on the detrended data demonstrated significantly higher
accuracy in stress assessment across all SCWT tasks compared to
those trained on non-detrended data, achieving an overall accuracy
improvement of 13.67%. The significant improvement in accuracy
suggests that fluctuations in HRV features caused by intrinsic
circadian rhythms may mask the changes induced by short-term
stress, particularly when the stress levels are not extreme. Directly
analyzing non-detrended data may overlook many stress-related
probnlems, potentially leading to severe adverse consequences.
Additionally, the ability of the combined detrended data from
different time periods to produce highly accurate classifiers allows
for more flexible data collection times, enhancing the convenience
of the experimental process. Moreover, existing studies have also
evaluated stress using physiological indicators beyond HRV, such as
electroencephalography and functional near-infrared spectroscopy
(Al-Shargie et al., 2017; 2016). Since most physiological indicators
are influenced by circadian rhythms (Stangherlin et al., 2020), our
approach can be widely applied to these stress assessment methods,
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thereby improving both the accuracy of stress detection and the
convenience of data collection.

Although our findings demonstrate that removing circadian
rhythms from HRV data can enhance stress detection accuracy
across different time periods, there are still some limitations. Due
to constraints in experimental conditions and the available dataset,
this study did not directly perform stress recognition across all
time periods. Furthermore, the final classifier we obtained can only
identify the presence or absence of stress, without providing a
specific stress level. We aim to address this gap in future research. In
the SCWT task, the need to repeat the experiment following a failure
may be influenced by the participant’s personality traits, which
could affect their experienced stress levels. Additionally, repeated
exposure to the experimental procedure may introduce a training
effect. These limitations will be thoroughly addressed in future
large-scale studies. Moreover, we treated pulse rate variability (PRV)
derived from smartwatch data as equivalent to HRV. However,
prior studies have shown that PRV and HRV may differ under
certain conditions (Mejía-Mejía et al., 2020). To further improve the
accuracy of stress detection, these differences should be carefully
considered.

5 Conclusion

In this study, HRV features with circadian rhythm trends
removed were used to assess stress throughout the day. We found
that the extracted HRV features exhibited periodic fluctuations
with 12-h and 24-h cycles, causing overlaps between stress-induced
HRV feature distributions during one time period and resting states
during another, which reduced classification accuracy. Additionally,
circadian rhythm variations between different days for individuals
were considered negligible. Compared to non-detrended HRV data,
XGBoost classifiers trained on detrended data from each SCWT task
demonstrated improved overall accuracy in stress assessment across
all SCWT tasks (morning: +1.62%, afternoon: +3.05%, evening:
+5.22%), with smaller differences in accuracy across different tasks.
Moreover, when data from different time periods were combined
to train the classifier, the overall accuracy of the classifier trained
on non-detrended data for all SCWT tasks significantly decreased.
In contrast, the classifier trained on detrended data maintained
high overall accuracy, outperforming the non-detrended classifier
by 13.67%.These findings indicate that using detrendedHRV feature
data is an effective method for assessing stress throughout the day
and allows for more flexible data collection.
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