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Ultrasound signal processing plays an important role in medical image
analysis. Embedded ultrasonography systems with low power consumption
and high portability are suitable for disaster rescue, but due to the
difficulty of ultrasonic signal recognition, operators need to have strong
professional knowledge, and it is not easy to deploy ultrasonography systems
in areas with relatively weak infrastructures. In recent years, with the
continuous development in the field of deep learning and artificial intelligence,
lightweight convolutional neural networks have brought new opportunities for
ultrasound signal processing. This paper focuses on investigating lightweight
convolutional neural networks applied to ultrasound signal classification.
Combined with the characteristics of ultrasound signals, this paper provides
a detailed review of lightweight algorithms from two perspectives: model
compression and operational optimization. Among them, model compression
deals with the overall framework to reduce network redundancy, and the
latter aims at the lightweight design of the basic operational module
“convolution” in the network. The experimental results of some classical
models and algorithms on the ImageNet dataset are summarized. Through the
comprehensive analysis, we present some problems and provide an outlook
on the future development of lightweight techniques for ultrasound signal
classification.

KEYWORDS

ultrasound, signal classification, lightweight technology, model compression,
optimization of lightweight network, convolutional neural network

1 Introduction

Ultrasound imaging is a crucial medical imaging technology that, compared to
CT and X-ray, offers portability, simplicity, and no ionizing radiation, making it ideal
for deployment in resource-limited environments such as disaster relief. However,
ultrasound images are often complex and susceptible to noise, requiring doctors to
rely on subjective experience for diagnosis. Integrating artificial intelligence can assist
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in recognition, but traditional deep convolutional neural networks
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016), with high computational
demands and large parameter sizes, are unsuitable for portable
ultrasound devices. Lightweight models reduce computational
requirements, enabling real-time ultrasound image processing to
help doctors diagnose conditions more quickly and accurately,
reducing patient wait times (Liu et al., 2023). Additionally,
lightweight models minimize dependence on specialized skills and
complex equipment, improving the accessibility and portability of
ultrasound-based diagnostics. Given its lower cost compared to CT
and X-ray, ultrasound imaging facilitates the widespread adoption
of intelligent diagnostic technologies, particularly in developing
countries and remote areas (Gooßen et al., 2019). Therefore,
the popularization of lightweight technology in the ultrasound
examination process can promote intelligent progress in medical
image analysis, which can provide support for medical diagnosis
and has significant application value and social significance.

In 2016, the first lightweight model SqueezeNet (Iandola,
2016) was made public to achieve results approximating AlexNet
on the ImageNet dataset but with 1/50th of the model size
of AlexNet. Song Han and Hinton proposed weight pruning
(Han et al., 2015) and knowledge distillation (Hinton, 2015)
respectively to reduce redundancy in deep network structure from
the perspective of model compression. Lightweight techniques,
mainly lightweight model construction and model compression,
have triggered a large number of influential research and
breakthroughs (Chen et al., 2023).

In theprocessofdevelopingtraditionalneuralnetworks, theremay
be a large amount of redundancy as the depth of the network deepens.
This redundancy mainly consists of computational complexity and
manyparameters. To lighten thenetwork and remove the redundancy,
we need to optimize the model itself and the underlying framework,
of which the basic modular unit of the underlying framework is
“convolution”. Therefore, we divide the lightweight techniques into
two directions: model compression and computational optimization.
The former is to compress a large neural network into a lightweight
network, mainly including network pruning, knowledge distillation
and low-rank decomposition. The latter is to lighten the design
of “convolution”, which is an operational module in the network.
The lightweight technique can realize efficient signal analysis in
resource-constrained environments. The classification of lightweight
technologies is shown in Figure 1.

Artificial intelligence and computer-aided diagnostic solutions
can significantly standardize medical practice, reduce training time,
and improve the quality of ultrasound signals. There are four main
research areas.

1. The invocation of machine learning techniques is expected
to significantly improve signal quality and make imaging
clearer (Deffieux et al., 2021). Emerging methods such
as beamforming, super-resolution and data enhancement
techniques have achieved some results (Micucci and Iula,
2022), but they often require hardware tuning. Despite
the difficulty of implementation, research has gradually
overcome the limitations of traditional image reconstruction
algorithms, especially in the translation of ultrasound physical
measurements into visualized images.

2. Artificial intelligence algorithms can help healthcare
professionals perform a thorough examination,
thus helping to reduce the learning curve of
ultrasound scanning (Mischi et al., 2020)

3. The most competitive solutions currently available are deep
learning-based image processing methods compared to
traditional feature engineering methods (Sashidhar et al.,
2021). These algorithms show significant advantages in
measurement, quantification and computer-aided detection.

4. The application of computer-aided techniques in diagnosis and
triage is receiving research attention because these methods
can effectively reduce the burden on physicians and improve
their efficiency (Van Sloun et al., 2019).

Ultrasound imaging quality is heavily operator-dependent,
posing challenges for inexperienced practitioners. Over-filtering
and improper gain adjustments, while improving texture
smoothness, often reduce the clinical utility of images. Research into
computer-aided scanning techniques aims to enhance automation,
making ultrasound acquisition more efficient and accessible.

For developing countries, the impact of computer-aided
scanning may be even more significant. High-quality ultrasound
is inherently costly, many areas with poor infrastructure are not
equipped for ultrasound (Gooßen et al., 2019). Also, the lack of
experienced sonographers in developing countries prevents patients
from undergoing timely ultrasound diagnosis such as prenatal
examinations (Mischi et al., 2020). Therefore, the creation of a
computer-aided scanning system could make it possible to perform
ultrasound examinations in remote areas with people with only
basic anatomical knowledge. Such a system could filter out images of
clinical value and send them to radiologists for specialized diagnosis,
even if they are thousands of miles away.

Despite its advantages, ultrasound imaging presents unique
challenges due to its susceptibility to noise, variable feature scales,
and complex temporal characteristics. These signal features not only
affect the clarity and accuracy of imaging but also increase the
computational burden of deep learning models in recognition and
classification. Lightweight convolutional neural networks provide an
effective solution for ultrasound signal classification, which achieves
efficient signal analysis in resource-limited environments through
model compression and computational optimization.

Ultrasound imaging can be divided into A-type, B-type and
M-type ultrasound. A-type ultrasound displays the intensity of
a single echo, the B-type ultrasound converts the A-type signals
into two-dimensional ones for static analysis, and the M-type
ultrasound imaging is simpler and does not require complex
reconstruction, making it the first choice for portable ultrasound
detection equipment. For M-typesignals, periodic signals show
stable fluctuations, which is conducive to quantitative evaluation,
while non-periodic signals clearly show abnormal features.

As shown in Figure 2, M-ultrasound measures the change of
reflection intensity with depth and time along a fixed direction, with
the horizontal coordinate indicating time, the vertical coordinate
indicating depth information, and the brightness indicating the
strength of the reflected signals. M-Ultrasound has a very high
temporal resolution and is able to accurately capture the rapid
movement of tissues or organs, which is very suitable for detecting
dynamic tissues and organs. However, due to this dynamic
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FIGURE 1
Classification of lightweight methods.

characteristic, M-Ultrasound is more sensitive to images with
scattering noise (Kang et al., 2015) and acoustic shadow effect
(Matsuyama et al., 2022). Scattering noise is a type of grain-mounted
noise in ultrasound imaging due to the coherent superposition
of acoustic waves with scattering in tissues, which reduces the
contrast and detail resolution of the image. The acoustic impedance
difference between the bone andmuscle tissues of the human body is
extremely large, and after the ultrasound wave propagates through
the body to the bone, the ultrasound will undergo total reflection
at the bone interface due to the large acoustic impedance difference
(Li, 2022), so the ultrasoundwave cannot reach the posterior region.
This phenomenon is known as the acoustic shadow effect. Figure 3
shows an image of the rib cage under B-mode ultrasound. The
randomness and non-Gaussian distribution of the scattering noise
make ultrasound denoising an important problem.

Therefore, for ultrasound signals, if the model focuses too
much on higher-order feature correlations might enhance irrelevant
noise patterns rather than improving target clarity. Ansari et al.
(2023) annotated the extracted images using the Computer Vision
Annotation Tool (CVAT). To enhance the contrast and highlight the
liver boundary, the images were also preprocessed using Contrast
Limited Adaptive Histogram Equalization (CLAHE) Reza (2004).
Afsa et al. (2024) used uses Independent Component Analysis (ICA)
to eliminate feature redundancy, extract independent components,
and improve computational efficiency and model effect. This
method can still maintain high prediction performance in the case
of data imbalance. Regaya et al. (2023) effectively reduced image
noise and enhanced feature expression by combining maximal
overlap discrete wavelet transform (MODWT) and stochastic
resonance (SR) (Dakua et al., 2019) technology in the preprocessing
stage, providing high-quality input data for subsequent cerebral
aneurysm segmentation tasks. Ansari et al. (2024) reviewed in detail
preprocessing methods such as data enhancement and denoising
for ultrasound signals, which effectively solved data scarcity and

FIGURE 2
M-type ultrasound image.

image quality problems and provided the possibility of building an
end-to-end deep learning system.

The application of lightweight technology greatly reduces
the computing resource requirements for ultrasound signal
classification, making real-time ultrasound analysis possible.
However, due to the high temporal resolution of ultrasound signals
(such as M-mode ultrasound), the model is required to quickly
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FIGURE 3
B-mode ultrasound rib image.

process time series data to provide immediate feedback. Therefore,
parallel computing technologies, such as GPU parallel processing
and field programmable gate arrays (FPGAs), play a key role in real-
time ultrasound feedback. Zhai et al. (2019a) proposed a hardware
architecture based on Zynq SoC to accelerate the calculation of
Lattice Boltzmann (LB) method (Mazzeo and Coveney, 2008). LB
can be efficiently implemented on a variety of parallel architectures,
ranging from general purpose graphics processing units (GPGPU)
(Kuznik et al., 2010) and supercomputers (Djelouat et al., 2018).
Based on the above research, (Zhai et al., 2019b) optimized the
HemeLB model, designed an acceleration solution based on Zynq
SoC and GPU, and proposed a real-time visualization framework,
providing an efficient, scalable, and user-friendly tool for clinical
application of hemodynamic simulation. Esfahani et al. (2020)
proposed an integrated pipeline for cerebral aneurysm blood flow
simulation and real-time visualization. This pipeline provides an
efficient clinical tool for cerebral aneurysm blood flow simulation
and visualization by combining GPU-accelerated HemeLB and a
real-time rendering engine.

Through parallel computing, convolution operations,
feature extraction, and signal classification can be performed
simultaneously, thereby reducing latency and improving diagnostic
efficiency. In addition, parallel computing can also be combinedwith
deep learning technologies, such as the self-attention mechanism in
the Transformer architecture, to effectively improve the processing
capabilities of ultrasound time series signals and provide stronger
intelligent auxiliary support for portable ultrasound devices.

2 Model compression

Model compression refers to the compression of model volume
to achieve similar accuracy as the original model by reducing

the model size, removing over-parameterization redundancy and
structural redundancy, and reducing the memory footprint. Model
compression based on computer-aided diagnostic techniques
can further enhance the flexibility and deployment capability of
ultrasound diagnostic systems. According to different processing
ideas, model compression techniques can be mainly classified
into network pruning, knowledge distillation and low-rank
decompossion. Table 1 briefly summarises the characteristics of
the three basic types of model compression methods.

2.1 Network pruning

In recent years, network pruning has been widely studied as a
technique to reduce the computational and storage requirements of
neural networks, especially for the compression of deep networks.
Network pruning is used to eliminate non-critical redundancies
in the pre-trained model without affecting the accuracy of the
model. The process of network pruning is shown in Figure 4,
where a scaling factor is assigned to each channel of the
convolutional layer (Lai et al., 2018). During the training process,
these scaling factors are constrained by sparse regularization to
automatically identify unimportant channels. After constraints,
channels with smaller scaling factors are pruned. After pruning, the
model structure becomes more compact.

Network pruning techniques are widely used in ultrasound
image segmentation and classification tasks, where the
computational requirements of the model are reduced by pruning.
M-ultrasound dynamically tracks data from only a single scan line,
which has less data compared to B-ultrasound and 3D-ultrasound
but requires a higher temporal resolution. The network pruning
technique removes redundant convolutional kernels or channels
and is suitable for M-Ultrasound. The pruned network is able to
preserve dynamic signal features while reducing computational
requirements (Liu et al., 2017). Usually, network pruning can be
categorized into unstructured pruning and structured pruning by
granularity.

2.1.1 Untructured prunning
Unstructured pruning removes individual weights from the

model, which minimizes the number of parameters and is
commonly used for fine-grained pruning.

Song Han proposed the concept of Deep Compression in
2016 in order to solve the problem that neural networks are
computationally and memory intensive and difficult to deploy on
systems with limited hardware resources (He et al., 2016). It consists
of three main stages: pruning, trained quantization, and Huffman
coding. This deep compression concept compresses the neural
network without compromising accuracy. Experiments on AlexNet
(Krizhevsky et al., 2012), VGG-16 (Simonyan and Zisserman, 2014)
and LeNet (Filtersâ€™Importance, 2016) networks were compressed
by a factor of 35, 49, and 39, respectively, without loss of accuracy.
After pruning, complex neural networks can be used in mobile
applications with limited application size and download bandwidth.

However, magnitude-based weight pruning reduces a large
number of parameters in the fully connected layer and may not
sufficiently reduce the computational cost of the model due to
irregular sparsity in the pruned network. Filtersâ€ ™Importance
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TABLE 1 The comparison of basic methods for model compression.

Method Applicable layers Description Advantages and
disadvantages

Network Pruning Convolutional layer and fully connected
layer

Removing non-essential redundancies
from the pre-trained model while
maintaining accuracy

Enhances generalization and reduces
overfitting risk but requires specialized
libraries and hardware

Knowledge Distillation Convolutional layer and fully connected
layer

Allowing the student model to match
the teacher model’s performance with
lower computational and memory costs

Speeds up training and enhances
performance but is limited to
teacher-student setups

Low-rank Decomposition Convolutional layer and fully connected
layer

Decomposing convolution kernels to
reduce redundancy

Improves computational efficiency; but
hard to implement and decomposition
operation requires a lot of computation

FIGURE 4
Network pruning.

(2016) proposed to remove filters that have less impact on the
accuracy of the output. Unlike pruning weights, this method does
not produce sparse connection patterns.

Network pruning can also be combined with other model
compression techniques. Park and No (2022) proposed a ‘prune-
then-distill framework’, where the teacher model is first pruned
to make it transferable and then distilled into the student model.
Experiments have shown that distillation of the pruned teacher
model can outperform the unpruned teacher model, which reverses
the assumption that unpruned teacher networks are always more
effective.

As research progressed, network pruning did not focus just
on a single weight and certain modules of the neural network,
but aimed at an entire layer of the network. Liao et al. (2023)
investigated an EGP entropy-guided pruning algorithm, which
targets layers in the network with low entropy values and prioritizes
pruning their connections, eventually removing them completely.
Through validation in popular models such as ResNet-18 and Swin-
T (Liu et al., 2021), the EGP algorithm significantly compresses the
depth of themodel.The study reveals that unstructured pruning can
also reduce the model depth.

Unstructured pruning has a promising application in ultrasound
signal classification tasks. In particularly, it can significantly improve
the computational efficiency and resource adaptability of the model
when dealing with MMA image signals and time-domain signals.
Experiments have shown that sparse networks can enhance the
robustness of small-scale signals and can improve the accuracy of

ultrasound signal classification (Srinivas et al., 2017). Meanwhile,
unstructured pruning can be used to reduce unimportant temporal
correlation weights, thus strengthening the model’s focus on key
temporal features (Ayle et al., 2022), and improving the ability to
classify heart rate or valve motion signals. In ultrasound time-
domain signals, unstructured pruning can accurately remove low-
contributing weights by weighted sparsity constraints in a specific
time range, thus more efficiently processing signal parts with several
energy species.

Unstructured pruning is promising for research due to its higher
pruning rate and its ability to be combined with other model
optimization techniques. In the future, unstructured pruning may
combine dynamic pruning and sparse training techniques more
often, allowing unstructured pruning methods to improve sparsity
while enhancing hardware adaptability, thus speeding up inference.

2.1.2 Structured pruning
Structured Pruning removes entire neurons, convolutional

kernels, channels, or layers from a neural net.This type of pruning is
easier to accelerate and is suitable for standard hardware platforms
such as CPUs and GPUs.

In 2018, Yu et al. (2018) proposed the Neuron Importance Score
Propagation (NISP) algorithm, where NISP assigns an importance
score to each neuron to measure its overall contribution to network
performance. By calculating the sensitivity of the network output to
each neuron, pruning decisions can be made at the neuron level.
NISP can keep neurons that contribute significantly to the final
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prediction in each layer, removing the least important neurons in
the neural network. For ultrasound signal processing tasks, pruning
out redundant channels and neurons can result in loss of high-
frequency details in the ultrasound image, affecting edge clarity,
especially in small lesion detection tasks (Bria et al., 2020). In
contrast, this structured pruning prioritizes the retention of the
extraction layer of key features and reduces the damage to high-
frequency details (Wang et al., 2021).

Structured pruning usually imposes sparse constraints on the
weight parameters and prunes some unimportant weights during
the training process. Shao and Shin (2022) proposed a dynamic
scheme that imposes sparse constraints based on the filter weights.
This method evaluates the structure of themodel by its performance
in real-time and dynamically prunes it according to the current
performance. Wen et al. (2016) proposed the structural sparsity
learning (SLL) method to regularize the filters, channels, and
layer depths in neural networks. This approach allows deep neural
networks (DNNs) to learn more compact structures without loss of
accuracy. The compactness of DNNs speeds up DNN evaluation on
CPUs and GPUs using off-the-shelf libraries.

Structured pruning requiresmodifying the network architecture
and implementing complex gradient update rules will offset some of
the efficiency gains. For some more complex and deeper network
structures, the sparsity at different levels of the network may exhibit
different properties, making it a challenge to maintain sparsity
without loss of accuracy. Gupta et al. (2024) proposed a novel,
mechanics-inspired structured construction method. Similar to
“Torque,” a force is applied during training to adjust convolutional
layer weights around pivot points. This increases weight density
near the pivot while promoting sparsity further away, enabling filter
pruning with minimal information loss.

Structured pruning simplifies the model structure and improves
the storage efficiency of the model by removing redundant
convolutional kernels, while enhancing the corresponding ability of
the model in the regions where signal changes are obvious, enabling
ultrasound image analysis to be realized on portable ultrasound
detectors. The structured pruning processed model can focus its
performance on capturing the periodic fluctuation characteristics
of the time domain signal (Ye et al., 2024), which significantly
improves the sensitivity to signal changes and classification
efficiency.

2.2 Knowledge distillation

Knowledge Distillation (Hinton, 2015) is an another model
compression technique whose goal is to transfer knowledge from a
larger, better performing ‘teachermodel’ to a smaller ‘studentmodel’,
thus allowing the student model to achieve performance close to
that of the teacher model with fewer computational resources and
memory usage.

Knowledge distillation can reduce the size of the model
regardless of the structural differences between the teacher and
student models. When training the student model, the softmax
output probability distribution of the teacher model is used as the
training target, and a method is proposed to control the output
probability distribution with a ‘temperature’ parameter, which can
make the target ‘soft’. Given the logits z of the network, the category

probability p of an image is calculated as Equation 1.

(zi,T) =
exp(zi/T)

∑
j
exp(zj/T)

(1)

where T is the temperature parameter. When T = 1, the standard
softmax function is obtained. As T increases, the probability
distribution produced by the softmax function becomes softer, thus
providing more information. As shown in Figure 5, knowledge
distillation can be categorized into logit-based distillation and
feature-based distillation based on the location of the knowledge in
the teacher model (Chen et al., 2024).

Knowledge distillation can refine important timing features in
the ultrasound signal. For example, in heart valve motion signals,
the teacher model can extract the key time points of the waveform
and guide the student model for feature extraction with low
computational complexity. Meanwhile, knowledge distillation can
obtain dynamic patterns of ultrasound signal patterns. Ren et al.
(2023) used knowledge distillation to compress the laws of
ultrasound signal waveform changes in the teacher model into
feature representations in the student model for analyzing real-time
cardiovascular signals. It has been shown that a deep denoising
model incorporating convolutional neural networks can effectively
mitigate such interference while maintaining key features in
the signal (Micucci and Iula, 2022).Through distillation, the student
model can learn the noise-resistant properties of the teacher model
and improve the robustness of ultrasound signal classification.
However, if the teacher model itself is sensitive to noise, it can be
combined with adversarial training to enhance the robustness of the
student model to noise.

2.2.1 Logit-based distillation
In logit-based distillation, the student model learns the final

logits of the teacher model output layer, which are the global
representation. Since only the outputs need to be learned, the student
model and the teacher model can have different architectures. Even
if the student model is much smaller than the teacher model, it can
still get good performance by imitating the output. Romero et al.
(2014) and Mishra and Marr (2017) both verified that knowledge
distillation can effectively improve deep network training, especially
for the studentmodel, which is shallow in depth and low in accuracy,
and can learn more and more detailed features from the deep
teacher model.

The attention mechanism also plays a key role in the
development of knowledge distillation. Zagoruyko and Komodakis
(2016) proposed a method for applying attention mechanism in
the knowledge distillation process, called attention transfer. This
approach extracts attention graphs from specific layers of the teacher
model as a bridge for transferring knowledge between the teacher
model and the student model, which allows the student model to
fully learn the hierarchical information within the model. Jin et al.
(2023) integrated the attention mechanism by aligning logits at the
instance, batch and category levels, focusing on different levels of
important features, and optimizing the knowledge transfer process.
This enables the model to capture detailed features and transfer
information more effectively, especially in complex ultrasonic signal
processing tasks.

Focusing on “Neural Collapse” (Papyan et al., 2020), a
phenomenon that refers to a series of geometric patterns that appear
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FIGURE 5
Knowledge distillation.

when a deep neural network approaches zero training error in an
image classification task, Papyan et al. proposed a new perspective
for optimizing knowledge distillation. Neural collapse simplifies the
teacher-student learning process, allowing smaller student models
to capture the key structures of the teacher model more easily.

Current logit-based distillation, because of the conflict between
standard distillation loss and cross-entropy loss, leads to incorrect
predictions even by highly accurate teacher models. Sun et al.
(2024) introduced “refund logit-based distillation” to address the
limitations of the current logit-based distillation. It is also effective
in suppressing overfitting and eliminating potential misinformation
from the teachermodelwhilemaintaining class relevance, ultimately
allowing the student model to gain more valuable knowledge.

Zhao et al. (2022) proposed an improved knowledge distillation
algorithm, Decoupled Knowledge Distillation (DKD), which
decouples the loss of distillation into two parts: target category
knowledge distillation (TCKD) and non-target category knowledge
distillation (NCKD).The former focuses on the target categories and
conveys the prediction results of the teacher model for the correct
categories; the latter focuses on the probability distribution among
the non-target categories and preserves the inter-class relationships.

Logits-based distillation enables the student model to learn
the discriminative method of fuzzy samples more accurately
by transferring the teacher model’s confidence difference in the
classified samples, which can realize the effective recognition of

weak features (Zhao et al., 2022) in ultrasound image signals,
such as low-contrast lesions. In multitask classification, logit-based
distillation can convey the recognition ability of the teacher model
for complex signals and improve the adaptability of the student
model for dynamic signals.

2.2.2 Feature-based distillation
Feature-based distillation learns feature representations of

data samples at different levels, focusing on the local perceptual
ability of the model and the expressive ability of the middle
layer. Feature distillation can outperform logit-based distillation
but is relatively complex to implement and requires additional
computation and memory consumption to refine deep features
during training (Heo et al., 2019).

Optimization for feature-based distillation often starts with the
structure of the teacher-student models. Since the mapping of deep
neural network models from the input space to the output space
needs to go through many layers, Yim et al. (2017) defined the
knowledge to be transmitted by the information flow of features
between layers, which is obtained by calculating the inner product
between the features of the two layers. Huang et al. (2023) used
neuron selectivity to align selectivity patterns between teacher and
student models, enhancing student network performance. They also
introduce a feature-based distillation strategy, including multi-scale
feature distillation, which overcomes single-scale limitations, and
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self-mutual information distillation, combining self-supervision in
the student model with mutual supervision from the teacher.
(Heo et al., 2019) placed the distillation location before the
ReLU activation function of the neural network, which eliminated
the redundant information that would adversely affect model
compression and allowed the student network to learnmore effective
information from the teacher network. Chen et al. (2022) proposed
to improve the feature distillation by using a projector ensemble
(projector ensemble) to improve the feature distillation. Adding
multiple projectors to the student model solves the mismatch
between the teacher and student feature spaces and improves the
performance of the image classification task.

Liu et al. (2024) proposed a large kernel attention network based
on pyramid segmentation, using the dynamic feature distillation
module can extract the features of different layers, effectively
improved the performance of the image super-resolution model.
Tian et al. (2019) developed a novel distillation technique by using
the Contrastive Learning (Le-Khac et al., 2020) approach to develop
a novel distillation technique that enables teacher and student
models to project the same inputs onto adjacent representations and
different inputs onto separated representations.

Feature-based distillation requires aligning different levels of
feature representations between the teacher model and the student
model, which leads to the alignment of the two in feature space
becoming challenging. Also passing information about the middle
level of the teacher model increases the training time and memory
requirements of the model. Whereas the training cost of the logit-
based distillation is lower, but the performance is not satisfactory
compared to feature-based distillation. Therefore, both of them still
need to be further optimized to reduce the problems of knowledge
distillation in terms of complexity, computational cost and task
suitability.

2.3 Low-rank decomposition

Most deep neural networks are over-parameterized and exhibit
large computational overhead,making signal recognition inefficient.
Low-rank decomposition Kolda and Bader (2009) refers to
sparsifying the convolution kernel matrix by combining dimensions
and imposing low-rank constraints. Since the weight vectors
are mostly distributed in low-rank subspaces, the convolution
kernel matrix can be reconstructed with a small number of basis
vectors to achieve the purpose of reducing the storage space
(Cheng et al., 2017). By approximate decomposition of the weight
matrix or feature representation of the neural network, redundant
information is removed and the model is made more compact.
However, over-decomposition may weaken the ability to perceive
the dynamic changes in time and have an impact on the temporal
consistency of the ultrasound signal. By using an adaptive low-
rank approximation method (Lu, 2024), the decomposition level
is dynamically adjusted to avoid the loss of critical time series
information.

Yin et al. (2022) proposed a budget-aware neural network
compression method based on Tucker decomposition (Weber et al.,
2025), called BATUDE. Maintain or improve model performance
whilemeeting computational budget constraints through automated
tensor rank selection and globally optimal rank learning strategies.

Themethod not only simplifies the training process, but also enables
the model to automatically learn features suitable for specific data,
improving the effectiveness of feature extraction while providing
a more favourable feature representation for subsequent image
recognition tasks. Futhermore, Yadav et al. (2022) proposed an
efficient neighbor search method based on matrix decomposition,
which is optimized for cross-encoder models. Through matrix
decomposition technology, the computational cost of neighbor
search is significantly reduced while maintaining high retrieval
accuracy. This method provides a new idea for solving the problem
of efficient search in large-scale data sets. Low-rank decomposition
can extract low-dimensional structures from high-dimensional data
and reveal the interactions between different modalities.

The diversity and complexity of biomedical data require
new data analysis methods. Low-rank decomposition, as a
powerful model compression technology, is widely used in
medical signal processing, such as image signal denoising,
super-resolution reconstruction, feature extraction, etc. CP
decomposition (Zhou et al., 2019) and Tucker decomposition are
particularly prominent in image reconstruction and noise removal
(Wu et al., 2018). Burch et al. (2025) systematically reviewed the
applications of low-rank factorization in biomedical data analysis
and explored the potential of quantum computing to address the
challenges faced by traditional low-rank decomposition. Combined
with quantum computing, tensor decomposition is expected to
further promote the development of precision medicine, especially
in terms of data scale and processing efficiency.

3 Operational optimization

With the increasing demand for ultrasound signal classification
tasks in real-time and embedded devices, it is especially important
to design optimization strategies that efficiently process ultrasound
data and balance real-time and accuracy. The operational
optimization technique focuses on considering how to enhance the
extraction ability of key features and reduce redundant calculations.
Convolution serves as the logical basis for the operation of the
model, and the lightweight design of convolution can maximize the
computational efficiency of the network, which is convenient for
the model to be used on mobile devices such as portable ultrasound
detectors.

In this chapter, lightweight optimization algorithms suitable
for ultrasound signal classification, including decoupling and
portability modules, will be explored in detail in light of the
ultrasound signal characteristics, especially for the temporal
dynamic characteristics of M-mode ultrasound signals and the
frequency domain characteristics of time-domain signals, which
will provide technical support for further advancing ultrasound
diagnosis.

3.1 Decoupling

In convolutional neural networks, there are dependencies
between modules, which can be as small as a certain weight
or as large as the entire network layer. Therefore, the coupling
degree can be utilized to define the dependency of modules in
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FIGURE 6
Classification of decoupling methods.

the model, and the lower the coupling degree, the lower the
dependency between modules, and the greater the independence,
reusability and portability ofmodules. Classical lightweightmodules
such as deeply separable convolution (Howard, 2017) and channel
shuffling (Zhang et al., 2018) can be explained by the idea of
decoupling. As shown in Figure 6, this section will divide some
manually designed convolutional structures with the concept of
decoupling, which can be mainly categorized into two parts:
calculation decoupling and tensor decoupling.

3.1.1 Calculation decoupling
The size of the convolution kernel determines the extent of the

sensory field on the input image. The larger the convolution kernel,
the larger the perception field and the better the feature extraction
effect. In order to ensure the classification effect, most early neural
networkmodels, such as AlexNet Krizhevsky et al. (2012), used large
convolution kernels for feature extraction.

However, large convolutional kernels significantly increase
computation and memory consumption for processing high-
resolution images such as medical images, leading to a decrease in
the efficiency of the model during training and testing, at the same
time, larger convolutional kernels imply a wider sensory field, which
can mishandle important local features in the ultrasound images.
Researchers have therefore explored convolution kernel sizing.
Replacing a large-size convolutional kernel with multiple small-size
convolutional kernels can be referred to as calculation decoupling
because it changes the way the original convolution operates. This
idea originates from Inception V3 proposed by Szegedy et al. (2015).
As shown in Figure 7, the 5∗5 convolution was replaced with a
multilayer network with fewer parameters: the first layer is a 3∗3
convolution, and the second layer is a fully connected layer on the
first 3∗3 output grid. The replacement reduces the number of model
parameters by 27.8% and the sensory field is unchanged before and
after the split.

Wang et al. (2018) were inspired by the Inception model and
proposed the PeleeNet model. PeleeNet introduces a 2-way dense
layer structure, as shown in Figure 8, which is a parallel structure of

FIGURE 7
The 5∗5 convolution is replaced by a smaller one.

multi-scale convolutional kernels (e.g., 1∗1, 3∗3), and fuses different
scales of sensory fields within a single dense layer, which effectively
enhances the ability to capture features of different scales. In the
eight-neighborhood pixel, the 3∗3 convolution is the smallest odd
convolution kernel size that can capture the features, so various
lightweightmodels oftenuse the 3∗3 convolution for the convolution
splitting operation to reduce the computation amount of the model.

In addition to using 3∗3 regular convolutions to reduce the
number of network parameters, 1∗1 convolutions can be used
to perform dimension upscaling and dimension downscaling
operations on feature maps to achieve the same purpose. Point-by-
point convolution (Hua et al., 2018) computes a linear combination
of the output of the depth convolution by 1∗1 convolution to obtain
a new feature.
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FIGURE 8
2-way dense layer in PeleeNet.

Although there are differences in the design structure of the
above decoupling strategies, their essence is realized by reducing the
size of the number of operations in themultiplication process, which
mathematically disassembles the standard single multiplication
operation and replaces some of the multiplication operations with
addition operations to achieve the effect of improving the speed of
the model operation.

The DeepShift (Elhoushi et al., 2021) replaces the floating-point
multiplication operation in the original forward propagation by
performing shift-by-bit and inverse-by-bit operations to reduce the
computation time required in themodel inference process. Shift and
inverse operations are faster in hardware circuit devices, so using
them to replace the product operation can speed up the model.
DeepShift’s design idea is novel, using the underlying algorithm
to thoroughly accelerate the convolution from the perspective of
accelerating hardware resources.

At this stage, the model design approach for convolutional
operations relies heavily on the design of the underlying hardware
devices, and the binary arithmetic process will make the power
operation unavoidable errors in the substitution process, which will
lead to the model being limited in practical applications. However,
this kind of operation substitution can still be used as a direction for
future research.

3.1.2 Tensor decoupling
Unlike the calculation decoupling strategy that reduces the

amount of computation by replacing the large-size convolution
with a small-size convolution, the tensor decoupling operation
chooses to disassemble the conventional convolution in the spatial
dimension and the channel dimension and performs it in steps,
separating the variables or features that are originally closely
connected, so that certain parts or parameters in the model

can be varied independently, thus reducing the interdependence
between them.

Thedesign of conventional depth-separable convolution belongs
to the category of tensor decoupling, as shown in Figure 9, depth-
separable convolution Howard (2017) decomposes the conventional
3D convolution into a depth convolution in two-dimensional space
and a point-by-point convolution that modifies the number of
channels to turn the 3D input features into independent 2D planar
features and channel dimensions. Deep convolution extracts local
spatial features in each channel and combines them with point-
by-point convolution to complete feature fusion. The decoupling
in depth-separable convolution reduces computational complexity
and number of parameters, making DS Conv particularly suitable
for environments with limited computational resources, such as
portable ultrasound devices. The depth-separable convolution can
also be combined with an adaptive filter (You and Crebbin, 2022)
for removing scattering noise from ultrasound images to improve
the quality of ultrasound signals.

However, traditional design methods do not consider the
interrelationships of features within a convolutional kernel, which
leads to limited performance of the model in complex feature
learning. To address this limitation, Li et al. (2022) proposed
Blueprint Separable Convolution (BSConv), focusing on decoupling
and recombination within the convolutional kernel. BSConv
separates and recombines features efficiently by introducing a
different feature separation strategy, which explicitly takes into
account the interactions of features within the convolutional kernel.

The Fire Module in SqueezeNet Iandola (2016) is also a
decoupled calculation, the Fire Module consists of the squeeze
layer and the expand layer. The “compression-expansion” operation
in this design decouples spatial features (3∗3 convolution) and
channel features (1∗1 convolution), allowing themodel to separately
model inter-channel and spatial domain features without having to
use a single standard convolution operation to process all features
simultaneously.

While the decoupling operations in the above models all
disassemble the N∗N convolution into a combination of n∗n
convolutions, in InceptionV3 Szegedy et al. (2016) the authors
propose to disassemble a square convolution of one (7∗7) into a
stack of 1∗7 and 7∗1. This decoupling operation reduces the 49
multiplication operations to 7.

Features belonging to different channels after decoupling
cannot be transferred. The channel shuffling operation in
ShuffleNet (Zhang et al., 2018) disrupts the feature map channels so
that features originally belonging to different channels can be mixed
together in the subsequent convolution operation, thus realizing the
exchange of information between different channels.

3.2 Portability modules

Convolutional modules are artificially constructed application
programming interfaces (APIs) that can be invoked directly in
programming using abbreviations, and wrapper packages usually
contain fixed convolutional structure modules for high portability.
In this section, several lightweight portable modules that can
be applied to ultrasound image classification are systematically
described.
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FIGURE 9
Depthwise separable convolution. (a) Standard Convolution Filters. (b) Depthwise Convolution Filters (c) Pointwise Convolution Filters.

3.2.1 Residual module
The residual module proposed by He et al. (2016) is a

key part of the advancement of lightweight development of
convolutional neural networks. The deeply separable convolution
in MobileNetV1 (Howard, 2017) and the inverse residual in

MobileNetV2 (Sandler et al., 2018) draw on the principle of the
residual module. In mathematical statistics, residuals are usually
used to represent the difference between the actual observed value
and the fitted value. As shown in Figure 10, in the structure
of a neural network a stacked layer, when the input is x, the
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FIGURE 10
Basic residual module.

learned feature is the mapping H(x). Compared with the original
feature H(x), the difference is easier to learn directly, so the
residuals as the difference computes the learned feature can be
expressed as: F(x) = H(x)-x and the original mapping is reshaped
as F(x)+x.

From the above equation, when the residual F(x) is 0, the
stacking layer only does constant mapping and the network
performance should remain unchanged. But in fact, the residuals are
not 0, thus causing the stacking layer to constantly learn new features
on top of the input features and thus the network will have better
performance (Chollet, 2017).

The BottleNeck residual module is the basic unit of ResNet
(Han et al. 2015). It consists of three convolutional layers
as shown in Figure 11.Thenumber of channels at input is restored by
reducing the dimensionality using 1∗1 convolution, then using 3∗3
convolution for feature extraction, and finally using 1∗1 convolution
to raise the dimensionality.

The basic module of SqueezeNext (Gholami et al., 2018)
is adapted from BottleNeck. The 3∗3 convolution is factorized
into the sum of two 2D convolution operations, 3∗1 and 1∗3,
as shown in Figure 12, and a set of 1∗1 convolutions is added before
the start of the BottleNeck structure, which is used to reduce the
number of channels. By adjusting the number of 1∗1 convolutions,
the number of channels in each layer of convolution can be flexibly
controlled to ensure that the two convolution operations obtained
from the 3∗3 convolution factorization are always in the lower
dimensional channels. The final 1∗1 convolution in the module
is used to restore the features to the same dimension as the
input channels.

ShuffleNetV1 (Zhang et al., 2018) is optimized based on
the bottleneck structure, as shown in Figure 13, replacing the
normal 3∗3 convolution with a 3∗3 DW convolution, replacing the
1∗1 convolution with a 1∗1 grouping convolution, and adding a
channel cleaning operation after the first 1∗1 grouping convolution.
Then the original element sum operation is converted to channel
cascade concat. 3∗3 DW convolution can significantly reduce
the number of parameters, but when the number of channels
is too high using 1∗1 convolution many times will increase

FIGURE 11
Bottleneck residual module.

FIGURE 12
SqueezeNext module.
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FIGURE 13
ShuffleNet module.

the amount of computation. Group convolution perfectly solves
this problem, after the experimental demonstration, 0.25 times
the number of groups tend to sustain better results, which
indicates that wider feature maps can bring better results for
smaller models.

The spatial bottleneck module of DetNet (Li et al., 2018) is
also an improvement of the bottleneck structure, which replaces
the original 3∗3 convolution with the cavity convolution, allowing
the feeling field to be expanded arbitrarily without introducing
additional parameters. The spatial bottleneck module can greatly
improve the ability of the model to localize segmentation, and at
the same time obtain the very important multi-scale information
in the vision task. For ultrasound images that are susceptible
to noise, the spatial bottleneck module allows for better feature
extraction.

MobileNetV2 Sandler et al. (2018) proposes a reverse residual
module, as shown in Figure 14, which first lowers the dimensions,
then raises them, and replaces the ReLU activation with a linear
activation. The inverse residual module has both the optimization
characteristics of the bottleneck structure and disassembles the
convolution through the depth separable convolution, using a lighter
weight convolution to further reduce the model computation. The
ghost bottleneck with a stride of two in GhostNet is a standard
residual module structure. A depth-separated convolution module
is added between the two ghost modules to reduce the amount of
computation (Han et al., 2020).

Khan et al. (2024) proposed ESDMR-Net, a deep convolutional
network architecture with Squeeze-Excitation (SE) module, to
better handle high-frequency information and feature variations in
bruise images. The SE module extends the multi-scale information
through deep separable convolution and extracts compact salient

FIGURE 14
Inverse residual module.

information through bottleneck layers to enhance the feature
representation capability. The deep structure of the network enables
feature refinement and accumulation through multi-branching
design and reuse of SE modules, making it more robust in dealing
with highly variable features.

Residual modules are widely used in building lightweight
neural networks, often replacing standard convolutions with
more lightweight depth-separable convolutions to further reduce
computation on the basis of optimized structure (Qin et al., 2024).
However, the trade-off is that the embedding of the residual module
will make the original model structure relatively complex, and it is
often necessary to utilize model compression to further reduce the
memory footprint of the model.

3.2.2 Grouped convolution
Originating in 2012, AlexNet (Krizhevsky et al., 2012) split

the convolution, and grouped convolution effectively reduced
the computational complexity (FLOPs) and achieved structured
sparsity. When the number of groups is equal to the number
of input channels, grouped convolution can be transformed into
a DW convolution to further reduce parameters. Each branch
of the ResNeXt module (Xie et al., 2017) employed an identical
convolutional topology. The idea of grouped convolution is actually
to adjust the number of channels involved in the convolution
operation. By splitting the number of channels for convolution,
each grouping is executed in parallel. The number of subgroups
depends on the hardware resource configuration currently in
use and is related to the design of the network structure being
embraced. The design of grouped convolution is more in line
with GPU hardware design principles and thus runs faster than
the Inception (He et al., 2016) module with manually designed
convolutional details.

Grouped convolution allows more channels to be used with
fixed FLOPs and increases the capacity of the network, so
networks with grouped convolution (Howard, 2017; Zhang et al.,
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TABLE 2 The comparison of lightweight models on ImageNet.

Model Parameter(M) FLOPs(M) MACs(G) TOP-1 ACC. (%) TOP-2 ACC. (%)

SqueezeNet (2016) 4.8 0.82 0.35 57.5 80.3

InceptionV3 (2016) 23.62 5.72× 1024 5.72 77.9 93.7

MobileNetV1 (2017) 4.2 575 0.55 70.6 89.5

Xception (2017) 22.85 8.4× 1024 8.42 78.8 94.3

SqueezeNeXt (2018) 3.2 708 0.69 67.5 88.2

MobileNetV2 (2018) 3.4 300 0.29 72.0 91.0

ShuffleNet (2018) 3.46 140 0.14 72.6 —

ShuffleNetV2 (2018) 2.3 146 0.15 71.8 —

PeleeNet (2018) 2.8 508 0.51 72.6 90.6

MobileNetV3 (2019) 3.2 265 0.21 75.2 —

EfficientNetV1 (2019) 5.3 390 0.18 77.1 93.3

GhostNet (2020) 5.2 141 0.14 73.9 94.1

EfficientNetV2 (2021) 24 280 0.28 83.9 —

VanillaNet (2023) 15.5 520 0.52 72.49 79.66

MFDNet (2023) 11.46 384 0.38 77.8 —

SBCFormer (2024) 5.6 700 0.7 75.8 —

MobileNetV4 (2024) 9.2 220 0.22 82.9 —

2018; Xie et al., 2017; Ma et al., 2018; Guo et al., 2022)
can maintain high accuracy while reducing FLOPs. However,
increasing the number of channels leads to higher memory
access costs (MACs). ShuffleNetV2 (Ma et al., 2018) introduces
a channel splitting module in its basic unit, which functions
similarly to grouped convolution but helps mitigate the excessive
MACs associated with an increased number of grouped
convolutions.

The Ghost module in GhostNet (Han et al., 2020) divides
the results generated by convolution into two groups. One group
retains part of the original convolution, and the other group
is optimized for the redundant features in the output that are
similar to each other. A small number of base features are
first generated from some of the standard convolutional layers.
Secondly, a series of linear transformations are used to further
generate new features, which are called Ghost feature maps. A
large number of similar redundant feature maps generated by the
convolution operation are replaced by Ghost features, achieving
model speedup.

Grouped convolution allows different groups of channels to
focus on different types of features, separating local features
from global features. For example, certain groups focus on edge
information, while others focus on texture or shape, avoiding
interference from scattered noise in all channels.

3.2.3 SE module
SE module (Squeeze-Excitation) (Hu et al., 2018) includes

two operations: Squeeze and Excitation. It is hoped that the
model can autonomously learn the dependencies between different
channels and obtain the relationships between features. Squeeze
uses a 1∗1 global average pooling operation to compress the
spatial features of each channel into a scalar to obtain a global
description of the channel. Excitation performs dynamic adaptive
adjustment of the channel weights. The global description generated
in the Squeeze part is fed into a sub-network with two fully
connected layers for learning the dependencies between the
channels. The global description obtained in the Squeeze part
amplifies the sensory range, avoiding the limitation that small
sensory fields in the shallow network are unable to sense more
features. The Excitation part is an automated gating mechanism
that allows the model to adaptively focus on the important
feature channels.

The SE module is portable and can provide significant
performance improvements for deeper architectures with minimal
additional computational cost. The SE module can be embedded
in the ResNet residual network (He et al., 2016), where it is placed
after the output of the main branch of each residual module, and
the weighted outputs are obtained after Squeeze and Excitation. The
main branch features processed by the SE module are then added
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TABLE 3 Models and their lightweight technologies.

Model LightWeight technology

SqueezeNet (2016) Calculation decoupling

InceptionV3 (2016) Calculation decoupling

MobileNetV1 (2017) Tensor decoupling (Depthwise separable convolution)

Xception (2017) Tensor decoupling (Depthwise separable convolution)

SqueezeNeXt (2018) Tensor decoupling (Depthwise separable convolution); Residual module

MobileNetV2 (2018) Tensor decoupling (Depthwise separable convolution); Residual module (Inverted residuals)

ShuffleNet (2018) Group convolution; Channel shuffle

ShuffleNetV2 (2018) Group convolution; Residual module (Inverted residuals)

PeleeNet (2018) Calculation decoupling; Tensor decoupling (Depthwise separable convolution)

MobileNetV3 (2019) SE module; Tensor decoupling (Depthwise separable convolution)

GhostNet (2020) Tensor decoupling (Depthwise separable convolution)

EfficientNetV2 (2021) Tensor decoupling (Depthwise separable convolution)

VanillaNet (2023) SE module; Attention mechanisms module

MFDNet (2023) Residual module; Attention mechanisms module

SBCFormer (2024) Residual module (Inverted residuals); Attention mechanisms module

MobileNetV4 (2024) Attention mechanisms module

with the residual branches to obtain the final output features. In
MobileNetV3 (Howard et al., 2019), the SE module is added after
the DW convolution block, further improving accuracy without
increasing time loss.

The embedding of the SE module can help the model to better
learn the information of each channel and enhance the network’s
ability to pay attention to the key features when recognizing
the dynamically changing time-domain information of ultrasound
signals and improve the robustness of the anomalous signal
detection. Jiang et al. (2019) combined the residual module and
the Squeeze-and-Excitation module to design a small SE-ResNet
module for the classification of breast cancer histopathology images
to reduce the training parameters of the model and the risk of
over-fitting. Zhang et al. (2020) used a similar approach to solve
the problem that the model cannot extract accurate features of
long-term sequences in the task of signal classification.

3.2.4 Attention mechanisms module
AttentionMechanismModules (Guo et al., 2022) are lightweight

and generalized modules that allow feature focusing in the channel
dimension and spatial dimension, and integration of independent
dimensions of both. Thus,the attention mechanism module can
be categorized into channel attention module (CAM) and spatial
attention module (SAM). The attention mechanism module is
similar to the SE module, both CAM and SAM use a double-
pooling operation, that is, adding a global maximum pooling

operation on top of the global average pooling. This dual-
pool operation structure can extract richer high-level feature
information. The encapsulated attention mechanism module can
be directly embedded behind the regular convolutional layer of the
feedforward neural network without any additional computational
overhead.

The Coordinate Attention (CA) module (Hou et al., 2021)
generates two 1D feature representations by aggregating the global
information of the input feature map in the height and width
directions, respectively. Unlike traditional attention mechanisms,
theCAmodule captures the dependencies of features in both vertical
and horizontal directions, making it easier for the model to capture
the exact location of the target. Therefore, embedding the CA
module in the model that performs ultrasound signal classification
can help the model more accurately identify the location of the
disease and improve the accuracy of diagnosis (Ansari et al., 2024).

MobileVit (Liu et al., 2017) integrates the Transformer module
into a lightweight convolutional neural network, which retains
the efficient local feature extraction capability of the network and
enhances the capture of global relationships. By combining the
advantages of both, MobileVit can be adapted to multitasking
scenarios, and its efficient global feature capture capability can be
used in complex scenarios such as ultrasound signal processing.

Denoising of ultrasound images may result in the loss of
local detail features. SBCFormer, proposed by Lu et al. (2024),
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solved this problem by designing a two-stream block structure.
One stream is used to reduce the feature map size and apply the
attention mechanism, while the other stream is used as a “pass-
through channel” to retain the local information of the input
feature map.

3.3 Analysis and summary

This subsection summarises the lightweight convolutional
neural networks. Table 2 demonstrates the performance of the
lightweight models on the ImageNet dataset. In order to fix a
benchmark for comparison, these models are evaluated on the
ImageNet dataset, using the parametric counts, FLOPs, and MAC
metrics to measure the lightweight effect and also focusing on the
classification accuracy of the models. Analogising the performance
of these models on the ImageNet dataset can provide ideas for the
ultrasound signal analysis task. FLOPs and a number of covariates
metrics do not fully reflect the actual efficiency of the models
(Lai et al., 2018) and still need to be optimised according to
the task scenario. Table 3 demonstrates the lightweight techniques
used in these models, and it is easy to see that a combination
of optimisation techniques is often required to achieve a model
that maintains higher accuracy while improving computational
efficiency.

4 Future research directions

Based on the above analysis, the current lightweight technology
has limitations in its wide application to a certain extent. Future
research should focus on the following promising directions:

4.1 Data imbalance

Designing a lightweight model for ultrasound signals requires
overcoming the impact of experimental data imbalance on
the model (Mone et al., 2023). Multiple analysis methods can be
used to reduce the bias that may be caused by a single experimental
method. For lightweight models, methods such as adjusting the loss
function and category weights can be used to give a larger weight to
minority categories, thereby reducing the impact of data imbalance
on model performance and improving the model’s ability to identify
different categories.

4.2 Lack of statistically significant clinical
efficacy

Existing AI-assisted diagnosis and treatment methods are
basically still in the research stage, lacking extensive clinical
trials, and there is a gap between translational research and
clinical application (Dhage et al., 2021). In the future, large-scale
randomized controlled trials (RCTs) can be conducted to evaluate
the clinical effectiveness of the model. Additionally, different organs
and tissues have different ultrasonic features, such as periodic
heartbeat signals, non-linear muscle tissue echoes, and time domain

features depend on dynamic changes within the time window.
Therefore more extensive evaluation across diverse ultrasound
datasets, incorporating different probes, imaging frequencies, and
tissue types, is necessary to validate the generalizability of these
models. Multi-center studies and cross-dataset validation will be
critical to ensuring robust performance in varied clinical settings.

4.3 Interpretability and generalizability of
the model

The interpretability of model research requires sufficient
theoretical guidance and experimental analysis. Many studies are
based on small-scale data sets or data from specific institutions
and lack multicenter, multiethnic, and multienvironmental data
validation (Ansari et al., 2024). More ablation experiments are
necessary to focus more on which part of the lightweight CNN
leads to performance improvement. This is a key factor to accurately
improve image recognition performance, rather than blindly
stacking techniques to improve performance (Chandrasekar et al.,
2022). Future research should focus on optimizing lightweight
CNNs for real-time ultrasound applications.

5 Conclusion

This paper presents a detailed review of the current state of
research and the challenges of lightweight techniques for the task of
ultrasound signal classification. Pruning and knowledge distillation
techniques improve diagnostic accuracy while reducing model
complexity, especially structured pruning that removes redundant
filters in M-mode ultrasound and focuses on critical temporal
features of the time-domain signal. Operational optimization
techniques optimize computational efficiency while improving
feature extraction capabilities, adapting to the deployment of
embedded devices. In addition, for the scattering noise and acoustic
shadow effect in ultrasound signals, adding feature enhancement
modules to the network can effectively improve the robustness
and classification accuracy of the model. In the future, based on
the lightweight model architecture, we will use model compression
techniques to design model architectures specifically for M-mode
ultrasound and time series signals, which will further promote
their application in diverse clinical scenarios such as fetal health
detection and lung disease diagnosis. Through continuous research
and innovation, lightweight technology will become an important
bridge connecting AI with the practical needs of healthcare.
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