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Exploring the impact of
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atherogenic index of plasma and
adverse cardiovascular events: a
population-based cohort study
in China

Fei Wu1, Jiantong Yang1, Yipei Zhang2 and Lisha Peng1*
1Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, China,
2Department of Gynecology, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang,
China

Background: The American Heart Association (AHA) recently emphasized the
significance of the “Life’s Essential 8” in promoting cardiovascular health. The
Atherogenic Index of Plasma (AIP) is increasingly recognized as a valuable
alternative biomarker for cardiovascular diseases (CVD) and insulin resistance-
related metabolic diseases. However, the impact of the individual components
of the “Life’s Essential 8” on the association between AIP and CVD has not been
adequately investigated.

Methods: We conducted an analysis of data from 8,246 participants enrolled
in the China Health and Retirement Longitudinal Study. Lifestyle behaviors and
health factors were classified into binary or tertiary categories according to
risk levels. We employed multivariate logistic regression and smooth curve
fitting techniques to investigate the association between AIP and CVD across
varying groups of health behaviors and factors. Additionally, Receiver Operating
Characteristic (ROC) curve analysis was utilized to assess the predictive
value of combining healthy behaviors, factors, and AIP in forecasting the
incidence of CVD.

Results: Upon adjusting for established cardiovascular risk factors, elevated
AIP levels correlated with a heightened CVD risk (odds ratio [OR], 1.36;
95% confidence interval [CI], 1.29–1.43). Significant interactions between
AIP and CVD risk were observed across subgroups differentiated by blood
glucose levels, low-density lipoprotein cholesterol (LDL-C), and sleep duration
(P for interaction <0.05). Notably, individuals with blood glucose levels
≥6.1 mmol/L (OR, 1.44; 95% CI, 1.33–1.56) or LDL-C ≥3.12 mmol/L (OR,
1.50; 95% CI, 1.37–1.65) exhibited a more pronounced association between
AIP and CVD. Furthermore, the inclusion of AIP in the model alongside
traditional risk factors notably enhanced the predictive accuracy for CVD
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events, as evidenced by an increase in the area under the curve (AUC) from
0.651 to 0.671.

Conclusion: Health behaviors (sleep duration), and health factors, including
glucose and LDL-cholesterol levels, may modulate the posstive relationship
between the AIP and CVD events in middle-aged and elderly individuals. AIP
may offer enhanced predictive value for CVD in patients suffering from diabetes
or dyslipidemia.

KEYWORDS

atherogenic index of plasma, cardiovascular disease, Life’s Essential 8, health behaviors,
health factors

1 Introduction

CVDs remain the leading cause of death globally, with an
estimated 19.8 million deaths in 2022, reflecting an increase
from 12.4 million in 1990 due to population growth, aging, and
preventable risk factors. Ischemic heart disease is the primary cause
of global CVD mortality (Roth et al., 2020; Mensah et al., 2023).
More than 75% of the global CVD burden is observed in low- and
middle-income countries (Mensah et al., 2023).

In 2010, the American Heart Association (AHA) defined
Cardiovascular Health (CVH) criteria, underscoring their
importance for improving public and individual health (Lloyd-
Jones et al., 2010). CVH encompasses seven modifiable health
behaviors and factors, which when optimized, have been linked
to an extended lifespan devoid of cardiovascular diseases and
an elevated quality of life. The factors include diet, physical
activity, smoking status, body mass index, serum total cholesterol
levels, fasting blood glucose, and blood pressure. Subsequent
research has consistently shown a robust inverse relationship
between adherence to ideal CVH metrics and incidences of
CVD mortality, overall mortality, and various non-CVD ailments
(Plante et al., 2020; Ogunmoroti et al., 2017; Folsom et al., 2011;
Fang et al., 2016). Recently, the AHA expanded the “Life’s Simple
7”(LS7) framework to “Life’s Essential 8”(LE8), adding sleep
as an eight critical factor and refining the original measures
(Lloyd-Jones et al., 2022). The LE8 framework includes diet,
physical activity, nicotine exposure, sleep health, body mass
index (BMI), blood lipids, blood glucose, and blood pressure
as key modifiable factors for maintaining cardiovascular health
(Lloyd-Jones et al., 2022).

The atherogenic index of plasma (AIP), as introduced by, is
considered a robust marker for assessing the risk of atherosclerosis,
cardiovascular diseases, and insulin resistance. AIP is derived by
applying a logarithmic transformation to the molar concentration
ratio of TG to HDL-C. A substantial body of research has
consistently demonstrated that a higher AIP is significantly
correlated with an elevated risk of cardiovascular events across
various cohorts, including the general population, individuals
with coronary heart disease, and those suffering from diabetes
(Fu et al., 2021; Zheng et al., 2022; Wu et al., 2021). Nevertheless,
research directly examining the relationship between AIP and
CVD, particularly concerning the role of Life’s Essential 8 (health
behaviors and factors), remains scarce. Moreover, the potential
modulation of the AIP-CVD association by health behaviors

and established CVD risk factors has not been explored in the
existing literature.

While both LE8 and AIP are recognized for their importance in
cardiovascular health, there is limited research directly examining
how the individual components of LE8 modulate the established
association between AIP and CVD events. Consequently, there is
an imperative need for current research to examine the extent
to which Life’s Essential 8, encompassing health behaviors and
factors, modulates the established positive association between
AIP and CVD. Additionally, this research should evaluate the
enhancement of fundamental predictive models through the
integration of AIP.

2 Methods

2.1 Study design and participants

Our study utilized the China Health and Retirement
Longitudinal Study (CHARLS) dataset, which is a nationally
representative survey of Chinese individuals in middle age and
older, initiated with 15,139 participants between June 2011 and
March 2012. The survey evaluates social, economic, and health
factors (Zhao et al., 2014). Follow-up procedures included biennial
face-to-face interviews using the computer-assisted personal
interview (CAPI) system, physical examinations, and blood sample
collection in in alternate cycles. This study incorporated data
from Harmonized CHARLS Wave 1 (2011–2012). We excluded
participants with incomplete questionnaire, physical examination,
and blood sample data (n = 6,453), as well as 177 individuals under
45 years of age and another 263 with incomplete CVD event records.
Consequently, we included 8,246 participants over 45 years old
with complete CVD event data. Supplementary Figure S1 depicts
the participant selection process and the study design. Ethical
approval for data collection was obtained by the original CHARLS
research team from the Biomedical Ethics Review Committee of
Peking University (IRB00001052–11015). Informed consent was
obtained from all participants. The exposure variable AIP was
calculated using the formula: log[triglycerides (TG) (mg/dL)/high-
density lipoprotein cholesterol (HDL-C) (mg/dL)]. Subsequently,
the participants were divided into three groups according to the
tertile level of AIP: Tertile 1 (T1), AIP ≥ -3.35 and <-0.62; Tertile 2
(T2), AIP ≥ -0.62 and <0.3; Tertile 3 (T3), AIP ≥0.3 and <3.32.
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TABLE 1 Baseline characteristics of participants stratified by CVD.

Characteristics Total Non-CVD CVD P-value

(n = 8,246) (n = 6,652) (n = 1,594)

Age, years 59.39 ± 9.20 59.02 ± 9.25 60.94 ± 8.82 <0.001

Sex, n (%) <0.001

 Male 3,863 (46.85%) 3,209 (48.24%) 654 (41.03%)

 Female 4,383 (53.15%) 3,443 (51.76%) 940 (58.97%)

Smoking status, n (%) <0.001

 Yes 3,243 (39.33%) 2,675 (40.21%) 568 (35.63%)

 No 5,003 (60.67%) 3,977 (59.79%) 1,026 (64.37%)

Drinking status, n (%) <0.001

 None 5,531 (67.07%) 4,360 (65.54%) 1,171 (73.46%)

 Mild or moderate 2,715 (32.93%) 2,292 (34.46%) 423 (26.54%)

BMI, n (%) <0.001

 ≥24 kg/m2 3,226 (40.38%) 2,359 (36.59%) 867 (56.19%)

 <24 kg/m2 4,764 (59.62%) 4,088 (63.41%) 676 (43.81%)

Physical activity, n (%) 0.164

 Inactive 5,043 (61.16%) 4,065 (61.11%) 978 (61.36%)

 Insufficiently active 2,848 (34.54%) 2,287 (34.38%) 561 (35.19%)

 Active 355 (4.31%) 300 (4.51%) 55 (3.45%)

Sleep duration, n (%) <0.001

 <6 2,457 (29.80%) 1899 (28.55%) 558 (35.01%)

 6–8 3,305 (40.08%) 2,681 (40.30%) 624 (39.15%)

 ≥8 2,484 (30.12%) 2072 (31.15%) 412 (25.85%)

SBP, n (%) <0.001

 ≥120 mmHg 5,333 (64.67%) 4,193 (63.03%) 1,140 (71.52%)

 <120 mmHg 2,913 (35.33%) 2,459 (36.97%) 454 (28.48%)

DBP, n (%) <0.001

 ≥80 mmHg 2,810 (34.15%) 2,164 (32.60%) 646 (40.63%)

 <80 mmHg 5,419 (65.85%) 4,475 (67.40%) 944 (59.37%)

Hypertension, n (%) 2010 (24.41%) 1,200 (18.06%) 810 (50.88%) <0.001

Diabetes, n (%) 476 (5.79%) 240 (3.62%) 236 (14.89%) <0.001

Kidney disease, n (%) 538 (6.54%) 377 (5.68%) 161 (10.18%) <0.001

Hyperuricemia, n (%) 395 (4.79%) 300 (4.51%) 95 (5.96%) 0.015

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristics of participants stratified by CVD.

Characteristics Total Non-CVD CVD P-value

(n = 8,246) (n = 6,652) (n = 1,594)

LDL-C, n (%) <0.001

 ≥3.12 mmol/L 3,554 (43.10%) 2,806 (42.18%) 748 (46.93%)

 <3.12 mmol/L 4,692 (56.90%) 3,846 (57.82%) 846 (53.07%)

Glucose, n (%) <0.001

 ≥6.1 mmol/L 2,653 (32.17%) 2040 (30.67%) 613 (38.46%)

 <6.1 mmol/L 5,593 (67.83%) 4,612 (69.33%) 981 (61.54%)

HbA1c, n (%) <0.001

 ≥6% 661 (8.02%) 465 (6.99%) 196 (12.30%)

 <6% 7,585 (91.98%) 6,187 (93.01%) 1,398 (87.70%)

TG, mmol/L 1.16 (0.82–1.68) 1.12 (0.80–1.63) 1.32 (0.92–1.95) <0.001

HDL-C, mmol/L 1.34 ± 0.39 1.36 ± 0.40 1.26 ± 0.37 <0.001

LDL-C, mmol/L 3.04 ± 0.89 3.02 ± 0.88 3.11 ± 0.93 <0.001

SUA, umol/L 263.27 ± 73.47 262.46 ± 73.18 266.69 ± 74.57 0.039

AIP −0.09 ± 1.06 −0.16 ± 1.04 0.18 ± 1.08 <0.001

Data are shown as mean ± standard deviation (SD) or median (IQR) for continuous variables and proportions (%) for categorical variables.
CVD, cardiovascular diseases; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin;
TG, triglycerides; HDL-C, high density lipoprotein cholesterol; SUA, serum uric acid; AIP, atherogenic index of plasma.

2.2 Definition and grouping of Life’s
Essential 8

Sleep duration: Categorized as <6 h, 6–8 h, and >8 h based on
AHA guidance and epidemiological evidence showing increased
CVD risk at both extremes of sleep duration. The 6–8 h range
is commonly considered optimal for cardiovascular health
(Masumitsu et al., 2022; Hu et al., 2022). Fasting blood glucose:
The cutoff of ≥6.1 mmol/L aligns with WHO and Chinese Diabetes
Society definitions of impaired fasting glucose, a recognized risk
factor for CVD (Collaboration et al., 2010). LDL-C: A threshold
of ≥3.12 mmol/L (∼120 mg/dL) was selected based on prior large-
scale Chinese cohort studies and clinical prevention targets that
recognize this level as “borderline high” and associated with
increased cardiovascular risk (Kim et al., 2022). BMI: A BMI
≥24 kg/m2 is classified as overweight per Chinese guidelines,
which use lower thresholds than Western standards due to
higher cardiometabolic risk in Asian populations (Cai et al.,
2024). Blood pressure: Hypertension defined as SBP ≥140 mmHg
and/or DBP ≥90 mmHg or use of antihypertensive medication,
consistent with Chinese and WHO guidelines (Wang et al.,
2018). Smoking: “Smoker” defined as current or recent smoker
(within past 12 months), consistent with the AHA LE8 definition
of poor nicotine exposure (Lloyd-Jones et al., 2010). Physical
activity: Defined according to WHO and AHA recommendations,

with ≥150 min/week of moderate or ≥75 min/week of vigorous
activity considered “active” (Bull et al., 2020). Diet: Evaluated
based on adherence to dietary patterns aligned with the
AHA’s LE8 nutritional recommendations (e.g., DASH-like diet),
emphasizing plant-based foods and limited sodium, red meat, and
added sugars (Lichtenstein et al., 2021).

2.3 Endpoints

The endpoint of the study was the occurrence of cardiovascular
disease (CVD), encompassing fatal and non-fatal heart disease,
dyslipidemia, and stroke, in alignment with definitions used in
prior research (Gao et al., 2022; Che et al., 2023). CVD assessment
involved face-to-face interviews where trained interviewers posed
standardized questions regarding physician-diagnosed heart
conditions or stroke. “Have you been told by a doctor that you
have been diagnosed with a heart attack, angina, coronary heart
disease, heart failure, or other heart problems?” or “Have you been
told by a doctor that you have been diagnosed with a stroke?” If
the answer was “yes,” they would further inquire about the time
of onset and record it in the system. To reduce information bias,
interviewers verified previous heart disease or stroke records with
participants, inquiring about any new diagnoses since the last
survey and the initial diagnosis date, with all responses carefully
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TABLE 2 Baseline characteristics of participants stratified by tertiles of AIP.

Characteristics T1 (n = 2,749) T2 (n = 2,748) T3 (n = 2,749) P-value

Age, years 59.95 ± 9.65 59.55 ± 9.19 58.69 ± 8.69 <0.001

Sex, n (%) <0.001

 Male 1,404 (51.07%) 1,270 (46.22%) 1,189 (43.25%)

 Female 1,345 (48.93%) 1,478 (53.78%) 1,560 (56.75%)

Smoking status, n (%) <0.001

 Yes 1,173 (42.67%) 1,045 (38.03%) 1,025 (37.29%)

 No 1,576 (57.33%) 1703 (61.97%) 1724 (62.71%)

Drinking status, n (%) <0.001

 None 1,666 (60.60%) 1918 (69.80%) 1947 (70.83%)

 Mild or moderate 1,083 (39.40%) 830 (30.20%) 802 (29.17%)

BMI, n (%) <0.001

 ≥24 kg/m2 629 (23.62%) 1,061 (39.83%) 1,536 (57.68%)

 <24 kg/m2 2034 (76.38%) 1,603 (60.17%) 1,127 (42.32%)

Physical activity, n (%) 0.679

 Inactive 1,663 (60.49%) 1,694 (61.64%) 1,686 (61.33%)

 Insufficiently active 956 (34.78%) 939 (34.17%) 953 (34.67%)

 Active 130 (4.73%) 115 (4.18%) 110 (4.00%)

Sleep duration, n (%) 0.277

 <6 857 (31.17%) 814 (29.62%) 786 (28.59%)

 6–8 1,083 (39.40%) 1,115 (40.57%) 1,107 (40.27%)

 ≥8 809 (29.43%) 819 (29.80%) 856 (31.14%)

SBP, n (%) <0.001

 ≥120 mmHg 1,634 (59.44%) 1746 (63.54%) 1953 (71.04%)

 <120 mmHg 1,115 (40.56%) 1,002 (36.46%) 796 (28.96%)

DBP, n (%) <0.001

 ≥80 mmHg 773 (28.16%) 925 (33.72%) 1,112 (40.57%)

 <80 mmHg 1972 (71.84%) 1818 (66.28%) 1,629 (59.43%)

Hypertension, n (%) 478 (17.40%) 628 (22.87%) 904 (32.97%) <0.001

Diabetes, n (%) 102 (3.72%) 135 (4.93%) 239 (8.72%) <0.001

Kidney disease, n (%) 196 (7.16%) 177 (6.45%) 165 (6.01%) 0.222

Hyperuricemia, n (%) 79 (2.87%) 109 (3.97%) 207 (7.53%) <0.001

CVD, n (%) 398 (14.48%) 487 (17.72%) 709 (25.79%) <0.001

(Continued on the following page)
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TABLE 2 (Continued) Baseline characteristics of participants stratified by tertiles of AIP.

Characteristics T1 (n = 2,749) T2 (n = 2,748) T3 (n = 2,749) P-value

LDL-C, n (%) <0.001

 ≥3.12 mmol/L 1,011 (36.78%) 1,352 (49.20%) 1,191 (43.32%)

 <3.12 mmol/L 1738 (63.22%) 1,396 (50.80%) 1,558 (56.68%)

Glucose, n (%) <0.001

 ≥6.1 mmol/L 638 (23.21%) 778 (28.31%) 1,237 (45.00%)

 <6.1 mmol/L 2,111 (76.79%) 1970 (71.69%) 1,512 (55.00%)

HbA1c, n (%) <0.001

 ≥6% 127 (4.62%) 187 (6.80%) 347 (12.62%)

 <6% 2,622 (95.38%) 2,561 (93.20%) 2,402 (87.38%)

TG, mmol/L 0.72 (0.60–0.86) 1.15 (0.99–1.34) 2.02 (1.63–2.64) <0.001

HDL-C, mmol/L 1.69 ± 0.37 1.32 ± 0.25 1.02 ± 0.22 <0.001

LDL-C, mmol/L 2.93 ± 0.79 3.16 ± 0.88 3.03 ± 0.99 <0.001

SUA, umol/L 252.39 ± 68.81 259.43 ± 71.88 278.01 ± 77.10 <0.001

AIP −1.21 ± 0.44 −0.17 ± 0.26 1.10 ± 0.65 <0.001

Data are shown as mean ± standard deviation (SD) or median (IQR) for continuous variables and proportions (%) for categorical variables.
CVD, cardiovascular diseases; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low density lipoprotein cholesterol; HbA1c, glycosylated hemoglobin;
TG, triglycerides; HDL-C, high density lipoprotein cholesterol; SUA, serum uric acid; AIP, atherogenic index of plasma.

documented. “Is the heart disease or stroke record from the last
survey correct?”, “Have you been diagnosed with heart disease
or stroke by a doctor since the last survey?”, and “When was the
condition first diagnosed or known?”, and the responses provided
were documented.

2.4 Statistical analysis

The data were expressed as mean ± standard deviation (SD)
or median with interquartile ranges (25th and 75th percentiles)
for continuous variables and frequency (percentage) for categorical
variables.The population characteristics were described by outcome
classification and AIP tertiles to explore the distribution of each
interval at baseline. Normal distribution conformity of continuous
data was evaluated by the Kolmogorov-Smirnov test, and variance
homogeneity was assessed with the Levene test. A t-test or one-way
ANOVA was performed to analyze the differences in continuous
variables, while the chi-square test or Fisher’s exact test was used
to identify differences in categorical variables between groups.
Logistic regression analyses, both univariate and multivariate, were
conducted with AIP as the independent variable and CVD as the
dependent, to calculate the odds ratio (OR) and 95% confidence
interval (CI) for the AIP-CVD association across various health
behaviors and factors. We also conducted Cox proportional-
hazards models separately for incident CHD, stroke, and heart
failure to assess whether AIP associations differed by endpoint.

Heterogeneity across subtypes was tested using a Wald χ2 test (p
< 0.05 indicated significant differences). Adjustments were made
for covariates including age, sex, BMI, smoking status, physical
activity, hypertension, diabetes mellitus, kidney disease, LDL-C,
and glucose, using a significance threshold of P < 0.05. Next,
the P for the interaction test was used to compare whether
there was a significant difference in the association between
AIP and CVD between the corresponding stratification variable
groups. Smooth curve fitting (penalized spline method) was used
to visually show the relationship between AIP and CVD in
different stratification groups. To control the false discovery rate
across multiple subgroup and interaction tests, p-values were
adjusted using the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995). Adjusted p-values (PDR-p) < 0.05 were considered
statistically significant.

Discrimination of incident CVD by AIP and by combined
models was evaluated using receiver‐operating characteristic (ROC)
curves and quantified by the area under the ROC curve (AUC).
This approach has been widely applied in cardiovascular biomarker
research and other disease diagnostics (Le et al., 2021; Kha et al.,
2022). The receiver operating characteristic (ROC) curves of
different health behaviors and factors were depicted by using
logistic analysis for predicting CVD. Furthermore, to assess whether
the accuracy of predicting CVD would improve after adding
the AIP to a baseline model consisting of the health behaviors
and factors, the C-statistics, net reclassification improvement,
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TABLE 3 Association of AIP, lifestyle, common risk factors and CVD.

Variables Univariate analysis Multivariate analysis P value

OR (95% CI) P value OR (95% CI)

AIP 1.35 (1.28, 1.42) <0.001 1.36 (1.29, 1.43) <0.001

Smoking status

 Yes 1 (Reference) 1 (Reference)

 No 1.21 (1.08, 1.36) 0.001 1.01 (0.86, 1.18) 0.908

Drinking status

 None 1 (Reference) 1 (Reference)

 Mild or moderate 0.69 (0.61, 0.78) <0.001 0.78 (0.68, 0.89) <0.001

BMI, kg/m2

 ≥24 1 (Reference) 1 (Reference)

 <24 0.45 (0.40, 0.50) <0.001 0.43 (0.38, 0.48) <0.001

Physical activity

 Inactive 1 (Reference) 1 (Reference)

 Insufficiently active 1.02 (0.91, 1.14) 0.743 1.02 (0.91, 1.15) 0.695

 Active 0.76 (0.57, 1.02) 0.072 0.81 (0.60, 1.09) 0.160

Sleep duration, h

 <6 1 (Reference) 1 (Reference)

 6–8 0.79 (0.70, 0.90) <0.001 0.86 (0.75, 0.98) 0.022

 ≥8 0.68 (0.59, 0.78) <0.001 0.73 (0.63, 0.84) <0.001

SBP, mmHg

 ≥120 1 (Reference) 1 (Reference)

 <120 0.68 (0.60, 0.77) <0.001 0.73 (0.64, 0.82) <0.001

DBP, mmHg

 ≥80 1 (Reference) 1 (Reference)

 <80 0.71 (0.63, 0.79) <0.001 0.68 (0.61, 0.76) <0.001

LDL-C, mmol/L

 ≥3.12 1 (Reference) 1 (Reference)

 <3.12 0.83 (0.74, 0.92) 0.001 0.89 (0.79, 0.99) 0.032

Glucose, mmol/L

 ≥6.1 1 (Reference) 1 (Reference)

 <6.1 0.71 (0.63, 0.79) <0.001 0.73 (0.65, 0.82) <0.001

(Continued on the following page)

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2025.1538938
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wu et al. 10.3389/fphys.2025.1538938

TABLE 3 (Continued) Association of AIP, lifestyle, common risk factors and CVD.

Variables Univariate analysis Multivariate analysis P value

OR (95% CI) P value OR (95% CI)

HbA1c, %

 ≥6 1 (Reference) 1 (Reference)

 <6 0.54 (0.45, 0.64) <0.001 0.56 (0.47, 0.67) <0.001

Hyperuricemia

 Yes 1 (Reference) 1 (Reference)

 No 0.75 (0.59, 0.95) 0.015 0.77 (0.61, 0.98) 0.037

Multivariate analysis adjusted for age, sex, BMI, smoking, physical activity, hypertension, diabetes mellitus, kidney disease; LDL-C, and glucose; except the corresponding stratification variable.
CVD, cardiovascular diseases; AIP, atherogenic index of plasma; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low density lipoprotein cholesterol;
HbA1c, glycosylated hemoglobin; OR, odds ratio; CI, confidence interval.

and integrated discrimination improvement were calculated. We
determined the optimal AIP cut‐off using Youden’s index on the
ROC curve and then calculated sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
for AIP alone and for the LE8 + AIP model. The data were
managed and analyzed using R software, version 3.5.3. All
tests were two-tailed, and a p-value of <0.05 was deemed
statistically significant.

3 Results

3.1 Baseline characteristics of study
participants

A comparison of characteristics between individuals with and
without CVD is presented in Table 1. In summary, of the 8,246
participants in this study, the mean age was 59.39 ± 9.20 years
with 46.85% being male. The prevalence of CVD was 19.3%, and
the mean atherogenic index of plasma (AIP) was −0.09 ± 1.06.
Mean AIP levels, age, LDL-C and TG were significantly higher
in participants with CVD compared to those without CVD (p
< 0.01). Generally, individuals diagnosed with CVD tend to be
older, have a higher incidence of a BMI greater than 24, and be
more likely to sleep less than 6 h. There were higher prevalence
rates of hypertension (50.88% vs. 18.06%), diabetes (14.89% vs.
3.62%), and kidney disease (10.18% vs. 5.68%) among CVD
patients. Additionally, the group with CVD exhibited notably
poorer blood sugar control (12.3% vs. 6.99%). The distributions
of study participant baseline characteristics according to AIP
tertiles are presented in Table 2. In our study, the population
with higher AIP levels had higher values for BMI, SBP, DBP,
hypertension, diabetes, kidney disease, hyperuricemia, LDL-C,
glucose, HbA1c, TG, and lower values for HDL-C. Additionally,
baseline characteristics were stratified by sleep duration (<6 h,
6–8 h, ≥8 h), LDL-C levels (<3.12 mmol/L, ≥3.12 mmol/L),
and glucose levels (<6.1 mmol/L, ≥6.1 mmol/L), as detailed in
Supplementary Tables S1–S3.

3.2 Association between AIP and CVD in
different classifications of health behaviors
and factors

Table 3 illustrates that AIP was significantly associated with an
increased risk of CVD. In the multivariate model, with AIP as a
continuous variable, each one-unit increase in AIP corresponded
to a 36% higher risk of CVD (OR 1.36, 95% CI 1.29–1.43; P <
0.001). Additionally, subtype‐specific analyses revealed that AIP
had the strongest association with CHD (HR 1.26 per SD; p <
0.001), a moderate association with stroke (HR 1.17; p < 0.001),
and a weaker but still significant association with heart failure
(HR 1.12; p = 0.003). The test for heterogeneity was significant
(p = 0.02), confirming that the prognostic impact of AIP varies
meaningfully by cardiovascular endpoint. Furthermore, to assess
the impact of missingness, we performed multiple imputation
by chained equations (MICE) for all participants (n = 15,139)
under missing-at-random assumptions (Karahalios et al., 2012).
Comparing hazard ratios for AIP (per SD increment) in: The
complete‐case sample (n = 8,246): HR 1.22 (95% CI 1.17–1.27);
The imputed full cohort (n = 15,139): HR 1.21 (95% CI 1.16–1.26).
The near‐identical estimates support robustness of our findings to
missing data. Supplementary Figure S2 reveals a positive association
between AIP and CVD in our study. In addition, we included
household per capita consumption expenditure as a proxy for
income, alongwith education level and residence type (urban/rural),
to account for SES-related confounding.The results of this expanded
model show that the association between AIP and cardiovascular
disease remains robust and materially unchanged after adjusting
for these additional SES indicators. Further evaluation of the
relationship between different health behaviors and factors with
CVD revealed that alcohol consumption (OR 0.78, 95% CI
0.68–0.89; P < 0.001), BMI management (OR 0.43, 95% CI
0.38–0.48; P < 0.001), sleep duration (OR 0.86, 95% CI 0.75–0.98;
P = 0.022), and the management of blood pressure (OR 0.73,
95% CI 0.64–0.82; P < 0.001), blood sugar (OR 0.56, 95% CI
0.47–0.67; P < 0.001), and lipid management (OR 0.89, 95% CI
0.79–0.99; P < 0.032), as well as hyperuricemia(OR 0.77, 95%
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FIGURE 1
Effect modification of health behaviors and factors on the association between AIP and CVD.

CI 0.61–0.98; P < 0.037) are all associated with an increased
risk of CVD (Table 3).

3.3 Interaction and stratified analyses by
Life’s Essential 8 components

Figure 1 shows the effect of health behaviors and factors on the
association between AIP and CVD. In the glucose ≥6.1 mmol/L
group, higher AIP was associated with 44% increase in CVD (OR

1.44, 95%CI 1.33–1.56). However, when maintaining blood sugar
control below 6.1 mmol/L, the OR value of AIP in relation to CVD
significantly decreased (OR 1.25, 95%CI 1.16–1.35). Glucose status
had a significant effect on modifying the relationship between AIP
and CVD (PIneraction = 0.008). Furthermore, when compared with
LDL-C ≥3.12 mmol/L group, OR value of LDL-C <3.12 mmol/L
group was significantly reduced (LDL-C ≥3.12 mmol/L group:
OR 1.50, 95%CI 1.37-1.65; LDL-C <3.12 mmol/L group, OR
1.30, 95%CI 1.22-1.38; PIneraction = 0.011). In addition, the P for
interation was significant, showing that the relationship between
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FIGURE 2
Associations between AIP and prevalence of CVD, stratified by key health factors. (A) Stratified by LDL-C levels (≥3.12 vs. <3.12 mmol/L). (B) Stratified by
fasting glucose levels (≥6.1 vs <6.1 mmol/L). (C) Stratified by sleep duration (<6 h, 6–8 h, ≥8 h).

AIP and CVD was influenced by sleep duration (PIneraction
= 0.006). Supplementary Figures S3–S5 demonstrate a negative
correlation between sleep duration and the prevalence of CVD,
while LDL-C and glucose levels show a positive correlation with the
prevalence of CVD. Figure 2 indicates that, compared to the control
group, elevated levels of blood sugar and lipids may influence the
cross‐sectional association between AIP and prevalent CVD. After
FDR correction, the interaction between AIP and LDL-C category
remained significant (PDR-p = 0.01). The interaction by fasting
glucose category was also retained (PDR-p = 0.03). The interaction
with sleep duration became borderline (PDR-p = 0.07), and is now
described as a trend rather than a definitive interaction.

Subsequently, the ROC curves were established to determine
the accuracy of the “Life’s Essential 8”combined with AIP to
predict the occurrence of CVD. ROC analysis for prevalent
CVD yielded modest AUCs for individual markers: BMI (0.624),
AIP (0.591), SBP (0.566), glucose (0.557), HbA1c (0.551), and
others ranging 0.497–0.549. The LE8 composite reached 0.651,
increasing to 0.671 with AIP added. Continuous NRI (0.077;
P < 0.001) and IDI (0.024; P = 0.028) further quantify small

improvements (Figure 3). Using Youden’s index, the optimal AIP
cut‐off to discriminate CVD events was 0.15. At this threshold, AIP
alone achieved: Sensitivity 70.3% (95% CI 67.2–73.4), Specificity
61.5% (95% CI 59.2–63.8), PPV 48.6% (95% CI 45.5–51.8), NPV
79.2% (95% CI 77.0–81.3). Furthermore, adding AIP to a baseline
model consisting of the heath behaviors and factors significantly
increased the net reclassification improvement and integrated
discrimination improvement for predicting the occurrence of CVD
(Table 4).

4 Discussion

In our study, we observed that certain health behaviors and
factors, including the management of glycemia and lipid profiles,
as well as sleep duration, may modulate the correlation between
AIP and CVD incidence in middle-aged and older adults. The data
suggest that effective management of glucose and LDL-C levels may
attenuate the association of AIP with CVD risk. Furthermore, the
prognostic potential of AIP in forecasting CVD events appears more
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FIGURE 3
Receiver operating characteristic curves for cardiovascular disease prediction. (A) Individual Life’s Essential 8 metrics: BMI (0.624), AIP (0.591), SBP
(0.566), glucose (0.557), HbA1c (0.551), DBP (0.549), drinking status (0.543), sleep duration (0.543), LDL-C (0.527), smoking status (0.523), hyperuricemia
(0.518), and physical activity (0.497). (B) Comparison of the basic risk model (AUC 0.651) with the basic model plus AIP (AUC 0.671).

TABLE 4 Improvement in discrimination and risk reclassification for CVD after adding AIP.

Model AUC P value NRI for events P value IDI P value

(95%CI) Estimate (95%CI) Estimate (95%CI)

Baseline risk model 0.651 (0.636–0.667) Ref. Ref. Ref. Ref. Ref.

+AIP 0.671 (0.656–0.686) <0.001 0.077 (0.058–0.096) <0.001 0.024 (0.003–0.044) 0.028

Abbreviations: AUC, area under curve; NRI, net reclassification index; IDI, integrated discrimination improvement; CI, confidence interval.
The basic model included smoking, drinking, bmi, physical activity, sleep duration, SBP, DBP, LDL-C, glucose, HbA1c, and hyperuricemia.

pronounced in individuals who sleep between 6 and 8 h, relative
to those with less than 6 h of sleep. Integrating AIP with pertinent
health behaviors and factors could prove beneficial in enhancing the
stratification of CVD risk.

Previous studies have examined the relationship between
AIP and CVD. Defined as log(TG/HDL-C), AIP was initially
developed as an atherosclerosis biomarker in plasma. Recent
studies, leveraging nationwide cohort data, suggest that AIP could
independently predict future cardiovascular events, highlighting its
role in encapsulating the overall state of atherosclerosis (Fu et al.,
2021). Similarly, in a large Korean cohort, individuals in the
highest AIP quartile had a 28.4% increased risk of cardiovascular
events compared to those in the lowest quartile (Kim et al., 2022).
Echoing previous findings, our analysis corroborates a significant
association between higher AIP levels and an elevated risk of total
CVD in the CHARLS cohort. Subtype‐specific analyses indicate
that the atherogenic lipid patterns captured by AIP are most
predictive of ischemic coronary events, less so for stroke, and
least for heart failure. This aligns with pathophysiological evidence
that atherogenic dyslipidemia drives coronary atherothrombosis

more directly than other cardiovascular pathologies. Clinically, this
suggests endpoint-specific utility of AIP, it may be most valuable
for stratifying CHD risk. It should be noted that he AUC for
AIP alone was 0.651, and the addition of AIP to a model of
traditional risk factors resulted in a statistically significant but small
increase in AUC (from 0.651 to 0.671). To improve cardiovascular
health and reduce disease burden, the AHA implemented the LE8
metric for assessing cardiovascular wellbeing (Lloyd-Jones et al.,
2022). The metric evaluates conditions from eight perspectives:
health behaviors (diet, physical activity, nicotine exposure, sleep)
and health factors (body weight, blood lipid, blood glucose,
blood pressure). Our study evaluates the predictive strengths
and limitations of AIP for CVD across various health behaviors
and factors. Results showed a stronger AIP-CVD association in
participants with glucose levels ≥6.1 mmol/L (HR 1.44 [1.33-1.56])
after adjusting for multiple variables, compared to those with lower
glucose levels. This finding was consistent with subgroup analysis
of a previous large population cohort (Kim et al., 2022). Kim et al.
demonstrated that increased AIP levels were not significant in the
population for estimating future CV risk.
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However, in our study, the significant association between AIP
and CVD persisted for participants without diabetes, albeit at a
reduced OR (OR 1.25 95%CI 1.16–1.35). Another cohort study
involving 17,944 non-diabetic individuals also confirmed that AIP
can predict the future risk of ischemic heart disease in non-
diabetic adults (Kim et al., 2021). Insulin resistance has been
proven to promote the formation of atherosclerosis and the clinical
progression of advanced plaques and is considered a significant risk
factor for CVD (Ormazabal et al., 2018; Bornfeldt and Tabas, 2011).
Although the exact mechanism by which glucose levels modify the
AIP-CVD link remains unclear, previous research has proposed
several theories. Insulin resistance enhances the breakdown of free
fatty acids in adipose tissue, which in turn stimulates the synthesis
of fat and very-low-density lipoprotein in the liver (Engin, 2017).
Concurrently, there’s a resistance to the insulin-mediated activation
of lipoprotein lipase in adipose tissue, which can result in elevated
blood triglycerides. Additionally, elevated HbA1c facilitates the
transfer of cholesterol esters to HDL-C, leading to a reduction in
HDL-C levels (Shin et al., 2022). A study also revealed that patients
with type 2 diabetes mellitus (T2DM) had a smaller average LDL
particle size and a higher proportion of sdLDL compared to those
without T2DM (Suh et al., 2011).

Our study also found that the positive correlation between AIP
and CVD was more pronounced in the participants with LDL-C
≥3.12 mmol/L than those with LDL-C <3.12 mmol/L, and smooth
curve fitting also revealed different curve shapes for AIP and CVD
risk in different LDL-C staus. AIP is a composite lipid index that
integrates HDL-C and TG levels. sdLDL particles are characterized
by a higher proportion of low-density lipoproteins, smaller size,
and heightened sensitivity to oxidative stress (Anber et al.,
1996). Within the body, they readily transform into oxidized
low-density lipoproteins, initiating inflammatory responses in the
subendothelial space of blood vessels and leading to the formation
of foam cells, culminating in atherosclerosis. Numerous studies have
shown that the easily obtainable AIP can accurately reflect the risk
of residual lipids (Fu et al., 2021; Zheng et al., 2022; Shi and Wen,
2023). Our research suggests that controlled LDL-C levels can also
mitigate the risk of residual lipids contributing to CVD.

From our findings, it is evident that compared to individuals
with sleep durations of less than 6 h, those sleeping 6–8 h per 24-
h period demonstrate an enhanced predictive value between AIP
and CVD risk (OR 1.20 vs. 1.44). Increasing evidence suggests
that disruption of the circadian rhythm system elevates the risk
of metabolic disorders (Crislip et al., 2021; Turek et al., 2005;
Chaix et al., 2019). Scheer et al. (Bikov et al., 2021). found that a
12-h sleep delay results in a 6%deterioration in average daily glucose
levels and a 22%decline in insulin levels, indicating impaired insulin
sensitivity in the absence of adequate β-cell compensation. However,
the impact of sleep duration on lipid metabolism has yet to be
conclusively determined. A systematic review showed mixed results
regarding sleep duration and HDL-C levels: three studies noted a
negative correlation, two a positive one, and three found no link
(Fobian et al., 2018). Additionally, among six studies, there was
no significant correlation between sleep duration and blood TG
levels (Fobian et al., 2018). Given the differences in age, gender,
and other factors, it is challenging to evaluate the conclusions. From
the perspective of outcomes, a meta-analysis has shown that sleep
duration of less than 6 h has a linear association with an increased

risk of cardiovascular disease and diabetes (Itani et al., 2017). This
conclusion is consistent with our study’s analysis of the correlation
between sleep and the risk of cardiovascular disease (Table 2).
This study incorporated sleep duration as an evaluation criterion.
However, assessing sleep should be a multifaceted process. A
thorough sleep evaluation should consider night shifts, sleep depth,
and sleep onset time. By controlling for multiple comparisons
via FDR, we confirmed that the modifying effects of LDL-C and
fasting glucose on the AIP-CVD relationship are robust, whereas
the sleep-duration interaction now merits cautious interpretation
as a potential trend rather than a firm finding. This approach
aligns with current best practices for multiple testing correction in
epidemiological research.

The sleep × AIP interaction is a novel aspect of our
study. The rationale for examining this interaction stems
from emerging evidence suggesting that disrupted sleep
patterns can influence lipid metabolism and inflammatory
processes, which are critical components of atherosclerosis and
cardiovascular risk (Van Cauter et al., 2008). Although the precise
molecular mechanisms linking sleep duration to AIP remain to be
fully elucidated, there is growing recognition of how insufficient or
excessive sleep may impact metabolic health, insulin resistance,
and lipid profiles. These physiological alterations may, in turn,
modulate the relationship between AIP and cardiovascular disease.
Therefore, our study aims to contribute to the body of literature
by investigating these complex interactions at the population level.
It is worth mentioning that as CHARLS currently provides the
only harmonized, nationally representative cohort in middle-
aged and older Chinese adults with detailed Life’s Essential 8
and lipid measurements. Future research should seek to validate
our findings in external cohorts with differing demographic
and clinical characteristics. Such efforts will help determine
whether the observed interplay between AIP and individual LE8
components holds in other ethnicities and healthcare settings,
thereby strengthening the potential for broader clinical application.

Some limitations should be noted. First, as a cross-sectional
study, our study failed to provide causality regarding the relationship
between AIP and CVD in different health behaviors and factors
status group. Future prospective longitudinal studies are warranted
to further elucidate the nature of this relationship and to confirm
whether AIP can indeed serve as a causal risk factor for
CVD. Second, given the single‐time‐point design and reliance on
self‐reported exposures, we cannot rule out residual confounding
or reverse causality. Thus, our observed interactions with sleep and
glucose should be considered hypothesis‐generating. Longitudinal
cohorts with repeated measures are needed to establish whether
sleep patterns or glycemic status truly modify AIP’s predictive value
for incident CVD. Third, while the American Heart Association
(AHA) evaluates “Life’s Essential 8” through a scoring system, this
study assesses various health behaviors and factors using a basic
binary or ternary classification. It limits direct comparison of our
findings with studies that use the standardized AHA LE8 aggregate
score. It is noted that categorizing risk factors based on established
thresholds is a common practice in epidemiological research. These
categories often align with clinical decision-making and public
health recommendations, making the findings more accessible and
interpretable in a practical context. Fourth, our assessment of
healthy behaviors and factors was based on baseline interview data
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and blood test results; therefore, we cannot eliminate the possibility
of changes in health behaviors and factors, as well as possible recall
bias. Such misclassification typically biases effect estimates toward
the null, potentially underestimating true associations (Prince et al.,
2008). Fifth, over 45%of the baselineCHARLS cohort were excluded
due to incomplete data (n = 6,893), which could introduce selection
bias. Nevertheless, multiple imputation and sensitivity analyses
demonstrate that our primary estimates are stable. Finally, our study
population consisted ofmiddle-aged and elderly individuals over the
age of 45 from China. Thus, the generalizability of the results to all
age populations remains to be verified.

5 Conclusion

AIP has been identified as an independent indicator of CVD
risk within the middle-aged and elderly demographic. Notably, the
correlation between AIP and CVD incidence was more pronounced
in individuals with a sleep duration ≥6 h, glucose ≥6.1 mmol/L or
LDL-C ≥ 3.12 mmol/L. These findings imply that health behaviors
such as sleep duration, as well as health factors like glucose and
LDL-C levels, may influence the strength of the relationship between
AIP and CVD. Consequently, AIP may serve as a more effective
prognostic tool for CVD among patients with concurrent conditions
such as diabetes or dyslipidemia.
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