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Electrocardiogram (ECG) is a graphical representation of the electrical activity
of the heart and plays a crucial role in diagnosing heart disease and assessing
cardiac function. In the context of infectious diseases, ECG classification is
particularly critical, as many infections, such as viral myocarditis and sepsis, can
cause significant cardiac complications. Early detection of infection-induced
cardiac abnormalities through ECG can provide timely intervention and improve
patient outcomes. However, current ECG processing methods often overlook
the impact of confounding factors caused by statistical associations, which
can compromise classification accuracy, especially in infection-related cardiac
conditions. To address this, we propose an innovative approach to causal
reasoning based on attention mechanisms. By employing backdoor adjustment
for each cardiac lead, our method effectively eliminates confounding factors
and models the true causal relationship between ECG patterns and underlying
cardiac abnormalities caused by infectious diseases. Furthermore, our approach
integrates the concept of entropy with causal inference to enhance ECG
classification. By quantifying the information content and variability in ECG
signals, we can better identify patterns and anomalies associated with infection-
induced cardiac conditions. Experimental results demonstrate that our method
achieves significant improvements in classification accuracy and robustness
across four benchmark ECG datasets, outperforming existing methods. This
work provides a novel perspective on the interplay between infection and
cardiac function, offering valuable insights into the detection and understanding
of infection-related cardiac complications.

KEYWORDS

ECG classification, attention, time domain features, causal reasoning, backdoor
adjustment, infectious disease diagnosis, cardiac signal variability

1 Introduction

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide,
accounting for approximately 20.5 million deaths in 2021, which represents about
one-third of all global deaths (Federation, 2023). While high-income countries have
made significant strides in cardiovascular health, this progress remains uneven,
particularly in low- and middle-income countries, where over 75% of CVD-related
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deaths occur. These regions often face limited access to specialized
cardiology services, further exacerbating the challenge of timely
diagnosis and intervention. Moreover, infectious diseases such
as COVID-19, HIV, and other viral or bacterial infections have
been shown to exacerbate or directly contribute to cardiovascular
complications, including myocarditis and sepsis-induced cardiac
dysfunction. This dual burden of CVD and infectious diseases
underscores the urgent need for accurate, automated tools to
interpret electrocardiograms (ECG) and support diagnosis in
resource-limited settings. In recent years, machine learning (ML)
has played a pivotal role in advancing ECG signal classification
(Jekova et al., 2008; Ince et al., 2009), offering new possibilities
for understanding the interplay between infectious diseases and
cardiovascular health. The ECG, as a critical test in the medical
field, reveals the heart’s electrical activity frommultiple dimensions.
Machine learning algorithms, through their ability to analyze
large datasets, identify complex patterns, and classify a wide
range of cardiac conditions, are transforming cardiovascular care
(Andreao et al., 2006; Martis et al., 2013; Karimifard et al., 2006).
For regions heavily impacted by infectious diseases, these algorithms
hold promise for detecting infection-induced cardiac abnormalities,
such as myocarditis caused by viral infections. Additionally, real-
time monitoring systems incorporating unsupervised learning
and anomaly detection methods, such as auto-encoders, provide
continuous analysis of ECG data, enabling timely warnings for
healthcare providers. These technologies not only support early
detection of cardiovascular issues but also offer valuable insights
into the cardiac complications associated with infectious diseases,
facilitating better clinical outcomes and resource allocation.

In the traditional diagnosis, a healthcare professional performs
a detailed analysis of the ECG, focusing on the shape, duration,
and temporal characteristics of electrical waveforms, including
P waves, QRS wave groups, and T waves, which are illustrated
in Figure 1. Through careful observation and interpretation of
these characteristics, medical personnel can deeply understand
the heart condition of patients, and then provide an accurate
basis for the diagnosis and treatment of cardiovascular problems.
ECG signals play a crucial role in diagnosing various cardiac
disorders, including those induced by infectious diseases such as
viral myocarditis and sepsis-related myocardial injury (Siontis et al.,
2021). In these conditions, the infectious agents or systemic
inflammatory responses can directly or indirectly affect the heart,
leading to characteristic changes in ECG waveforms. For instance,
viral myocarditis may manifest as ST-segment elevation, T-wave
inversion, or arrhythmias, while sepsis-related myocardial injury
often results in prolonged QT intervals or reduced heart rate
variability. The detection and classification of these ECG patterns
are essential for early diagnosis and timely intervention in infection-
related cardiac disorders.

In the field of computer vision, the judgment of the model
is often disturbed by a variety of confounding factors, which
makes accurate image analysis more complex and challenging
(Nie et al., 2023a). Confounding factors can include illumination
change, shadow, noise, occlusion, and other environmental or
sensor-related artifacts. These factors not only affect the quality of
the image but also confuse the model’s correct understanding of
the image content. Similarly, in the context of ECG signal analysis,
confounding factors manifest in different yet equally impactful

ways. For instance, variations in time-scale features, inter-lead
differences, basic physiological characteristics of patients, and prior
information on disease types can all act as confounders (Nie et al.,
2023b). Time-scale features, such as short-term fluctuations and
long-term trends, are directly observable and extracted using multi-
scale convolutional kernels. Inter-lead differences, particularly in
multi-lead ECG signals like 12-lead ECG, reflect the varying
characteristics of signals fromdifferent leads, which can significantly
influence classification results. Basic physiological features, such
as heart rate, QRS complex morphology, and T-wave morphology,
are inherent components of ECG signals and may simultaneously
affect the signals and the classification outcomes. Additionally,
prior information on disease types, derived from the labels
in the training data, allows us to construct a confounding
dictionary by computing the average features for each class,
representing the typical confounding characteristics of different
classes (Liu et al., 2024; Nie et al., 2024).

It is worth emphasizing that the existence of confounding factors
not only makes the judgment of the model fuzzy and uncertain,
but these factors themselves may interweave and influence each
other to form a more complex visual environment. For example,
in ECG signals, patient-specific characteristics such as age, gender,
or body composition may interact with recording conditions like
electrode quality or environmental noise to create compounded
distortions that are difficult to disentangle. However, the discovery
and removal of confounding factors in ECG signals is also a
challenging task (Sajjan, 2012), as they may take on subtle and
imperceptible forms in the signal that are difficult to capture by
simple rules or algorithms. If the model deduces based on these
confounding features, it is easy tomake thewrong judgment because
themodel does not consider the true causal relationship between the
features and the label.

These confounders are considered visible because they can be
directly extracted from the ECG signals or data labels without
requiring additional assumptions or unobservable variables. Time-
scale features and inter-lead differences are extracted using signal
processing techniques such as convolutional operations, while
basic physiological features are obtained through standard ECG
analysis methods. Prior information on disease types is derived
directly from the labels in the training data, making it known
and observable (Liu et al., 2024). Our approach assumes that
these confounders are observable and can be effectively addressed
through the construction of a confounding dictionary and causal
interventions, such as backdoor adjustment. This assumption is
based on the fact that these confounders are directly extracted
from the data, eliminating the need for additional unobservable
variables, and by constructing a causal graph, we explicitly model
the relationships between these confounders, ECG signals, and
classification outcomes (Nie et al., 2024; Ribeiro et al., 2020).

Besides, if we ignore time-scale features and only rely on
local information to apply the traditional method to ECG signal
classification, it will lead to the failure to fully understand the
rich information contained in ECG signals (Bender et al., 2023).
A single-scale analysis method may lead to an oversimplification
of the characteristics of the ECG signal, thus affecting the final
classification accuracy. Therefore, in order to interpret ECG
signals more comprehensively, we introduce a time-domain features
embedding module. By learning and utilizing the features of
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FIGURE 1
Part of an electrocardiogram.

different time scales, we can better capture the dynamic features
of the signal and improve the performance and generalization
ability of the classification algorithm. When the ECG signal is
used as input, the model is easily disturbed by confounding factors
(Miao et al., 2023; Zhan et al., 2023). Confounding factors, such
as individual differences, the complexity of the disease, and other
physiological disturbances, have a non-negligible impact on the
accurate classification of ECG signals. Traditional approaches often
fail to fully account for these confounding factors, resulting in
models that perform poorly in the face of complexities. Especially in
complex clinical settings, the presence of these confounding factors
may mask the true causal relationship and reduce the reliability and
generalization performance of the classification model.

In order to overcome this challenge, a causal reasoning
method was introduced in this study, aiming at deeply mining
the correlation in ECG signals, clarifying the causal chain, and
effectively eliminating the interference of confounding factors,
thus improving the adaptability of the classification model to
complex situations (Ghongade and Ghatol, 2007; Nagal and
Sharma, 2014). Specifically, we propose a classification network
for ECG signals based on causal reasoning. First, in the feature
mapping part of the whole network, we use convolution kernels
of different sizes. Given the diversity of ECG signals on time
scales, the characteristics of different time scales are essential for
a comprehensive understanding of the signals. At the same time,
the module considers various perspectives of the ECG signal to
capturemore abundant feature information.This allows the network
to consider time dynamics more comprehensively when analyzing
ECGs, thus improving the accuracy of the classification algorithm.
Second, the causal reasoning module is the de-confounding part of
our proposed network. Confounders are often a major obstacle to
model performance in ECG signal classification tasks. In the causal
reasoning module, we adopt the backdoor adjustment method to
eliminate the influence of confounding factors by constructing a
causal graph and cutting off the false causal path, so as to realize the

identification of a real causal correlation.The causal module ensures
that themodel ismore reliable and stable in the classification process
and avoids misjudgments caused by confounding factors.

Given the preceding discussion, the key achievements of the
study can be outlined as follows:

• We mitigate the interference of confounding factors in ECG
signals by introducing backdoor adjustment, allowing for the
preservation of true causal features associated with infection-
induced cardiac abnormalities. This approach enhances
network classification performance and provides a robust
framework for accurately identifying cardiac conditions
influenced by infectious diseases.

• We leverage the time-domain diversity of ECG signals to enable
the causal reasoning module to effectively address confounding
factors arising from temporal variations in ECG data. By
eliminating the adverse impact of these factors, our method
improves classification accuracy and robustness, particularly in
detecting infection-related cardiac anomalies.

• Results of extensive experiments on four multi-label ECG
datasets demonstrate that our method surpasses the existing
advanced networks across several classification tasks.

2 Related work

2.1 Causal learning for medical images

In the past few years, many research has been devoted to the
application of causal learningmethods tomedical image processing,
covering medical image classification, image segmentation, and
medical question and answering tasks.

Nie et al. (Nie et al., 2023a; Nie et al., 2023b; Liu et al.,
2024) used a variety of causal learning methods in medical image
classification. They succeeded in removing visible confounding
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factors by using backdoor adjustment methods. In addition, they
cleverly introduced instrumental variables, extracting information
from chest imaging and electronic health record sheets to effectively
eliminate invisible confounding factors. Miao et al. (2023) proposed
a method of medical image segmentation based on causal graphs,
which provides a more interpretable approach for semi-supervised
learning of medical image segmentation. In their research, they
emphasize the importance of algorithmic independence based on
the principle of cause-effect graphs, and design an innovative
statistical quantification method to approximate uncomputable
algorithmic independence. Zhan et al. (2023) propose an innovative
debiased medical visual question-answering (MedVQA) model,
which cleverly incorporates counterfactual data during the training
phase and directly subtracts the causal effects of linguistic priors,
thus successfully migrating linguistic biases in the final MedVQA.
This approach not only focuses on the influence of linguistic
priors, but also powerfully mitigates bias in training by introducing
counterfactual data. However, while existing research has made
significant progress in tasks such as medical image classification,
segmentation, and intelligent question and answer, the unique
nature and data complexity of ECGs make causal reasoning in this
field even more complicated.

2.2 Machine learning for ECG signal
classification

Jekova et al. (2008) explored morphological features, examining
characteristics like the amplitude and width of QRS complex
waves. On the other hand, statistical features are obtained using
techniques such as wavelet transform or hidden Markov chain
(Ince et al., 2009; Andreao et al., 2006). Nagal et al. (Martis et al.,
2013) proposed some mathematically based analytical methods
to deal with high-dimensional features. In feature classification,
algorithms like multilayer perceptron (Karimifard et al., 2006),
K-nearest neighbors (Ghongade and Ghatol, 2007), and support
vector machines (Nagal and Sharma, 2014) are frequently utilized.
Martis et al. (Shimpi et al., 2017) proposed principal component
analysis to reduce ECG signal dimensionality, followed by using
a visual word bag method, involving feature block extraction,
codebook construction, and pooling strategies for generating the
final features to the SVM for classification. Lassoued and Ketata,
(2018) proposed discrete wavelet transform coefficients for feature
extraction, with a fully connected layer serving as the classifier.
However, machine learning methods are hindered by their reliance
on meticulous data preprocessing, making it challenging to achieve
optimal performance.

Wang et al. (2021) introduced a method that integrates a
33-layer CNN with a attention module. This CNN is adept at
extracting spatial and channel features, while the non-local attention
mechanism effectively captures long-range dependencies across
these dimensions. Chen et al. (2020) proposed an effective ECG
classification network comprising five CNN blocks, bidirectional
GRU with an attention mechanism. Yang et al. (2023) believed
that by extracting the features of ECG signals from multiple views,
higher quality features can be obtained compared to a single view.
Finally, multiple features are fused through a multi-view fusion
module to get the final feature. Zhang et al. (2023) proposed an

efficient method to learn multi-scale features by using a two-branch
structure.Han et al. (2023) proposed a fusionmodule for ECG signal
classification based on multi-modal and attention mechanisms,
aiming at preprocessing methods that are easy to lead to the loss
of key information. In addition, in order to avoid extracting only
a single feature which makes it difficult for the model to learn
the complete ECG information, they use both the time domain
information and the visual domain information of the ECG through
a multi-modal method.

3 Methods

3.1 Method overview

In this section, we will describe our ECG classification method
in detail. Unlike traditional medical image classification tasks,
an ECG is not an image, but a signal pattern. The ECG signal
consists of multiple waveforms, including the P wave, QRS
wave group, and T wave (see Figure 1). The classification basis
of the model is to classify diseases according to the changes
and anomalies of these waveforms. The whole classification
process includes signal preprocessing, feature extraction,
feature decoupling, and disease classification. Unlike traditional
medical images, an ECG consists of sub-images from multiple
perspectives. This feature provides more abundant information for
classification tasks, but also inevitably introduces the influence of
confounding factors.

Therefore, as shown in Figure 2, we propose a causal inference
classification framework based on attention mechanisms. First,
we use convolutional layers to extract preliminary features,
and time-domain features embedding module consisting of
convolution kernel of different sizes are used to further extract
time-domain features of ECG signals. The separated temporal
features are then fed into their respective causal reasoning
modules, utilizing novel attention mechanisms to capture true
causal relationships. After causal learning, the characteristics of
causal information are selectively retained according to causal
relationships. Finally, the classification task is completed by the
classification layer, and the result is predicted according to the causal
characteristics.

3.2 Convolution layers

We use the entire ECG as input, so the input consists of
signals from multiple angles, represented as Xm ∈ ℝn×L, where m ∈
{1,2,…,6}, n is the number of leads, and L is the signal length. Here,
Xm denotes the m-th view signal, which corresponds to a specific
spatial perspective of the heart. Specifically, the 12-lead ECG signal
is divided into six view signals, each capturing a unique spatial angle
or perspective of the heart. Each Xm is a matrix ∈ ℝn×L, with n =
2 (since the 12-lead ECG is divided into six pairs of leads) and L
representing the length of the signal in time steps. Each Xm is then
entered into the network corresponding to them-th view.

Them-th view can be expressed as follows:

fm = Cv (Xm) , (1)
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FIGURE 2
Overview of our proposed network. Our network first processes the ECG signals through the convolutional layer, and then obtains the time-scale
features through the time domain features embedding module. We designed a causal reasoning module for ECG classification to perform feature
decoupling. Finally, a classification layer is used to make classification predictions.

where Cv represents a convolutional layer, and fm indicates
the preliminary ECG features extracted from the m-
th view. In Equation 1 each view network shares the same structure
but processes the signals from different spatial perspectives,
enabling the model to capture comprehensive information
from the ECG.

In an ECG, the convolution kernel is responsible for detecting
specific waveform features, such as Pwaves, QRSwave groups, and T
waves.This convolution operation is carried out on the whole signal,
and through the mechanism of weight sharing, the convolution
kernel learns and recognizes the same local features at different
locations.

3.3 Time domain features embedding

We emphasize that in order to extract time information from
the ECG, we have adopted an efficient method of using only
a few convolution kernel of different sizes without the need to
introduce a timing network. Various scale features in ECG reflect
the information of different time scales. Oversimplifying the ECG to
a single feature block will lead to ignoring the correlation between
the features in a specific time frame. Therefore, we introduce the
time domain features embedding module, which can be viewed as
a time-scale adaptive feature extractor.

The time domain features embedding module obtains more
comprehensive time domain features by using convolution kernels
of different sizes. Smaller convolution kernel are able to capture
short-term signal fluctuations sensitively, while larger convolution
kernel are better able to capture long-term signal trends.This feature
extraction method helps the network to better understand the
complex time domain structure of the ECG signal and improve the
sensitivity of the heart condition. It is worth noting that the module
can not only avoid the information loss caused by a single feature
extraction method, but also enable the network to consider and

analyze the signal features at different times more comprehensively.
The time-scale embedding process can be expressed as:

fupper = T1 ( fm) , flower = T2 ( fm) , (2)

where T indicates the time feature mapping module. In Equation 2
we integrate this module into our model to ensure a reliable ECG
classification network capable of capturing features at different time
scales (Gao et al., 2019; Nie et al., 2024).

Specifically, we use two one-dimensional cores of different
sizes, namely, 1× 5 and 1× 50, to achieve the organic combination
of global comprehensive feature information and local specific
feature details. The goal is to more accurately capture the signal
characteristics of local areas and improve the sensitivity of the
network to microscopic details. This layered design allows the
network to better adapt to signal changes over different time
domains, not only helping to emphasize the detailed structure
of signals in local regions, but also covering changes over
different time scales more comprehensively. Through the time
domain features embedding layer, we can capture the relevant
information of heartbeat fragments in different time domains more
comprehensively and thoroughly, and effectively improve the ability
of the network to grasp cross-scale features.

Therefore, the role of this module in ECG classification is
mainly reflected in its ability to effectively capture time domain
diversity, improve the network’s perception of signal details and
global features, and thus provide amore accurate and comprehensive
feature representation for the final classification task. In this time
domain features embedding module, we use different sizes of cores
because the ECG data is one-dimensional, and using convolution
cores of different sizes in the one-dimensional domain is better
for collecting features on different time scales. For example, larger
kernels provide a larger receptive field, enhancing their ability to
capture features.
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FIGURE 3
The process of backdoor adjustment. (a) X→ Z denotes the true relationship between X and Z. (b) When confounder C exists, the true association
between X and Z is disturbed. (c) Backdoor adjustment can eliminate interference by cutting off the backdoor path.

3.4 Causal learning

As shown in Figure 3a, when there are no confounders in ECG
signals,P(Z|X) correctly denotes the true relationship betweenX and
Z.

In Figure 3b, C is defined as the confounder because it is a
common cause for bothX andZ. Combinedwith the causal diagram,
the influence of C on X can be expressed as C→ X, and C→ Z
indicates that C also affects the prediction result. P(Z|X) can be
represented according to Bayes’ rule:

P (Z|X) = ∑
c
P (Z|X,c)P (c|X) , (3)

where the confounderC generally brings about the observed bias via
P(c|X).

Specifically, in the ECG classification task, we want to
understand the influence of confounding factors C, such as
specific waveform, time domain information, etc., on the
result Z. However, in Equation 3 P(C|X) is based on the
statistical association between X and C in the training set, rather
than the causal association between the two. In the presence
of dataset bias, the model tends to learn false associations
between X and Z caused by C, that is, overuse the co-
occurrence between visual context and class labels to learn false
representations.

To eliminate the influence of confounding factors, it is crucial
to close the backdoor path. For the backdoor path X← C→ Z
in Figure 3, we introduce causal intervention P(Z|do(X)) to block.
The do calculus do() cuts off the backdoor path C→ X. Backdoor
adjustments can be expressed as:

P (Z|do (X)) = ∑
c∈C

P (Z|X,c)P (c) , (4)

where P(c) represents the prior probability of c. Since c is visible,
concatenating c with X can be used to eliminate false associations.
In this way, the model can learn the true causality from X to Z
to make correct predictions. Equation 4 signifies that to estimate
the causal effect of X on Z, we sum over all possible values of the

confounder C, weighting the conditional probabilities P(Z|X,C = c)
by the marginal probabilities P(C = c). This process adjusts for the
influence of C, ensuring that the relationship between X and Z is
not confounded.

After obtaining P(Z|do(X)) = ∑c∈CP(Z|X,c)P(c), which is crucial
for causal intervention, the next step is to integrate this causal
reasoning into the classification process to eliminate confounding
effects. To construct the confounder dictionary, we compute average
feature vectors for each class based on features extracted by our
time-domain feature embedding module. It is important to note
that the feature vectors used for averaging are not raw signal
representations, but high-level embeddings that incorporate multi-
scale temporal information. Specifically, after passing through
convolutional layers and the time-domain features embedding
module—which captures both short-term and long-term temporal
dependencies using kernels of different sizes—each sample is
mapped to a feature vector that summarizes critical waveform
characteristics, such as QRS complex morphology, ST-segment
shifts, and T-wave patterns. For each class c ∈ C, we extract all
corresponding feature vectors f(c)i and compute the average vector:
fd =

1
Nc
∑Nc

i=1f
(c)
i , where Nc is the number of samples in class c.

These average vectors are then stored in the confounder dictionary
f(c)d . Rather than eliminating variability, this approach captures
the typical confounding patterns across a class while preserving
individual differences through the feature extraction pipeline. By
using averaged high-level representations—instead of rawor shallow
features—we ensure that critical diagnostic features and temporal
dynamics are retained during causal intervention, enhancing
the robustness and generalization ability of the model without
sacrificing sensitivity to key ECG variations. By leveraging these
representations, the model can explicitly account for and mitigate
the influence of such confounders during causal intervention. This
approach provides a practical and efficient way to approximate latent
confounders without requiring explicit annotations or additional
data, enabling the model to dynamically access and adjust for class-
specific confounding patterns, thereby improving its robustness and
generalizability.
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To estimate the probability distribution of a function f(x), we
calculate its expected value as follows:

𝔼x [ f (x)] = ∑
x
f (x)P (x) , (5)

where x represents the input variable, f(x) is a function of x, and
P(x) denotes the probability distribution of x. Next, we define the
Weighted Geometric Mean (WGM) of a function f(x) with respect
to P(x) in Equation 5:

WGM ( f (x)) =∏
x

f(x)P(x) =∏
x
exp [g (x)]P(x) =exp [∑

x
g (x)P (x)]

= exp [𝔼x  [g (x)]] ≈ 𝔼x  [ f (x)] , (6)

where f(x) = exp [g(x)] and g(x) is a function of x. In Equation
6 the WGM provides a geometric average of f(x) weighted by
P(x). Building on this, the Normalized Weighted Geometric Mean
(NWGM) approximation is defined as:

NWGM ( f (x)) =
∏

x
exp (g (x))P(x)

∑
j
∏

x
exp (g (x))P(x)

=
exp(𝔼x [g (x)])

∑
j
exp(𝔼x [g (x)])

= Softmax(𝔼x [g (x)]) .

(7)

The NWGM normalizes the WGM to ensure that the output is a
valid probability distribution, suitable for use in classification tasks.

In our proposed method, the conditional probability
distribution P(Z|X) is used as the predictive function of the output
Z given the input X. It is natural to parameterize P(Z|X) as a neural
network with a Softmax layer, such that:

P (Z|X) = Softmax [g (X)] ∝ exp [g (X)] , (8)

where g(X) is a function of X implemented by the network.
By combining the backdoor adjustment formula Equation 4

with the NWGM approximation Equations 7 and 8, we derive the
interventional probability distribution P(Z|do(X)) as follows:

P (Z|do (X)) = ∑
c∈C

P (Z|X,c)P (c) = 𝔼c [F (X,c)] = Softmax(g(X,𝔼c [c])) ,

(9)

where C represents the set of confounders, c is a confounding
variable, and 𝔼c[c] is the expected value of c with respect
to its distribution P(c). Equation 9 allows us to efficiently
compute the interventional distribution by leveraging the NWGM
approximation, ensuring that the model’s predictions are robust to
confounding biases.

During the classification process, we combine the obtained
causal intervention probability P(Z|do(X)) with the confounding
dictionary to eliminate confounding effects. Specifically, we compute
the causal intervention probability P(Z|do(X)) for each sample
feature X with respect to the target variable Z. Then, we multiply
this probability by the corresponding confounding features, i.e.,
P(Z|X,c)P(c) multiplied by the confounding features for the
corresponding class from the confounding dictionary. This process
effectively removes the influence of confounding factors, enhancing
the accuracy and stability of the classification. Through this
approach, we not only achieve ECG classification based on
causal reasoning but also effectively address the challenges posed
by confounding factors, thereby providing robust support for
improving classification performance.

3.5 Causal reasoning

In this study, we use an attention mechanism for causal
reasoning (CR) to select true causal relationships. CR
establishes connections among feature channels to reassess their
significance and effectively capture spatial information within the
feature space (Hou et al., 2021).

Attention mechanisms play a crucial role in enhancing network
performance. Squeeze-and-Excitation (SE) attention (Hu et al.,
2018), a widely used attention mechanism, is recognized for
its efficiency with a minimal parameter count and outstanding
performance. While channel attention focuses on constructing
relationships between feature channels to reweight their importance,
it often overlooks spatial information. However, spatial information
is essential for generating spatially selective attention maps.

In our study, we applied an attention fusion module to the task
of ECG classification, coupled with causal inference for backdoor
adjustment. This step is particularly crucial when dealing with
ECG data, as it often suffers from confounding factors such as
patients’ physiological states and cardiac histories. We first input
the features extracted from the ECG data as queries Q into the
attention fusion module. These features contain vital information
about cardiac signals but may be influenced by confounding factors.
Subsequently, we input the confounder dictionary as keys K and
values V into the module. The confounder dictionary contains the
average features for each class, representing typical representations
of various confounding factors. Within the attention fusionmodule,
we dynamically fuse the features with the confounder dictionary
using an attention mechanism to enhance feature representation
and discrimination. Using the fused feature representation, we
compute the backdoor adjustment P(Z|do(X)), where Z represents
the classification target and X represents the features. This process
involves the core idea of causal inference, which infers causal
relationships from observed data. In our study, leveraging the fused
features obtained from the attention fusion module and combining
themwith causal inference methods, we effectively control potential
confounding factors, thereby improving the accuracy and stability
of ECG classification.

After time-scale embedding, the features are divided into upper
features and lower features. These features pass through the causal
reasoning module, in which true causal features are selected. The
extraction process of causal features is as follows:

fcau1 =MLP(Fc ( fupper)) , fcau2 =MLP(Fc ( flower)) , (10)

In Equation 10,MLP denotes the multi-layer perceptron, Fc denotes
the transformer, fcau denotes causal features.

In terms of feature decoupling, we use an Attention Fusion (AF)
module for causal reasoning. As shown in Figure 4, given the input,
the attention operation in the AF module can be expressed as:

Attention (Q,K,V) = Softmax(
QKT

√D
)V,

Q1 = fupper,K1 = fd,V1 = fd,

Q2 = flower,K2 = fd,V2 = fd,

(11)

In Equation 11, fd denotes features of the confounding dictionary.
The AF module accepts the query (Q), key (K), and value (V) as
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FIGURE 4
The structure of backdoor adjustment, which is based on the attention
fusion module. It takes ECG features and confounding dictionaries as
inputs to enable causal reasoning processes.

input, first calculates the normalized attention distribution, which is
then multiplied with the values to produce the final output.

The confounding dictionary is constructed by computing the
average feature vector fd for each class, as described earlier. To
transform these average features into keys and values for the AF
module, we employ learnable linear projections. Specifically, for each
class c, the average feature vector fd is mapped into a key Kc and a
value Vc using the following transformations:

Kc =Wk fd + bk, Vc =Wv fd + bv,

whereWk andWv are weight matrices, and bk and bv are bias terms.
These parameters are optimized during training to ensure that the
keys and values effectively capture the confounding patterns.

In the AF module, the keys K1 and K2 are constructed by
aggregating the class-specific keys {kc}

C
c=1 from the confounder

dictionary. These keys are used to compute attention scores
by measuring the similarity between the queries (Q1 and Q2)
and the keys. The attention scores are then normalized using
the Softmax function and used to weight the corresponding
values V1 and V2, which are derived from the class-specific
values {vc}

C
c=1. This process allows the module to dynamically

retrieve and incorporate confounder-aware information into the
feature representations, thereby mitigating the influence of spurious
correlations.

By leveraging the confounder dictionary in this way, the AF
module explicitly accounts for class-specific confounding factors,
enhancing the model’s ability to learn robust and generalizable
representations. This transformation of the confounder dictionary
into keys and values is a critical component of our causal
intervention strategy, enabling the model to disentangle causal
relationships from confounding biases.

3.6 Training strategy

In causal reasoning, we want to estimate the true causal
characteristics, so we use the cross entropy loss:

TABLE 1 Amount of ECG recordings in the training set, validation set,
and test set in various tasks on the PTB-XL dataset.

Task Classes Train Val Test Total

rhythm 12 16854 2,109 2,103 21033

form 19 7202 904 882 8988

super-diag 5 17111 2,156 2,163 21430

sub-diag 23 17111 2,156 2,163 21430

diag 44 17111 2,156 2,163 21430

all 71 17441 2,193 2,203 21837

Lce1 = −
1
|N|
∑
n∈N

y⊤log(zcau1) ,Lce2 = −
1
|N|
∑
n∈N

y⊤log(zcau2) , (12)

In Equation 12, fcau1 and fcau2 are extracted from the causal
reasoning module, corresponding to fupper and flower respectively.,
n is a sample in the ECG training data N. In the training stage, the
objective of our framework can be defined as the sum of the losses:

Ltotal = α1Lce1 + α2Lce2, (13)

In Equation 13, LFC is the feature correlation loss, α1 and α2 are the
hyperparameters that control the trade-off between the primary task
loss and the feature correlation loss.

4 Experiment

4.1 Datasets

The PTB-XL dataset (29), which is a recently introduced and
comprehensive collection of 12-lead ECG dataset, consists of 21,837
clinical ECG recordings. Each recording spans a duration of 10 s and
is sourced from a total of 18,885 individual patients. Table 1 provides
an overview of the amount of ECG recordings in various tasks
within this dataset. Table 1 summarizes the distribution of ECG
recordings across various tasks in the PTB-XL dataset, including
rhythm, form, super-diagnosis (super-diag.), sub-diagnosis (sub-
diag.), diagnosis (diag.), and all. For each task, the table provides
the number of classes, as well as the number of recordings
in the training, validation, and test sets, along with the total
count. The tasks are designed to capture different levels of ECG
interpretation, ranging from broad rhythm classification to detailed
diagnostic categorization. This table serves as a comprehensive
reference for understanding the dataset’s structure and facilitates
the development and evaluation of models across diverse ECG
analysis tasks. The CPSC (Liu et al., 2018) comprises 6,877 12-
lead ECG recordings, each spanning from 6 to 60 s. The HFHC
(Anonymous, 2019) comprises 20,335 medical ECG samples,
categorized into 34 classes, and each sample is equipped with
8 leads. The Chapman (Zheng et al., 2020), consisting of 12-
lead ECG recordings from 10,646 patients, is utilized in this
study.
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4.2 Implementation details

For each dataset, the samples are randomly divided following
an 8:1:1 ratio into training, validation, and test sets. Approximately
80% of the data is used for training the model and capturing
latent patterns within the ECG signals. Around 10% of the data
is reserved for validation, which is utilized for model selection
and hyperparameter tuning. The remaining 10% is set aside as an
independent test set to assess the model’s generalization ability.
For each dataset, we partition the data into 10 non-overlapping
groups. Specifically, groups 1 to 8 are used as the training set
to train the network and learn latent patterns from the data.
Group 9 is employed as the validation set for model selection and
hyperparameter tuning. Group 10 serves as an independent test
set to evaluate the performance of the model on unseen data. All
experiments are conducted with standardized training settings to
ensure consistency and comparability across datasets.The optimizer
used is Adam, with an initial learning rate of 0.001. The learning
rate is scheduled to decay following a cosine annealing strategy
during training.The batch size is set to 64 for all experiments. Cross-
entropy loss is adopted as the loss function. The implementation is
based on the PyTorch framework. All experiments are performed
on a single NVIDIA RTX 3090 GPU with 24 GB memory. This
standardized setup facilitates reproducibility and fair comparison
across different datasets.

4.3 Experimental results

In the experiment of ECG multi-label classification task, we
obtained the results in Table 2 by comparing the performance of
our proposed method with other advanced methods on the PTB-
XL dataset. In the table, we show the classification performance of
various methods on different tasks (rhythm, form, super-diag., sub-
diag., diag., all), using sensitivity (SEN) and area under the curve
(AUC). For the rhythm task, our method achieves 91.68% on SEN
and 97.02% on AUC, respectively, which is significantly superior to
othermethods, indicating that ourmodel has excellent performance
for the rhythm classification task of ECG. Similarly, in the form task,
our method has a SEN of 58.81% and an AUC of 88.22%. Compared
with other methods, our model also performs well in the task of
form detection. On the comprehensive tasks of super-diag., sub-
diag., diag., and all, our approach achieves the best results on both
SEN and AUC. It achieves 80.17%, 73.28%, 68.54%, 72.96% (SEN)
and 92.90%, 92.88%, 93.78%, 93.14% (AUC), respectively, showing
comprehensive and stable performance. It is worth noting that in
the comparative experiment, ourmethod achieved higher sensitivity
and AUC onmultiple tasks compared with other models, indicating
that our model has better processing ability for different ECG tasks.

Table 3 shows the performance of our proposed method
compared with other advanced methods on CPSC2018 and HFHC
datasets. On the CPSC2018 dataset, our method achieved 95.88%
and 84.49% on AUC and SEN, respectively, showing significant
advantages compared with other methods. In particular, compared
with the suboptimal method, our model improves AUC by at least
0.65% and SEN by at least 3.25%. This shows that our model has
a stronger classification ability on the CPSC2018 dataset and can
identify the relevant features of ECGmore accurately. On the HFHC

dataset, our method also achieved excellent performance, with AUC
and SEN reaching 94.96% and 95.73%, respectively. Compared to
other methods, our model improves at least 2.18% on AUC and
3.26% on SEN. This further validates the superiority of our model
on HFHC datasets with higher sensitivity and better classification
performance.

Table 4 presents a comparison of our proposed method with
other networks on various tasks within the Chapman dataset. Our
model showcases remarkable performance, achieving a notable F1
score of 97.21%, which positions it as one of the top-performing
models. Although our AUC of 99.12% is not the highest, it
remains competitive among the compared methods. Specifically,
when compared to the model with the highest AUC (Zhang et al.,
2023), our approach demonstrates a strong performance, trailing
behind by only 0.38%. In terms of recall, ourmethod outperforms all
others with a leading score of 96.84%, emphasizing its effectiveness
in capturing true positive instances. The overall accuracy of 97.12%
further substantiates the robustness of our proposed model in ECG
classification.

Figure 5 illustrates the loss curves across different datasets
and tasks, providing a comprehensive view of the model’s
learning dynamics. As shown in the left subfigure, the training
losses for the six PTB-XL subtasks—including Rhythm, Form,
Super-Diagnostic, Sub-Diagnostic, Diagnostic, and All—exhibit
a consistent downward trend with moderate fluctuations, indicating
stable convergence. The right subfigure presents both training and
validation losses for CPSC, HFHC, and Chapman datasets.The clear
and steadily decreasing validation curves, along with the narrowing
gaps between training and validation loss, suggest that the model
effectively avoids overfitting and generalizes well across datasets.

4.4 Ablation studies

In this section, we conduct ablation experiments to evaluate
the effects of the time domain features embedding module versus
the causal reasoning module. At the same time, we investigate the
effects of the convolution kernel size of the time domain features
embedding module on ECG classification performance.

4.4.1 Impact of kernel size
Table 5 shows the performance comparison of different

convolution kernel combinations in time-domain features
embedding, covering both the PTB-XL dataset and the Chapman
dataset. We focused on several key metrics to assess the impact of
different convolution kernel combinations on feature extraction in
the time domain.

On the PTB-XL dataset, the convolution kernel combinations
40/20 perform best in terms of F1 score and recall rate, which are
34.23% and 63.20% respectively. This shows that this combination
has a good balance in time domain feature extraction and can
capture key features more accurately. On the Chapman dataset,
the 40/10 down convolution kernel combination has the best
performance, which are 93.85%, 97.08%, and 94.22%, respectively.
This shows that this convolution kernel combination can achieve the
best performance in time domain feature extraction.

In general, the choice of convolution kernel combination is very
important for the extraction of time domain features. This reminds
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TABLE 2 Comparison of various methods with our proposed method across multiple tasks of the PTB-XL. Bold values indicate the best results.

Method Rhythm Form Super-diag Sub-diag Diag All

SEN AUC SEN AUC SEN AUC SEN AUC SEN AUC SEN AUC

MiniRocket (Dempster et al., 2021) 62.96 51.71 60.72 54.05 69.45 73.00 67.41 62.06 69.31 57.24 67.21 60.38

ViT (Dosovitskiy et al., 2020) 81.26 77.37 21.43 71.61 61.49 81.64 51.83 83.04 48.63 81.73 57.69 78.23

ATI-CNN (Yao et al., 2020) 91.17 96.69 55.58 83.54 77.77 91.81 70.34 90.80 67.17 90.83 70.23 89.51

ACNet (Chen et al., 2020) 77.82 95.90 47.65 83.12 78.14 92.33 67.45 89.69 66.27 89.51 67.81 89.54

MobileNetV3 (Howard et al., 2019) 91.39 96.22 48.25 81.80 75.40 91.29 64.06 89.25 61.34 89.53 68.81 90.12

Xresnetad101 (He et al., 2019) 91.15 94.90 51.35 82.02 75.27 91.95 67.94 89.98 64.69 91.42 68.89 90.61

resnet1d_wang (Wang et al., 2017) 89.71 95.06 52.97 86.04 75.43 92.17 68.23 90.91 66.44 92.12 69.32 91.13

fcn_wang (Wang et al., 2017) 88.37 92.61 49.42 85.43 76.42 92.02 69.90 90.15 65.63 91.97 68.88 91.24

BiLSTM (Zhang et al., 2015) 88.42 94.93 49.24 82.14 78.61 92.19 69.13 91.98 64.13 91.37 69.53 91.35

InceptionTime (Ismail Fawaz et al., 2020) 90.11 95.03 59.05 86.66 78.17 92.61 70.95 92.39 66.24 92.82 71.93 92.11

LSTM (Hochreiter and Schmidhuber, 1997) 87.19 91.27 48.82 85.14 76.21 92.44 67.36 91.66 64.28 91.72 67.97 92.74

Our 91.68 97.02 58.81 88.22 80.17 92.90 73.28 92.88 68.54 93.78 72.96 93.14

TABLE 3 Comparison of various methods with our proposed method across multiple tasks of the CPSC2018 dataset and the HFHC dataset. Bold values
indicate the best results.

Method CPSC HFHC

AUC SEN F1 Recall AUC SEN F1 Recall

ViT (Dosovitskiy et al., 2020) 82.58 47.10 64.89 69.35 61.17 35.70 66.18 68.49

MiniRocket (Dempster et al., 2021) 73.23 60.49 66.82 73.18 67.39 62.42 60.26 62.58

fcn_wang (Wang et al., 2017) 91.85 70.59 69.80 75.58 89.08 84.71 73.17 69.90

LSTM (Hochreiter and Schmidhuber, 1997) 94.81 74.93 72.41 78.84 89.82 87.31 71.58 70.22

BiLSTM (Zhang et al., 2015) 95.06 77.75 76.65 81.52 91.21 88.43 76.64 71.15

ACNet (Chen et al., 2020) 94.66 80.94 58.15 74.35 91.46 90.73 70.21 69.82

Xresnet1d101 (He et al., 2019) 95.22 82.61 79.78 81.94 90.88 90.87 79.94 74.55

InceptionTime (Ismail Fawaz et al., 2020) 94.47 79.28 76.84 82.25 92.00 90.89 82.19 72.17

resnet1d_wang (Wang et al., 2017) 94.72 76.74 75.52 80.36 92.18 91.23 85.58 79.63

MobileNetV3 (Howard et al., 2019) 95.23 81.52 75.64 79.35 92.77 91.55 88.27 78.84

ATI-CNN (Yao et al., 2020) 94.73 83.26 76.63 82.54 91.85 92.47 84.15 80.52

Ours 95.88 84.49 82.14 83.60 94.96 95.73 90.24 82.57

us that different combinations of convolution kernelmay be required
on different tasks and data sets to optimize the performance of
feature extraction in the time domain.

4.4.2 Module ablation experiment
Table 6 shows the performance comparison of the time domain

embedding module (TDFE), causal inference module (CR), and
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TABLE 4 Comparison of F1 score, macro-auc, recall, and accuracy of various methods with our proposed method across multiple tasks of the Chapman
dataset. Bold values indicate the best results.

Method Chapman

F1 AUC Recall Accuracy

LSTM (Hochreiter and Schmidhuber, 1997) 91.79 97.53 91.82 92.58

BiLSTM (Zhang et al., 2015) 93.64 98.53 93.75 94.18

resnet1d_wang (Wang et al., 2017) 92.47 98.40 92.63 93.05

fcn_wang (Wang et al., 2017) 83.88 93.95 83.26 85.54

ViT (Dosovitskiy et al., 2020) 81.60 95.72 82.06 83.19

ACNet (Chen et al., 2020) 91.26 98.52 91.34 92.02

ATI_CNN (Yao et al., 2020) 94.76 72.87 93.80 95.21

Xresnet1d101 (He et al., 2019) 95.00 99.14 94.98 95.40

InceptionTime (Ismail Fawaz et al., 2020) 92.20 98.14 92.50 92.96

MobileNetV3 (Howard et al., 2019) 94.00 99.08 94.08 94.55

ECGNet (Lynn et al., 2019) 95.98 99.39 96.07 95.02

ECG_BNN (Murugesan et al., 2018) 92.58 98.68 92.63 93.24

MVMSNet (Yang et al., 2023) 93.30 98.26 93.39 93.80

MSEL (Zhang et al., 2023) 96.52 99.50 96.44 96.90

Ours 97.21 99.12 96.84 97.12

FIGURE 5
Loss of different datasets.

their combination (TDFE+CR) under different tasks. In the rhythm
task, the TDFE module achieved 91.74% and 86.39% on AUC
and SEN, and the CR module achieved 91.22% and 88.42% on
AUC and SEN, respectively. However, the TDFE + CR combination
performed the best, with AUC and SEN reaching 97.02% and

91.68%, respectively, a significant improvement over any single
module. This shows that both TDFE and CR modules play an active
role in rhythm tasks, and their combination effect is better.

In the form task, the TDFE module achieved 81.30% and
44.58% on AUC and SEN, and the CR module achieved 84.15%
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TABLE 5 Performance of various kernel sizes in Time Domain Features Embedding on the PTB-XL dataset and the Chapman dataset. Bold values
indicate the best results.

Kernel
size

PTB-XL Chapman

U L F1 AUC Recall mAP F1 AUC Recall Acc

40 20 34.23 84.02 63.20 74.04 93.11 96.04 92.98 94.02

40 10 32.04 85.22 58.25 76.31 93.85 97.08 94.22 93.14

50 20 31.88 83.12 59.45 73.21 92.83 96.86 92.90 93.90

50 10 31.92 84.82 58.88 74.29 92.55 94.45 93.80 94.11

TABLE 6 Performance of Time Domain Features Embedding (TDFE) and
Causal Reasoning module (CR), as well as their combination (TDFE + CR).
Bold values indicate the best results.

Task × TDFE CR TDFE + CR

rhythm
AUC 80.23 91.74 91.22 97.02

SEN 80.27 86.39 88.42 91.68

form
AUC 76.76 81.30 84.15 88.22

SEN 37.24 44.58 49.82 58.81

super-diag
AUC 82.09 88.77 86.26 92.90

SEN 69.88 74.86 75.28 80.17

sub-diag
AUC 82.84 89.94 88.68 92.88

SEN 59.23 67.82 66.57 73.28

diag
AUC 83.32 86.72 89.01 93.78

SEN 57.67 60.12 65.33 68.54

all
AUC 74.48 83.88 86.73 93.14

SEN 62.01 67.05 69.50 72.96

and 49.82% on AUC and SEN, respectively. The TDFE + CR
combination achieved 88.22% and 58.81% on AUC and SEN,
respectively, significantly outperforming a single module. This
shows that both TDFE and CR modules are beneficial in form
tasks, and their combination is more significant. Similar trends are
observed in other tasks (super-diag., sub-diag., diag., all). Overall,
the TDFE and CR modules had a positive impact across the
tasks, and their combination was even more significant, providing
more powerful performance for the ECG classification task. This
further validates the effectiveness of comprehensive treatment of
confounders by obtaining image features and temporal domain
features and discovering true causal associations.

4.4.3 Parameters analysis
As shown in Table 7, our model performs well on both the

number of parameters and the inference time. Specifically, we

TABLE 7 The number of parameters and inference time for each
method. Bold values indicate the best results.

Method Parameters (106) Infer time (ms)

LSTM (Hochreiter and
Schmidhuber, 1997)

0.81 35.18

ACNet (Chen et al., 2020) 0.03 3.55

resnet1d_wang
(Wang et al., 2017)

0.29 1.70

MobileNetV3
(Howard et al., 2019)

1.48 9.04

MVMSNet (Yang et al.,
2023)

0.39 8.91

Ours 0.25 2.27

had the second smallest number of participants at 0.25 million.
The inference time was only 2.27 milliseconds, the second fastest.
Compared to other methods, the number of parameters in our
model is much lower than most other methods, only 0.25 million.
This means that our model has a more concise structure, and fewer
parameters help to reduce the complexity of the model, reduce
the risk of overfitting, and save computing resources. Second, our
model’s inference time is also excellent, at just 2.27 milliseconds.
Although there are some methods with shorter inference times, our
model is still at a faster level. This means that our model has high
real-time and efficiency in practical applications, and can process
data quickly. This indicates that our model is less complex and the
cost of implementing causal reasoning is not high.

5 Discussions

Causal reasoning plays a pivotal role in ECG classification,
particularly in scenarios where cardiac abnormalities may be
influenced by infectious diseases. By leveraging causal reasoning,
we gain deeper insights into the causal relationships between
features in ECG signals and their connections to classification
outcomes, thereby enhancing both the accuracy and interpretability
of classification models.
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In this study, causal reasoning helps uncover the underlying
causal chains in ECG signals, revealing how different physiological
events and pathological states, such as those induced by infections,
interact with cardiac function. This understanding is crucial for
medical professionals, as it provides a clearer perspective on the
patient’s condition, aiding in the timely and precise diagnosis
and treatment of heart conditions potentially linked to infectious
diseases. By identifying these cause-and-effect relationships, causal
reasoning allows us to design more effective feature extraction and
selection methods. These methods improve the model’s sensitivity
to clinically relevant information while minimizing its susceptibility
to noise and confounding effects. Moreover, causal reasoning
contributes to building more reliable and generalizable models by
reducing overfitting and ensuring a clearer direction of causality
during model training. This ultimately has a direct impact on
the early detection and treatment of heart diseases, particularly
those influenced by infectious agents, improving the quality of
medical services.

Our study specifically addresses the removal of confounding
factors in ECG classification tasks by employing backdoor
adjustment techniques. This approach enhances classification
performance by re-weighting attention mechanisms and refining
the representation of confounding factors. Experimental results
demonstrate that the proposed causal attention module effectively
mitigates the impact of confounders, significantly improving
classification accuracy. By dynamically adjusting attention weights
and optimizing the confounding dictionary representation,
our method directs the model’s focus toward features most
relevant to ECG classification, particularly in infection-related
cases. This confounding removal strategy not only boosts
model performance but also improves its interpretability and
reliability, providing a valuable tool for clinical applications. Such
advancements are essential in aiding healthcare professionals
in diagnosing and managing cardiac conditions, especially
those influenced by infectious diseases, with greater precision
and confidence.

6 Conclusion

In this study, we propose an innovative ECG signal classification
network that integrates temporal feature embedding and attention-
based causal inference, addressing the challenges ofmulti-label ECG
classification inmedical scenarios, including infectious diseases.The
network employs a convolutional architecture and dual temporal
feature embedding modules to efficiently learn temporal patterns
in ECG signals, enabling accurate classification in complex clinical
settings. To enhance causal reasoning, we introduce confounding
dictionaries and attention mechanisms, allowing the network to
capture high-quality ECG information while mitigating the effects
of confounding factors. Specifically, the proposed causal reasoning
framework models the causal relationships in ECG signals,
identifies true causal connections, and eliminates confounding

effects, which are critical for distinguishing cardiac abnormalities
potentially caused by infections, such as myocarditis or sepsis-
induced cardiac dysfunction. Experimental results demonstrate
that our network achieves competitive performance, highlighting
its potential in diagnosing infectious disease-related cardiac
complications.
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