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Objective: To investigate the association between triglyceride-glucose (TyG)
index and phenotypic age acceleration (PhenoAgeAccel), given the emerging
importance of biological aging as a health determinant and the role of insulin
resistance in aging-related processes.

Methods: This cross-sectional study analyzed data from 13,291 adults
aged ≥20 years in the National Health and Nutrition Examination Survey
(1999–2010). The TyG index served as the exposure variable, calculated from
fasting triglycerides and glucose levels. PhenoAgeAccel, derived from clinical
biomarkers, was the outcome variable. Analyses adjusted for demographic,
socioeconomic, and health-related covariates.

Results: A significant non-linear relationship was observed between TyG index
and PhenoAgeAccel, with an inflection point at 9.60. In the fully adjusted model,
each unit increase in TyG index was associated with 2.21 years increase in
PhenoAgeAccel (95% CI: 1.99, 2.43). The association was stronger above the
inflection point (β = 8.21, 95% CI: 7.59, 8.82) compared to below it (β = 0.56,
95% CI: 0.29, 0.83).

Conclusion:Higher TyG index levels are significantly associatedwith accelerated
biological aging, particularly above a threshold of 9.60. These findings suggest
the importance of metabolic health in biological aging processes and potential
interventional strategies.

KEYWORDS

TyG index, phenotypic age acceleration, insulin resistance, metabolic dysfunction,
cross-sectional study, national health and nutrition examination survey (NHANES)

1 Introduction

Biological aging, distinct from chronological aging, is increasingly recognized as a
significant determinant of health outcomes (Zane et al., 2024). It reflects the cumulative
burden of molecular and cellular damage, influencing morbidity and mortality risks
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(Lu et al., 2012). Phenotypic age acceleration (PhenoAgeAccel),
a biomarker that captures deviations between biological and
chronological age, has been validated as a predictor of disease and
premature death (Li et al., 2024) The identification of metabolic
factors associated with biological aging has become a critical
area of research. Insulin resistance (IR), characterized by reduced
glucose uptake and lipid metabolism, is one such factor linked
to systemic inflammation and oxidative stress, both of which
accelerate biological aging (Tucker, 2022). The triglyceride-glucose
(TyG) index, a composite marker of IR derived from fasting
glucose and triglyceride levels, has gained prominence due to its
simplicity and strong association with metabolic disorders and
aging-related diseases, such as diabetes and cardiovascular disease
(CVD) (Tian et al., 2021; Zhang and Zeng, 2023).

The interplay between metabolic dysfunction and biological
aging is influenced by factors such as obesity, inflammation,
and molecular changes. For example, visceral adiposity, a major
contributor to IR, is associated with PhenoAgeAccel and systemic
inflammation (Xu et al., 2024; Huang et al., 2024). These processes
are closely tied to oxidative stress, which damages cellular
structures and accelerates the aging process (Tucker, 2022).
Additionally, molecular markers such as Klotho protein, a regulator
of insulin signaling and anti-aging mechanisms, have shown inverse
relationships with metabolic dysfunction and aging indicators
(Bian et al., 2015). The TyG index has been linked to lower
levels of Klotho protein, particularly in populations with metabolic
disorders, reinforcing its role as a key mediator in aging-related
pathways (Qiu et al., 2024; Lai and Chen, 2024).

Despite the growing evidence of the relationship between
metabolic dysfunction and biological aging, few studies have
specifically examined the association between TyG index and
PhenoAgeAccel. Previous research has identified non-linear
relationships and subgroup-specific differences in the effects of
TyG index on health outcomes (Zhang and Zeng, 2023; Lin et al.,
2024). This study aims to investigate the association between TyG
index and PhenoAgeAccel using data from the National Health and
Nutrition Examination Survey (NHANES). By examining threshold
effects and stratified relationships, this research seeks to provide
new insights into the metabolic drivers of biological aging and
inform potential intervention strategies for mitigating age-related
health risks.

2 Methods

2.1 Study population

Study Population This cross-sectional study utilized data
from the NHANES collected between 1999 and 2010 in the
United States. NHANES employs a multistage, stratified sampling
method to ensure a nationally representative sample of the U.S.
population. Data are collected via standardized questionnaires,
physical examinations, and laboratory tests conducted by
trained personnel, ensuring high quality and consistency. The
study population included 13,291 participants aged 20 years
or older. Eligibility criteria required participants to be non-
pregnant and to have complete data on both the TyG index and

PhenoAgeAccel. Participants with missing data for any critical
variables were excluded.

2.2 Exposure variable

The primary exposure variable, the TyG index, was calculated
using the formula: TyG index = ln[triglycerides (mg/dL) × fasting
glucose (mg/dL)/2] (Zhang and Zeng, 2023).

Triglyceride and glucose levels were measured using NHANES-
certified laboratory techniques, including enzymatic methods for
triglycerides and a hexokinase assay for glucose.

2.3 Outcome variable

Phenotypic age (PhenoAge) was calculated using the
clinical biomarkers identified in Levine et al., which were
selected based on their ability to predict mortality. These
include albumin (liver function), creatinine (kidney function),
glucose (metabolic function), C-reactive protein (inflammation),
lymphocyte percentage (immune function), mean red cell volume
(hematological health), red cell distribution width (hematological
variability), alkaline phosphatase (liver and bone health), white
blood cell count (immune response), and chronological age. The
coefficients used for each biomarker were derived from a Gompertz
proportional hazard model applied to the NHANES III dataset, as
detailed in Levine et al. (2018).

PhenoAgeAccel was then calculated as the residual of PhenoAge
after regressing it on chronological age. This measure represents the
extent to which an individual’s biological age deviates from their
chronological age, with positive values indicating accelerated aging
and negative values suggesting decelerated aging.

2.4 Covariates

Covariates included the following variables: age (continuous,
in years), sex (male or female), race/ethnicity (Non-Hispanic
White, Non-Hispanic Black, Mexican American, and Other races
including multiracial), poverty-income ratio (PIR) (categorized
as low [<1.3], medium [1.3–3.5], and high [>3.5]), education
level (less than high school, high school graduate, and more
than high school), BMI (continuous, in kg/m2), smoking status
(never, former, current), drinking status (never, former, mild,
moderate, and heavy drinking, as categorized in NHANES), glucose
metabolism state (normoglycemia, prediabetes, and diabetes
based on fasting glucose and HbA1c levels), hypertension (yes:
systolic blood pressure ≥140 mmHg, diastolic blood pressure
≥90 mmHg, or antihypertensive medication use; no: does
not meet these criteria), hyperlipidemia (yes: total cholesterol
≥240 mg/dL or lipid-lowering therapy; no: does not meet these
criteria), physical activity (METs/week) (categorized as low
[<600], moderate [600–1,199], and vigorous [≥1,200]), uric acid
(continuous, mg/dL), eGFR (continuous, in mL/min/1.73 m2,
calculated using the CKD-EPI equation) (Levey et al., 2009),
CVD (yes: self-reported history of coronary heart disease,
congestive heart failure, heart attack, stroke, or angina; no: does
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not meet these criteria), and dietary quality measured by the
Healthy Eating Index-2015 (HEI-2015) (scored 0–100, with higher
scores indicating better diet quality) (Krebs-Smith et al., 2018).
Covariates were selected based on their potential confounding
effects on the relationship between TyG index and PhenoAgeAccel
(Franzago et al., 2022).

2.5 Statistical analysis

Continuous variables were expressed as mean ± standard
deviation for normally distributed data or median (min, max)
for non-normally distributed data, while categorical variables were
presented as frequencies and percentages. Group comparisons
were performed using χ2 tests for categorical variables, Student’s
t-tests for normally distributed variables, or Mann-Whitney U
tests for non-normally distributed variables. Missing data were
handled using multiple imputation via chained equations (MICE)
to generate five datasets, reducing potential bias and information
loss caused by missing values (Toutenburg and Rubin, 1990;
Sterne et al., 2009).

Prior to regression analyses, model assumptions were
thoroughly evaluated. Predictor variables were checked for near-
zero variance.Multicollinearitywas assessed using variance inflation
factor (VIF) analysis through stepwise selection. For continuous
variables, linearity assumptions were tested using multivariable
fractional polynomial (MFP) analysis, which identified appropriate
transformations when necessary to ensure linear relationships with
the outcome variable.

The relationship between the TyG index and PhenoAgeAccel
was analyzed using linear regression models, including both
univariate and multivariate approaches. Three models were
constructed to explore the association under different levels of
adjustment. Model 1 did not include any covariates; Model 2
adjusted for age, sex, and race/ethnicity; and Model 3 further
adjusted for additional covariates, including PIR, education level,
BMI, smoking, drinking, glucose metabolism state, hypertension,
hyperlipidemia, METs/week, uric acid, eGFR, CVD (including
coronary heart disease, congestive heart failure, heart attack,
stroke, and angina), and HEI-2015. These models were built
to assess how the effect size of the TyG index varied with
different adjustment strategies, ensuring the robustness of
the findings. Model fit was assessed using multiple criteria,
including R2, adjusted R2, AIC, and log-likelihood values.
Residual analysis was performed to confirm the validity of model
assumptions.

To investigate potential nonlinearity in the association between
the TyG index and PhenoAgeAccel, generalized additive models
(GAM) and smooth curve fitting were applied (Hastie and
Tibshirani, 1987). If nonlinearity was identified, a recursive
algorithm was used to determine the inflection point, followed
by constructing a two-piecewise linear regression model for each
side of the inflection point. The model that best described
the association was selected based on log-likelihood ratio tests
comparing the two-piecewise regression model with the standard
linear regression model.

Subgroup analyses were conducted to explore potential effect
modifications. Stratified analyses were performed using linear

FIGURE 1
Flowchart of participant selection for the study. Abbreviations:
PhenoAge, phenotypic age; TyG, triglyceride-glucose.

regression models, stratified linear regression models, and GAM.
Continuous subgroup variables were converted into categorical
variables based on clinical cut points or tertiles before performing
interaction tests.

All statistical analyses were conducted using R software (http://
www.R-project.org, The R Foundation). A two-sided P-value <0.05
was considered statistically significant.

3 Results

3.1 Study sample selection

The flowchart in Figure 1 illustrates the selection process of
participants from the NHANES 1999–2010 dataset, which initially
included 62,160 individuals. After excluding participants under the
age of 20 (n = 29,696) and pregnant individuals (n = 1,299), 31,165
participants remained. Subsequently, those with insufficient data
to calculate PhenoAge (n = 3,722) were excluded, leaving 27,443
participants. Further exclusion of individuals without sufficient data
to calculate the TyG index (n = 14,152) resulted in a final analytical
sample of 13,291 participants.
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3.2 Baseline demographic characteristics

The baseline characteristics of participants across TyG index
quartiles demonstrated significant differences in demographic,
socioeconomic, and lifestyle factors (Table 1). Participants in higher
TyG quartiles were generally older, with the mean age increasing
from 42.98 years in Q1 to 55.66 years in Q4 (P < 0.05). Gender
distribution also varied significantly, with males accounting for
a progressively larger proportion in higher quartiles, rising from
41.20% in Q1 to 56.76% in Q4 (P < 0.05). Differences in race and
ethnicity were evident, as the proportion of Mexican Americans
increased from 14.32% in Q1 to 26.57% in Q4, while non-Hispanic
Black participants showed a significant decline from 29.91% in Q1
to 11.71% in Q4 (P < 0.05). Socioeconomic indicators such as PIR
and education level exhibited significant gradients, with participants
in Q4 more likely to have lower incomes (33.19% low PIR in Q4
vs. 27.14% in Q1) and lower educational attainment (38.37% of Q4
participants had less than high school education vs. 23.62% in Q1,
P < 0.05). Smoking status and alcohol consumption also varied,
as former smokers and heavy drinkers were more prevalent in Q4
compared to Q1 (P < 0.05).

Metabolic and clinical parameters showed notable differences
across TyG quartiles. BMI increased consistently with higher TyG
levels, from 26.21 kg/m2 in Q1 to 30.80 kg/m2 in Q4 (P < 0.05).
Blood pressure and uric acid levels also rose significantly across
quartiles, as systolic blood pressure increased from 117.98 mmHg in
Q1 to 129.76 mmHg inQ4, anduric acid levels rose from4.94 mg/dL
in Q1 to 5.97 mg/dL in Q4 (P < 0.05). Glucose metabolism state
worsened, with the prevalence of diabetes increasing sharply from
4.30% in Q1 to 40.72% in Q4, while normoglycemia decreased from
89.41% in Q1 to 41.59% in Q4 (P < 0.05). Kidney function, as
measured by eGFR, declined with higher TyG levels, dropping from
101.11 mL/min/1.73 m2 in Q1 to 87.56 mL/min/1.73 m2 in Q4 (P <
0.05). Age-related indicators such as PhenoAge and PhenoAgeAccel
differed significantly, with PhenoAge rising from 36.99 years in Q1
to 55.33 years inQ4 andPhenoAgeAccel increasing from−5.99 years
in Q1 to −0.33 years in Q4 (P < 0.05).

3.3 Association between TyG index and
PhenoAgeAccel

The association between the TyG index and PhenoAgeAccel
demonstrated a strong and significant positive relationship
across all models, with adjustments progressively attenuating the
effect size (Table 2). In the unadjusted model (Model 1), a one-
unit increase in the continuous TyG index was associated with a
3.99-year increase in PhenoAgeAccel (95% CI: 3.79, 4.19). After
adjusting for age, sex, and race/ethnicity (Model 2), this association
slightly strengthened to 4.06 years (95% CI: 3.85, 4.27). In the fully
adjusted model (Model 3), which accounted for a comprehensive
set of covariates, the association remained statistically significant
but was attenuated to 2.21 years (95% CI: 1.99, 2.43). Similarly,
when analyzed by quartiles, participants in Q4 (highest TyG index)
had significantly higher PhenoAgeAccel compared to Q1 (reference
group), with an effect size of 5.66 years (95%CI: 5.27, 6.05) inModel
1, 5.51 years (95%CI: 5.10, 5.91) inModel 2, and 1.79 years (95%CI:
1.38, 2.20) in Model 3. A clear trend was observed across quartiles,

with higher TyG quartiles associated with greater PhenoAgeAccel
(P for trend <0.05 in all models).

3.4 Model validation and diagnostic
assessment

To ensure the validity and reliability of our findings,
comprehensive model diagnostics and validation procedures were
performed. Near-zero variance analysis confirmed that all variables
included in the final models had sufficient variability to contribute
meaningfully to the analysis. Multicollinearity assessment through
VIF analysis revealed acceptable levels of correlation among
predictors, with VIF values ranging from 1.1 to 3.1 for all variables
in the final model, including TyG index (VIF = 1.7), BMI (VIF =
1.3), eGFR (VIF = 2.7), and uric acid (VIF = 1.6), indicating no
problematic multicollinearity.

The fully adjusted model (Model 3) demonstrated good fit
with an R2 of 0.3695 and adjusted R2 of 0.3682, indicating
that approximately 37% of the variation in PhenoAgeAccel was
explained by the model. Model comparison metrics included AIC
(88200.8695) and log-likelihood (−44071.4347), with significant
improvement in the null deviance from 936496.2415 to a residual
deviance of 590506.7876, confirming themodel’s explanatory power.

Residual analysis showed a standard deviation of 6.6658, and
while the Pearson chi-square normality test (p < 0.0001) indicated
some deviation from perfect normality, this is common in large
datasets and does not substantially affect the robustness of our
findings given the large sample size.

These comprehensive diagnostic assessments confirm the
statistical validity and reliability of our findings regarding the
association between TyG index and PhenoAgeAccel.

3.5 Threshold effect analysis of TyG index
on PhenoAgeAccel

The threshold effect analysis revealed a non-linear relationship
between the TyG index and PhenoAgeAccel, with a significant
inflection point identified at 9.60 (Table 3). Using a standard linear
model (Model I), the adjusted β for the association was 2.21 (95%
CI: 1.99, 2.43, P < 0.05), suggesting a positive and linear association.
However, Model II, which employed a piecewise linear regression,
demonstrated distinct effects on either side of the inflection point.
For TyG index values below 9.60, the adjusted β was 0.56 (95% CI:
0.29, 0.83, P < 0.05), indicating a weaker but statistically significant
association. In contrast, for TyG values above 9.60, the association
was substantially stronger, with an adjusted β of 8.21 (95% CI: 7.59,
8.82, P < 0.05). The log-likelihood ratio test supported the presence
of a threshold effect (P = 0.02), highlighting a sharp increase in the
impact of TyG index on PhenoAgeAccel beyond the inflection point.

The results presented in Figure 2 provide a visual representation
of the threshold effect analysis described in Table 3. Panel
A illustrates the association between the TyG index and
PhenoAgeAccel as a continuous variable, showing a clear non-
linear relationship with an inflection point identified at 9.6. Below
this threshold, the association is relatively weak, while a steep
increase in PhenoAgeAccel is observed for TyG index values
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TABLE 1 Basic characteristics of the study participants.

Variables TyG index quartiles P-value

Q1 (6.66–8.27) n
= 3,323

Q2 (8.27–8.67) n
= 3,322

Q3 (8.67–9.11) n
= 3,323

Q4 (9.11–12.48)
n = 3,323

Age (years) 42.98 ± 17.53 50.48 ± 18.53 53.70 ± 18.03 55.66 ± 16.40 <0.05

Gender (n, %) <0.05

 Male 1,369 (41.20%) 1,647 (49.58%) 1766 (53.14%) 1886 (56.76%)

 Female 1954 (58.80%) 1,675 (50.42%) 1,557 (46.86%) 1,437 (43.24%)

Race/ethnicity (n, %) <0.05

 Non-Hispanic White 1,518 (45.68%) 1,664 (50.09%) 1735 (52.21%) 1,691 (50.89%)

 Non-Hispanic Black 994 (29.91%) 684 (20.59%) 458 (13.78%) 389 (11.71%)

 Mexican American 476 (14.32%) 625 (18.81%) 726 (21.85%) 883 (26.57%)

 Others 335 (10.08%) 349 (10.51%) 404 (12.16%) 360 (10.83%)

PIR (n, %) <0.05

 Low 902 (27.14%) 930 (28.00%) 949 (28.56%) 1,103 (33.19%)

 Medium 1,252 (37.68%) 1,291 (38.86%) 1,352 (40.69%) 1,326 (39.90%)

 High 1,169 (35.18%) 1,101 (33.14%) 1,022 (30.76%) 894 (26.90%)

Education level (n, %) <0.05

 Less than high school 785 (23.62%) 967 (29.11%) 1,091 (32.83%) 1,275 (38.37%)

 High school graduate 691 (20.79%) 825 (24.83%) 777 (23.38%) 835 (25.13%)

 More than high school 1847 (55.58%) 1,530 (46.06%) 1,455 (43.79%) 1,213 (36.50%)

Smoking (n, %) <0.05

 Never 1987 (59.80%) 1734 (52.20%) 1,640 (49.35%) 1,485 (44.69%)

 Former 659 (19.83%) 822 (24.74%) 955 (28.74%) 1,080 (32.50%)

 Now 677 (20.37%) 766 (23.06%) 728 (21.91%) 758 (22.81%)

Drinking (n, %) <0.05

 Never 474 (14.26%) 424 (12.76%) 478 (14.38%) 499 (15.02%)

 Former 527 (15.86%) 657 (19.78%) 738 (22.21%) 852 (25.64%)

 Mild 1,101 (33.13%) 1,070 (32.21%) 1,098 (33.04%) 973 (29.28%)

 Moderate 607 (18.27%) 480 (14.45%) 366 (11.01%) 354 (10.65%)

 Heavy 614 (18.48%) 691 (20.80%) 643 (19.35%) 645 (19.41%)

METs/week (n, %) 0.22

 Low 1,468 (44.18%) 1,502 (45.21%) 1,420 (42.73%) 1,509 (45.41%)

 Moderate 115 (3.46%) 117 (3.52%) 102 (3.07%) 111 (3.34%)

 Vigorous 1740 (52.36%) 1703 (51.26%) 1801 (54.20%) 1703 (51.25%)

(Continued on the following page)
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TABLE 1 (Continued) Basic characteristics of the study participants.

Variables TyG index quartiles P-value

Q1 (6.66–8.27) n
= 3,323

Q2 (8.27–8.67) n
= 3,322

Q3 (8.67–9.11) n
= 3,323

Q4 (9.11–12.48)
n = 3,323

BMI (kg/m2) 26.21 ± 6.03 28.09 ± 6.29 29.56 ± 6.59 30.80 ± 6.17 <0.05

Height (cm) 167.74 ± 9.76 167.91 ± 10.19 167.42 ± 10.38 167.75 ± 10.49 0.26

SBP (mmHg) 117.98 ± 18.15 123.67 ± 19.28 126.34 ± 19.75 129.76 ± 20.03 <0.05

DBP (mmHg) 68.41 ± 11.56 69.56 ± 11.90 70.67 ± 12.26 71.71 ± 12.80 <0.05

Uric acid (mg/dL) 4.94 ± 1.31 5.41 ± 1.35 5.75 ± 1.40 5.97 ± 1.49 <0.05

eGFR (ml/min/1.73 m2) 101.11 ± 22.55 93.02 ± 22.66 89.30 ± 23.44 87.56 ± 23.66 <0.05

Glucose metabolism
state (n, %)

<0.05

 Normoglycemia 2,971 (89.41%) 2,616 (78.75%) 2,134 (64.22%) 1,382 (41.59%)

 Prediabetes 209 (6.29%) 400 (12.04%) 622 (18.72%) 588 (17.69%)

 Diabetes 143 (4.30%) 306 (9.21%) 567 (17.06%) 1,353 (40.72%)

Hypertension (n, %) <0.05

 No 2,457 (73.94%) 2009 (60.48%) 1756 (52.84%) 1,438 (43.27%)

 Yes 866 (26.06%) 1,313 (39.52%) 1,567 (47.16%) 1885 (56.73%)

Hyperlipidemia (n, %) <0.05

 No 1804 (54.29%) 1,025 (30.85%) 441 (13.27%) 48 (1.44%)

 Yes 1,519 (45.71%) 2,297 (69.15%) 2,882 (86.73%) 3,275 (98.56%)

CVD (n, %) <0.05

 No 3,118 (93.83%) 2,992 (90.07%) 2,904 (87.39%) 2,731 (82.18%)

 Yes 205 (6.17%) 330 (9.93%) 419 (12.61%) 592 (17.82%)

HEI-2015 50.72 ± 13.37 50.63 ± 13.34 50.68 ± 13.14 50.43 ± 13.10 0.81

PhenoAge (years) 36.99 ± 19.51 45.96 ± 20.60 50.11 ± 20.19 55.33 ± 20.19 <0.05

PhenoAgeAccel (years) −5.99 ± 6.72 −4.52 ± 7.63 −3.60 ± 7.47 −0.33 ± 10.27 <0.05

Abbreviations: TyG, triglyceride-glucose; PIR, poverty income ratio; MET, metabolic equivalent; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR,
estimated glomerular filtration rate; CVD, cardiovascular disease; HEI, healthy eating index; PhenoAge, phenotypic age; PhenoAgeAccel, phenotypic age acceleration.

above 9.6, consistent with the adjusted β estimates in Table 3
(0.56 below 9.6 and 8.21 above 9.6). Panel B further supports
the presence of a threshold effect by presenting the smooth curve
fitting after categorizing the TyG index into four quartiles. The plot
demonstrates a progressively steeper increase in PhenoAgeAccel
across quartiles, with the transition from Q3 to Q4 suggesting a
potential inflection point in the relationship. This visualization
aligns with the trends observed in Table 3 and underscores the
non-linear association between TyG index and PhenoAgeAccel,
particularly the heightened effect at higher TyG levels.

3.6 Stratified analysis of the association
between TyG index and PhenoAgeAccel

Figure 3 depicts a subgroup analysis of the association between
TyG index and PhenoAgeAccel using linear regression, stratified
by age, gender, race/ethnicity, PIR, BMI, smoking, drinking, and
CVD. The effect value (β) of TyG index on PhenoAgeAccel in all
subgroups is greater than zero, with statistically significant P-values
(P < 0.05) in all strata. This indicates that the TyG index maintains
a consistent positive association with PhenoAgeAccel across all
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TABLE 2 Association between TyG index and PhenoAgeAccel.

TyG index Model 1 Model 2 Model 3

Continuous 3.99 (3.79, 4.19) 4.06 (3.85, 4.27) 2.21 (1.99, 2.43)

Quartiles

 Q1 (6.66–8.27) Reference Reference Reference

 Q2 (8.27–8.67) 1.48 (1.09, 1.87) 1.34 (0.95, 1.73) 0.52 (0.18, 0.86)

 Q3 (8.67–9.11) 2.40 (2.00, 2.79) 2.30 (1.90, 2.70) 0.56 (0.19, 0.93)

 Q4 (9.11–12.48) 5.66 (5.27, 6.05) 5.51 (5.10, 5.91) 1.79 (1.38, 2.20)

P for trend <0.05 <0.05 <0.05

Model 1: Non-adjusted.
Model 2: Adjusted for age, sex, race/ethnicity.
Model 3: Adjusted for age, sex, race/ethnicity, PIR, education level, BMI, smoking,
drinking, glucose metabolism state, hypertension, hyperlipidemia, METs/week, uric acid,
eGFR, CVD, and HEI-2015.
Abbreviations: TyG, triglyceride-glucose; PhenoAgeAccel, phenotypic age acceleration;
PIR, poverty income ratio; BMI, body mass index; MET, metabolic equivalent of task;
eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease; HEI, healthy
eating index.

TABLE 3 Threshold effect analysis of TyG index on PhenoAgeAccel.

TyG index Adjusted β
∗
(95% CI) P-value

Model I

Fitting by the standard linear
model

2.21 (1.99, 2.43) <0.05

Model II

 Inflection point 9.60

 <9.60 0.56 (0.29, 0.83) <0.05

 >9.60 8.21 (7.59, 8.82) <0.05

Log likelihood ratio — 0.02

Notes:
∗
Adjusted for age, sex, race/ethnicity, PIR, education level, BMI, smoking, drinking,

glucose metabolism state, hypertension, hyperlipidemia, METs/week, uric acid, eGFR,
CVD, and HEI-2015.
Abbreviations: TyG, triglyceride-glucose; PhenoAgeAccel, phenotypic age acceleration;
PIR, poverty income ratio; BMI, body mass index; MET, metabolic equivalent of task;
eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease; HEI, healthy
eating index.

population subgroups. Notably, while the effect sizes vary slightly
among subgroups, the relationship remains robust and significant,
suggesting that the association between TyG index and accelerated
phenotypic aging is not significantly modified by demographic or
health-related factors.

Figure 4 illustrates the stratified analysis of the association
between TyG index and PhenoAgeAccel using a generalized additive
model and smooth curve fitting, stratified by the same variables as in
Figure 3. The results are consistent with the trends observed in the

total population analysis (Figure 2), demonstrating a potential non-
linear relationship betweenTyG index andPhenoAgeAccel across all
subgroups. For each stratified variable, the smooth curves generally
exhibit an initial gradual increase in PhenoAgeAccel with lower
TyG index values, followed by a more pronounced increase beyond
higher TyG index levels, consistent with the non-linear threshold
effect described earlier.

4 Discussion

This study investigated the association between the TyG index
and PhenoAgeAccel using data from a nationally representative
cohort. The results demonstrated a significant and positive
relationship between the TyG index and PhenoAgeAccel, with
higher TyG index values consistently associated with greater
biological aging across all models. A non-linear threshold effect
was identified, with an inflection point at a TyG index of 9.60;
below this threshold, the association was modest, while above it, the
effect size was substantially amplified. Stratified analyses revealed
that the association persisted across all subgroups, including age,
gender, race/ethnicity, PIR, BMI, smoking, drinking, and CVD,
suggesting the robustness of the findings. These results highlight the
critical role of metabolic dysfunction, as captured by the TyG index,
in accelerating biological aging and emphasize the importance of
addressing IR to mitigate aging-related health risks.

Our research findings are consistent with and extend previous
studies exploring the relationship between metabolic dysfunction
and biological aging. Numerous studies have demonstrated a close
association between metabolic dysfunction and cellular aging.
For example, one study found a significant negative correlation
between various components of metabolic syndrome and leukocyte
telomere length (LTL), suggesting that metabolic abnormalities may
accelerate the process of cellular aging (Khalangot et al., 2019).
Additionally, another study highlighted the cardiometabolic index
(CMI) as a biomarker of biological aging, finding that elevated
CMI levels are associated with an increased risk of biological aging
(Sun and Bao, 2024). Similarly, Huang et al. demonstrated in a
study involving patients with type 2 diabetes and coronary heart
disease that higher levels of metabolic abnormalities significantly
accelerate phenotypic aging (Huang et al., 2024). While Huang’s
study focused on a specific population, our analysis utilized a
nationally representative NHANES sample (n = 13,291), providing
broader generalizability. Likewise, Zhang et al. showed that higher
TyG index levels are associated with lower levels of the anti-
aging protein Klotho, further supporting the relationship between
metabolic dysfunction and aging (Zhang et al., 2024). However,
Zhang’s study had a smaller sample size (n = 2,864) and did not
explore nonlinear associations. Our study employed GAM and
segmented regression to identify threshold effects.

In addition, this study found a significant nonlinear relationship
between the TyG index and PhenoAgeAccel, with a turning point
observed when the TyG index reached 9.60. This finding suggests
that the impact of an elevated TyG index on biological aging
is not simply linear but exhibits a clear threshold effect. Below
the turning point, the association between the TyG index and
PhenoAgeAccel is relatively weak, whereas above the turning point,
this relationship becomes significantly stronger. The discovery of
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FIGURE 2
The association between TyG index and PhenoAgeAccel. Notes: (A) The nonlinear association between the TyG index and PhenoAgeAccel is depicted
using GAM and smooth curve fitting. The solid red line represents the fitted curve, while the shaded area indicates the 95% confidence interval. (B)
Smooth curve fitting of the TyG index after stratification into quartiles (Q1: 6.66–8.27, Q2: 8.27–8.67, Q3: 8.67–9.11, Q4: 9.11–12.48). The dashed black
line represents the trend of PhenoAgeAccel across the quartiles, with error bars indicating the 95% confidence intervals. Age, sex, race/ethnicity, PIR,
education level, BMI, smoking, drinking, glucose metabolism state, hypertension, hyperlipidemia, METs/week, uric acid, eGFR, CVD, and HEI-2015 were
adjusted. Abbreviations: TyG, triglyceride-glucose; PhenoAgeAccel, phenotypic age acceleration; GAM, generalized additive model; PIR, poverty
income ratio; BMI, body mass index; MET, metabolic equivalent of task; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease; HEI,
healthy eating index.

this nonlinear relationship provides a new perspective on how
metabolic disorders drive biological aging and may hold important
implications for risk stratification and personalized intervention
strategies. This result aligns with findings from other studies that
have identified nonlinear effects of metabolic markers on health
outcomes. For example, Qiu et al. investigated the relationship
between the TyG index and the anti-aging protein Klotho, also
observing that the negative health impacts of metabolic indicators
significantly increased beyond specific thresholds (Qiu et al., 2024).
Furthermore, Xu et al. found that the relationship between the
visceral adiposity index (VAI) and biological aging was significantly
enhanced after certain critical points, consistent with the threshold
effect observed in this study (Xu et al., 2024). However, unlike these
studies, the present researchmore precisely quantified this nonlinear
relationship usingGAMand segmented regressionmethods, and for
the first time, identified the exact location of the turning point in a
nationally representative sample.

This nonlinear relationship may be associated with the cascade
effects of IR, oxidative stress, and chronic inflammation. When the
TyG index is relatively low, metabolic disturbances are insufficient
to cause significant damage to cells and tissues, resulting in a
weaker impact on PhenoAgeAccel. However, once the TyG index
exceeds the threshold of 9.60, IR may intensify, triggering pro-
inflammatory pathways (such as NF-κB and JNK) and oxidative
stress, leading to DNA damage, mitochondrial dysfunction, and an
escalation of inflammatory responses (Qiu et al., 2024; Zhao et al.,
2024). The identification of this specific threshold at TyG index of
9.60 may reflect critical transitions in metabolic pathophysiology.

This finding aligns with previous research by Primo et al., who
identified specific TyG index cutoff points as accurate markers
for predicting metabolic syndrome in obese subjects, suggesting
that metabolic parameters exhibit threshold effects rather than
continuous linear relationships with health outcomes (Primo et al.,
2023). The TyG index has been increasingly recognized as a
promising biomarker for various diseases, with different threshold
values indicating distinct risk profiles for different conditions, as
reported by Sun et al. in their comprehensive review (Sun et al.,
2025). The mechanisms underlying this threshold effect likely
involve multiple interconnected pathways. First, the transition
from compensated to decompensated metabolic function may
occur around this threshold. The TyG index is strongly associated
with insulin resistance, which at higher levels promotes a pro-
inflammatory phenotype characterized by increased secretion of
pro-inflammatory cytokines and chemokines. This phenomenon,
often referred to as “inflammaging,” represents a chronic low-grade
inflammation that is a hallmark of accelerated biological aging,
as described by Bachmann et al. and Zuo et al. in their reviews
of inflammatory mechanisms in aging (Bachmann et al., 2020;
Zuo et al., 2019). Second, oxidative stress increases exponentially
rather than linearly with worsening metabolic health. Lejawa et al.
demonstrated that individualswith unhealthymetabolic phenotypes
exhibit significantly higher levels of oxidative stress markers
and shorter telomere length compared to metabolically healthy
counterparts (Lejawa et al., 2021). This oxidative damage to cellular
components, including lipids, proteins, and DNA, contributes
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FIGURE 3
Stratified analyses between TyG index and PhenoAgeAccel.
Notes:∗Each stratification adjusted for all the factors (age, sex,
race/ethnicity, PIR, education level, BMI, smoking, drinking, glucose
metabolism state, hypertension, hyperlipidemia, METs/week, uric acid,
eGFR, CVD, and HEI-2015) except the stratification factor itself.
Abbreviations: TyG, triglyceride-glucose; PhenoAgeAccel, phenotypic
age acceleration; PIR, poverty income ratio; BMI, body mass index;
MET, metabolic equivalent of task; eGFR, estimated glomerular
filtration rate; CVD, cardiovascular disease; HEI, healthy eating index.

substantially to the aging process and the development of age-
related diseases, as highlighted by Griffiths et al. in their analysis
of redox state dysregulation in aging (Griffiths et al., 2020). Third,
epigenetic modifications likely play a crucial role in mediating
the effects of metabolic dysfunction on biological aging. The TyG
index may affect epigenetic aging by altering the expression of
genes involved in metabolic pathways, inflammation, and oxidative
stress. Cao et al. have described how mitochondrial epigenetic
changes (“mitoepigenetics”) serve as an important regulatory
layer in aging and metabolic-related diseases (Cao et al., 2021).
Additionally, Wolf et al. found significant correlations between
epigenetic age acceleration and altered gene expression profiles,
suggesting that metabolic factors could influence aging through
epigenetic mechanisms (Wolf et al., 2021). Furthermore, IR may
inhibit DNA repair pathways and alter epigenetic markers, thereby
permanently activating aging-related genes (Park et al., 2014).
Disruptions in endocrine balance, such as reduced levels of Klotho
protein, may also amplify this effect (Zhang et al., 2024). Therefore,
an elevated TyG index may promote biological aging through
multiple pathways, with more pronounced effects observed beyond
the critical threshold.

The molecular mechanisms connecting TyG index with
PhenoAgeAccel extend beyond the previously discussed pathways.
Recent studies have suggested that the TyG index is associated

with epigenetic age acceleration, which is a measure of biological
aging based on DNA methylation patterns (Irvin et al., 2018). This
association provides a direct molecular link between metabolic
dysfunction and aging processes at the genomic level. Furthermore,
the TyG index has been linked to the anti-aging protein Klotho,
which plays a crucial role in cellular longevity and metabolic health
(Qiu et al., 2024). Studies have found that the relationship between
the TyG index and Klotho levels varies depending on the presence
of diabetes, indicating a complex interaction that may contribute to
differential aging outcomes in variousmetabolic states. Additionally,
the TyG index has demonstrated utility in predicting liver steatosis, a
condition associated with metabolic syndrome that may contribute
to accelerated aging through disruption of normal liver function
and metabolism (Mijangos-Trejo et al., 2024). The potential
connections between the TyG index and these molecular markers
suggest multiple pathways through which metabolic dysfunction
might influence biological aging, beyond the previously discussed
inflammation and oxidative stress mechanisms.These findings align
with broader research on metabolic factors and aging, including
studies on genetic determinants of aging and metabolic health
(Ruth et al., 2021; Chen et al., 2023). Further research is needed to
fully elucidate these mechanistic connections and identify potential
intervention targets to mitigate accelerated aging associated with
metabolic disorders.

The stratified analysis results of this study indicate that,
across different stratification variables, although the effect size (β
value) showed slight variations, the association between the TyG
index and PhenoAgeAccel remained significant in all subgroups,
demonstrating its consistency across various populations. This
finding aligns with previous research, such as studies by Qiu et al.
and Zhang et al., which similarly observed that the relationship
between metabolic markers and aging remains consistent across the
majority of population subgroups (Qiu et al., 2024; Zhang et al.,
2024). Notably, in the interaction effect test, the P-value for
drinking status was less than 0.05, suggesting a certain interaction
effect between alcohol consumption and the relationship between
the TyG index and PhenoAgeAccel. Stratified analysis revealed
that the association effect among drinkers (particularly current
drinkers) was slightly lower than that of never drinkers and former
drinkers, which may be related to the bidirectional effects of alcohol
consumption on metabolism and inflammatory responses. Makino
et al. demonstrated that light to moderate alcohol consumption
was positively correlated with favorable aging-related markers,
including improved lung function and muscle mass, potentially
offering some protective effects against certain aspects of biological
aging (Makino et al., 2021). However, the relationship becomes
more complex when considering the TyG index, which is a
marker of insulin resistance. Li et al. found that high TyG index
values are associated with increased risk of cognitive decline in
middle-aged to elderly populations, highlighting its role in aging
processes (Li et al., 2022). Further complicating this relationship,
Keskin and Yoldas reported that fructose consumption, which is
often high in alcoholic beverages, correlates with the TyG index
and negatively affects glycemic status, potentially exacerbating
metabolic dysfunction (Keskin and Yoldas Ilktac, 2022). The
underlying mechanisms for this interaction may involve several
pathways. First, moderate alcohol consumption may influence
insulin sensitivity and glucose metabolism through hormonal and
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FIGURE 4
Stratified analyses (by (A) age; (B) gender; (C) race/ethnicity; (D) PIR; (E) BMI; (F) smoking; (G) drinking; (H) CVD) between TyG index and
PhenoAgeAccel using GAM and smooth curve fittings. Notes:∗Each GAM and smooth curve fitting was adjusted for all factors, including age, sex,
race/ethnicity, PIR, education level, BMI, smoking, drinking, glucose metabolism state, hypertension, hyperlipidemia, METs/week, uric acid, eGFR, CVD,
and HEI-2015, except for the stratification factor itself. Abbreviations: PIR, poverty income ratio; BMI, body mass index; CVD, cardiovascular disease;
TyG, triglyceride-glucose; PhenoAgeAccel, phenotypic age acceleration; GAM, generalized additive model; MET, metabolic equivalent of task; eGFR,
estimated glomerular filtration rate; HEI, healthy eating index.

inflammatory mediators, potentially modifying the relationship
between TyG index and biological aging (Sánchez-Ortiz et al., 2024;
Alonso-Andrés et al., 2019). Second, alcohol’s effects on oxidative
stress are dose-dependent, with moderate consumption potentially
enhancing antioxidant capacity while excessive intake promotes
oxidative damage, as demonstrated by Hong’s research on oxidative
stress and plasma alcoholic metabolites (Hong, 2016). Third, the
lifestyle factors often associated with different patterns of alcohol
consumption, such as dietary habits and physical activity, may
confound or mediate the relationship between metabolic health and
aging. Hautekiet et al. highlighted that a healthy lifestyle, which may
include moderate alcohol consumption within an overall balanced
approach, is associated with favorable biological aging markers such
as telomere length andmitochondrial DNA content (Hautekiet et al.,
2022). These complex interactions underscore the importance
of considering alcohol consumption as a potentially significant
modifier in the relationship between metabolic dysfunction and
biological aging. Future research should explore these interactions
more comprehensively, particularly focusing on the dose-dependent
effects of alcohol consumption on the relationship between
TyG index and biological aging, and the potential mechanisms
underlying the observed modification effect.

A notable strength of this study lies in its comprehensive
methodology, which integrates advanced statistical techniques to
explore the relationship between theTyG index andPhenoAgeAccel.
The use of GAM and smooth curve fitting enabled the identification
of a non-linear association, highlighting the inflection point at a
TyG index of 9.60.This approach provides a nuanced understanding

of threshold effects that traditional linear regression models
may overlook (Hastie and Tibshirani, 1987). Furthermore, the
application of MICE minimized bias from missing data and ensured
robust findings, a method endorsed in epidemiological studies
(Toutenburg and Rubin, 1990; Sterne et al., 2009). Additionally,
the detailed stratified analysis across demographic and clinical
subgroups demonstrated consistent associations, underscoring
the universal relevance of the TyG index as a biomarker of
biological aging.

While this study provides valuable insights, several limitations
should be acknowledged. First, the cross-sectional design prevents
the establishment of causality, leaving uncertainty about whether
higher TyG index levels directly accelerate biological aging or are
merely associated with it. Second, the reliance on self-reported
data for covariates such as smoking and alcohol use may introduce
recall bias (Hansen et al., 2022). Third, although we adjusted for
multiple covariates, residual confounding from unmeasured factors
cannot be ruled out. Specifically, our study was limited in its
ability to account for detailed dietary patterns beyond the HEI-
2015 score, objectively measured physical activity, sleep quality, and
genetic predispositions, all of which may influence both metabolic
health and biological aging processes. Future studies should aim to
integrate more comprehensive data on diet composition, objectively
measured physical activity using accelerometers, sleep metrics,
and relevant genetic polymorphisms to better understand the
complex relationship between metabolic dysfunction and biological
aging. Finally, the generalizability of our findings is limited by
the characteristics of the NHANES population. While NHANES
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is designed to be representative of the U.S. population, our results
may not be applicable to populations from other geographic regions
with different genetic backgrounds, dietary habits, environmental
exposures, and healthcare systems. Future research should
prioritize including racially and ethnically diverse cohorts from
various geographic regions to establish the consistency of the
relationship between TyG index and biological aging across different
populations and to identify potential population-specific modifying
factors.

5 Conclusion

This study underscores the relevance of metabolic health,
particularly as captured by the TyG index, in understanding
biological aging and its potential impact on health outcomes.
The TyG index serves as a practical and accessible marker
of metabolic dysfunction, which plays a critical role in aging-
related processes. Early detection of elevated TyG index, especially
values approaching or exceeding the identified threshold of 9.60,
offers opportunities for timely intervention to mitigate accelerated
biological aging.

Potential interventions include targeted lifestyle modifications,
such as Mediterranean or DASH dietary patterns that improve
triglyceride and glucose profiles, structured physical activity
programs combining aerobic and resistance training, and adequate
sleep hygiene—all of which have demonstrated efficacy in
improving insulin sensitivity and lowering TyG index values.
Pharmacological approaches may also prove beneficial, including
metformin, which has shown promise in addressing both metabolic
dysfunction and aging processes, as well as SGLT2 inhibitors
and GLP-1 receptor agonists that improve glycemic control and
cardiovascular outcomes.

Future research should focus on investigating how changes
in metabolic markers over time influence aging trajectories.
Expanding these investigations to include diverse populations
with varying genetic, environmental, and lifestyle factors
will improve the generalizability of findings. Furthermore,
interventional studies targeting improvements in TyG index
through lifestyle modifications or pharmacological approaches
could provide more definitive evidence regarding the potential
benefits of metabolic optimization on biological aging
processes.

Integratingmolecular and epigenetic biomarkers withmetabolic
indices could provide a more comprehensive understanding
of the mechanisms driving biological aging. These efforts will
be essential for developing personalized strategies aimed at
enhancing healthy aging and reducing the burden of age-related
diseases.
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