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in elderly sepsis patients

Xing-Yu Zhu1,2, Zhi-Meng Jiang1, Xiao‐ Li1, Zi-Wen Lv1,
Jian-Wei Tian2 and Fei-Fei Su2*
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Backgrounds: Sepsis is a leading cause of in-hospital mortality. However,
its prevalence is increasing among the elderly population. Therefore, early
identification and prediction of the risk of death in elderly patients with sepsis
is crucial. The objective of this study was to create a machine learning model
that can predict short-termmortality risk in elderly patients with severe sepsis in
a clear and concise manner.

Methods: Data was collected from the MIMIC-IV (2.2). It was randomly divided
into a training set and a validation set using a 7:3 ratio. Mortality predictors were
determined through Recursive Feature Elimination (RFE). A prediction model for
28 days of ICU stay was built using six machine-learning algorithms. To create
a comprehensive and nuanced model resolution, Shapley Additive Explanations
(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) were used
to systematically interpret the models at both a global and detailed level.

Results: The study involved the analysis of 4,056 elderly patients with sepsis. A
feature recursive elimination algorithm was utilized to select eight variables out
of 49 for model development. Six machine learning models were assessed, and
the Extreme Gradient Boosting (XGBoost) model was found to perform the best.
The validation set achieved an AUC of 0.88 (95% CI: 0.86–0.90) and an accuracy
of 0.84 (95% CI: 0.81–0.86) for this model. To examine the roles of the eight key
variables in the model, SHAP analysis was employed. The global ranking order
was made evident, and through the use of LIME analysis, the weights of each
feature range in the prediction model were determined.

Conclusion:The study’smachine learning predictionmodel is a dependable tool
for forecasting the prognosis of elderly patients with severe sepsis.

KEYWORDS

sepsis, machine learning, shapley additive explanations, local interpretable model-
agnostic explanations, XGBoost

Introduction

Sepsis has the potential to lead to multiple organ dysfunction syndrome (MODS)
and in severe cases, even death. It is a major factor contributing to mortality and
morbidity worldwide (Rudd et al., 2020; Singer et al., 2016). In the late 1970s, it was
estimated that approximately 164,000 new cases of sepsis occurred annually in the United
States (Martin et al., 2003). It is worth noting that the incidence of sepsis has been
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increasing globally, not just in the United States (Walkey et al.,
2013; Fleischmann et al., 2016; Rhee et al., 2017). Estimates
suggest that sepsis mortality rates can vary between 10 and 52
percent (Martin et al., 2003; Kaukonen et al., 2014; Li A. et al.,
2022; Epstein et al., 2016). It has been observed that the age
group of 65 years and over is more vulnerable to sepsis, with
a significant percentage of cases, occurring in this demographic.
Considering the ongoing demographic shift towards an aging
population, it is anticipated that the incidence of sepsis will
rise in the future (Martin et al., 2003; Kaukonen et al., 2014;
Angus et al., 2001; Giacomello and Toniolo, 2021). Identifying
and predicting mortality risk in elderly septicaemic patients at an
early stage is of utmost importance. This information can provide
a valuable reference for clinicians to improve patient survival
and prognosis through timely and effective therapeutic measures.
Although some machine learning-based predictive models have
been developed, their limited interpretability has hindered their
application in clinical practice.

Rapid advancements in machine learning (ML) have provided
powerful tools for extracting complex patterns, assisting clinical
decision-making, and improving patient prognosis prediction in
medicine. This section briefly outlines several prevalent ML
models and their applications in medical prognosis. Logistic
regression, a classical statistical learning method, is suitable for
binary classification problems. Its model is concise and efficient,
offering high interpretability and widespread application in areas
such as cardiovascular disease risk assessment (Zabor et al.,
2022); however, it struggles with complex non-linear relationships.
Support vector machines (SVM), employing kernel methods to
map data into high-dimensional space, excel at handling non-
linear classifications (Zhou, 2022). While demonstrating superior
performance in predicting breast cancer patient survival, they
entail complex hyperparameter tuning andhigh computational costs
(Sarkar andMali, 2023). Neural networks, leveragingmultiple layers
of neurons to simulate non-linearmappings, are widely used in EHR
data analysis and medical image processing (Manimegalai et al.,
2022). Nevertheless, their “black box” nature and reliance on
large annotated datasets remain challenges. Multilayer perceptrons
(MLP), a foundational neural network architecture, exhibit strong
performance in image segmentation due to their flexibility; however,
their efficiency diminishes when confronted with multimodal data
(Gao et al., 2023; Zhang et al., 2023). Naive Bayes (NB), based on
Bayes’ theorem and assuming feature independence, boasts high
computational efficiency. Demonstrating excellent performance in
genomic data analysis and cancer patient stratification prediction,
its performance is nevertheless affected by feature correlations (Das
and Dutta, 2020; Lu et al., 2024). Extreme Gradient Boosting
(XGBoost), employing ensemble learning to construct robust
predictive models, shows superior performance in predicting
mortality risk in heart failure patients (Li J. et al., 2022). While its
efficient feature handling capabilities are beneficial for imbalanced
datasets, the risk of overfitting in small datasets necessitates careful
consideration (Takefuji, 2025). These models, each with its unique
strengths, provide valuable support for data analysis and decision-
making in medical prognosis. Future advancements, focusing
on enhancing model explainability and effectively integrating
multimodal data, promise to further unlock their clinical potential.

Research in critical caremedicine has been exploring prognostic
modeling for sepsis patients. It has been found that commonly used
serological indices, such as calcitonin, platelet, and lactate levels,
may have limited prognostic value in assessing the effect of sepsis
(Brunkhorst et al., 2000; Gattinoni et al., 2019). Sepsis is a clinical
syndrome that presents a wide range of biological characteristics. As
a result, it can be challenging to fully reflect the patient’s condition
based on individual indicators alone (Hernandez et al., 2019). The
efficacy of emerging machine learning techniques in comparison
to traditional means of prediction is contingent on the nature
of the dataset and the field in which they are employed. It has
been hypothesized that machine learning techniques may be more
appropriate for highly innovative fields with large amounts of data
(Rajula et al., 2020). By meticulously designing and optimizing
algorithms, they are capable of learning from large and intricate
datasets to uncover more profound associations between patients’
clinical indicators and prognostic outcomes. Nevertheless, it is
important to acknowledge that machine learning models in clinical
practice may have limitations stemming from the lack of clarity and
intuition in the decision-making process (Karim et al., 2023).

When constructing algorithmic models, it is common to
use precision and recall of the test set as benchmarks for
measuring model strength. However, when communicating with
non-professionals, relying on a single value may not be practical.
Therefore, it is important to demonstrate the internal logic and
principles of the model to enhance its credibility. It is worth
noting that certain models are not always constructed based on
clear rules. Some black-box models, despite their higher predictive
accuracy, may be opaque and unable to provide a specific decision-
making basis. This can make it challenging for the general public to
comprehend and have faith in their predictions. Thankfully, there
are now tools available such as SHAP and lime that can provide
valuable insights into the decision-making processes of machine
learning models (Hilton et al., 2020; Lundberg et al., 2020). These
tools can facilitate a deeper comprehension of howmachine learning
models operate, which could lead to their expanded implementation
in clinical practice.

This investigation aims to develop a machine learning model
that can predict the short-term risk of death in elderly patients with
sepsis with accuracy. Advanced SHAP and lime technical tools will
be utilized to comprehensively analyze and explore themodel at both
the holistic and local levels.

Methods

Database

This retrospective study utilized data from the publicly available
electronic health record dataset MIMIC-IV(2.2) (Johnson et al.,
2023). The database was created by the Computational Physiology
Laboratory of the Massachusetts Institute of Technology
(MIT), the Beth Israel Deaconess Medical Centre (BIDMC) at
Harvard Medical School, United States, and Philips Healthcare.
Patient information was collected and research resources were
created with approval from the Beth Israel Deaconess Medical
Centre’s Institutional Review Board, which waived the need
for informed consent and supported the data-sharing initiative
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(Johnson et al., 2023; Goldberger et al., 2000). The study adheres
rigorously to the tenets set forth in the Declaration of Helsinki.
Zi-wen Lv, the author of this study, has completed the CITI course
and passed the ‘Conflict of Interest’ and ‘Data or Specimen Research
Only’ examinations (ID: 55,109,354). As a result, we are authorized
to use this database.

Study population

This study leverages the advantages of the heterogeneous and
multisource clinical data contained in the MIMIC-IV (version
2.2) database, which provides comprehensive electronic health
records (EHRs) and longitudinal follow-up information to support
the refined analytical requirements of prognostic modeling. Using
Structured Query Language (SQL) and the Navicat 16.3.8 software
platform, a systematic screening and extraction of raw datasets
meeting the inclusion criteria was conducted to construct an
association framework between high-dimensional features and
clinical outcomes. During data processing, patients with septicemia
in the MIMIC database were accurately identified and classified
using specific codes, such as R6520, R6521, and 99,592. Data on
patients, including socio-demographic characteristics, vital signs,
laboratory parameters, and complications, was extracted using
structured query language (Yang et al., 2020). To determine the
study sample, strict inclusion and exclusion criteria were applied.
Inclusion criteria required patients to be admitted to the ICU with
a confirmed diagnosis of sepsis and to be 65 years old or older.
Exclusion criteria were applied to patients who were not first-time
ICU admissions and those with more than 30% of missing data
variables.

Approaching the issue of missing data

Data loss is a known issue in clinical trials, which may impact
the integrity of the original data set and potentially weaken the
robustness and validity of study findings (Sterne et al., 2009).
Multiple imputation is a commonly used method for dealing with
missing data in interpolation. This method provides valid estimates
while also accounting for the uncertainty associated with missing
data (Pedersen et al., 2017; Heymans and Twisk, 2022). To address
the issue of missing data, a multiple imputation approach was
employed. Variables such as triglycerides and total cholesterol,
which had a missing rate of over 30%, were excluded from the
analysis. The remaining variables were refined using multiple
imputation techniques.Thedata-filling taskwas completed using the
‘mice’ package in R4.2.3. Through engagement with clinical experts
specializing in sepsis management, we systematically assessed the
relevance and potential impact of excluded variables. Their expert
consensus confirmed that the removal of these variables would not
compromise the prognostic accuracy or introduce significant bias in
our analysis of sepsis outcomes.

Statistical analyses

The data were analyzed using both R languages (version 4.2.3).
For continuous variables that follow a normal distribution, the

mean and standard deviation (x ̅±s) were used to describe their
concentration and dispersion trends. For continuous variables that
do not follow a normal distribution, the median and interquartile
range (M(Q1, Q3)) were used to characterize their distributions.
Differences between groups for normally distributed variables were
compared using the t-test, while the Mann-Whitney U test was
used for non-normally distributed variables. The distributions
of categorical variables were visualized as percentages. The chi-
square test was used to determine significant associations between
categories. Additionally, we analyzed the non-linear relationship
between characteristic variables and the risk of short-termmortality
in elderly patients with sepsis using restricted cubic bars.

Development and validation of predictive
models

While models with rich features often outperform those with
fewer features in terms of accuracy, this is not always the practice
case. In clinical applications, it is important to carefully consider the
number of features used in amodel, as simply increasing the number
of features does not always lead to improved performance. This is
because irrelevant or redundant features may negatively impact the
model’s accuracy, and an excessive number of features may result
in overfitting. The study employed a Recursive Feature Elimination
(RFE) algorithm to develop a model based on 49 variables that were
strongly associated with short-term mortality outcomes.

The RFE algorithm is a model-based strategy for selecting
features. It screens the best feature combinations by iteratively
training the model and gradually eliminating the features with
the lowest weights. To ensure a more accurate measurement of
performance fluctuation during the feature selection process, this
study incorporates a layer of resampling (10-fold cross-validation)
outside the RFE algorithm. The algorithm identified eight features
that had a significant impact on predicting short-term risk of
mortality in elderly patients with severe sepsis.This study utilized six
machine learning models, specifically Logistic Regression, Neural
Network, Support Vector Machine, Multilayer Perceptron, Naive
Bayes, and ExtremeGradient Boosting, to create effective prediction
models. The patient dataset was randomly sampled and split into
training and validation sets in a 7:3 ratio during the development
of the prediction model. To ensure accurate parameter tuning
and model resilience, a tenfold cross-validation technique was
employed. The models’ predictive performance was assessed using
the area under the working characteristic curve of the subjects
as the primary index. Furthermore, a detailed evaluation of each
model was conducted, including sensitivity, specificity, positive
predictive value, negative predictive value, recall, precision, and
F1 score. To provide a more comprehensive representation of the
optimalmodels’ performance, we have included standard curves and
decision analysis curves (DCA) (Van Calster et al., 2018).

Tools for interpreting machine learning

This study employs two model interpretation methods, namely,
SHAP and lime, to conduct a thorough analysis of the risk prediction
model that we have developed. We extensively investigate the
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contribution of each clinical variable in the model. It is worth
noting that SHAP is a commonly used tool for evaluating the
impact of features in machine learning models (Li J. et al., 2022;
Fahmy et al., 2022). The main concept is to measure the impact of
each feature on the model’s final output, providing a comprehensive
understanding of the ‘black box model’ from both a global and
local perspective (Lundberg and Lee, 2017). The SHAP value
provides an accurate representation of the positive and negative
impact that each predictor has on the target variable (Lundberg
and Lee, 2017). Lime is an advanced algorithm that can generate
interpretablemodels for any classifier or regressor, enabling accurate
interpretation of predicted results through local approximation.This
is accomplished by training a local substitution model to provide a
detailed interpretation of a single instance (Peng andMenzies, 2021).
Lime can provide a comprehensive understanding of the impact of
various characteristic variables on the predictive model. This can
help to ensure that the model is accurate and reliable.

Result

Patient characteristics

The study involved a total of 4,056 elderly patients diagnosed
with sepsis, out of which 1,259 patients passed away within 28 days.
These patients were randomly assigned to either the training set
(2,865 patients) or the validation set (1,191 patients) in a 7:3 ratio.
Table 1 presents a detailed comparison of the baseline characteristics
between the group that passed away within 28 days and the non-
death group in the training set. During the study, we employed
a recursive feature elimination algorithm to determine the eight
most closely related variables to short-term mortality risk. These
variables, listed in order of importance, are Bicarbonate, GCS,
Lactate, Platelets, PaO2/FiO2, SBP, Sodium, and upon analyzing
Table 1, it becomes evident that these eight core indicators are
statistically significant when comparing the fatal and non-fatal
groups in the training set. The study examined the correlation
between eight core indicators and the risk of death in elderly patients
with sepsis, utilizing restricted cubic spline analysis. The findings
suggest a significant non-linear correlation between these metrics
and the risk of death in elderly patients with sepsis (p-non-linear
<0.001). For further details, please refer to Figure 1.

Model performance and interpretation

Six distinctive machine-learning models were constructed on
the training dataset, such as logistic regression, neural network,
support vector machine, multilayer perceptron, Naive Bayes, and
extreme gradient boosting. Table 2, Table 3, and Figures 2A, B
present the key metrics of these models on the validation dataset,
including sensitivity, specificity, positive predictive value, negative
predictive value, recall, F1 score, AUC value, and precision. Based
on a comprehensive trade-off comparison, the extreme gradient
boosting model demonstrated the optimal prediction performance,
achieving an AUC value of 0.88 (0.86.0.90) and a high accuracy rate
of 0.84 (0.81.0.86). To investigate the performance and calibration
capability of the Extreme Gradient Boosting machine learning

model, the DCA curve and calibration curve were plotted for the
training and test sets, respectively. In clinical contexts, the term ‘net
benefit’ refers to the probability of a patient’s disease occurring being
minimized when further medical intervention is deemed necessary
(Lee et al., 2021). Figures 2C, 3D display three lines: orange, black,
and blue. The orange line represents the net benefit of no treatment
for all individuals, which is naturally zero. The black line represents
the net benefit of treating all individuals, which decreases as the
threshold probability increases.The graph displays the change in net
benefit of our decision model at different threshold probabilities. If
the blue line closely follows the orange and black reference lines,
it may suggest that the model has limited practical application
value. However, if the blue line consistently exceeds the reference
lines across a wide range of threshold intervals, it may demonstrate
that the model has a higher net benefit. The ML prediction model
constructed demonstrated good net gains in both the training set
and the validation set, as shown in Figures 2C, D. The calibration
curve illustrates the model’s predicted probability compared to the
actual observation probability in the data (refer to Figures 2E, F).
The results indicate that the machine learning model developed in
this study exhibits exceptional calibration ability.

Figure 3A illustrates the global feature importance mapping
generated by inputting the SHAP value matrix into the bar graph
function. The plot represents the average absolute value of each
feature’s global importance across all samples, while the feature’s
criticality in themodel is visualized on the Y-axis. Figure 3B presents
each patient as a point, with their X-axis coordinates corresponding
to the predicted value given by the prediction model. The colors
of the dots are changed to represent the values that are predicted
by the model. For example, it is worth noting that the Glasgow
Coma Scale (GCS) has a significant impact on predicting outcomes.
As the GCS value increases, so does the mortality rate. This effect
is determined by the level of the feature and is visualized by
the yellow and purple dots on the graph. Yellow dots represent
high GCS values on the positive side of the X-axis, while purple
dots represent low GCS values on the negative side of the X-
axis. The model indicated a negative correlation with Platelets,
PaO2/FiO2, SBP, and Sodium. Notably, PaO2/FiO2 exhibited
a bimodal distribution, reflecting the differential contributions
of distinct patient subgroups, whereas other variables, such
as lactate and platelet count, displayed unimodal distributions.
This visualization elucidates the relative importance of each
biomarker in predicting mortality risk, highlighting potential
threshold effects (e.g., the PaO2/FiO2 threshold for delineating
the severity of hypoxemia) and underscoring the complexity of
oxygenation indices in sepsis prognosis. Such analysis enhances
the interpretability of machine learning models and informs the
development of precision medicine strategies tailored to the specific
physiological characteristics of individual patients.

Figures 3C, D display the personalized trait attribution analysis
for two randomly selected patients. The mean effect value, Ef(x),
across all sample data is 0.311. Each characteristic variable’s
contribution is visualized as an arrow, with its direction indicating
its effect on the probability of the outcome - either decreasing
the likelihood of a negative outcome or increasing the chance
of a positive outcome. To distinguish between positive (purple)
and negative (yellow) effects, they are color-coded. The diagram
presents the arrows in an order based on their magnitude of
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TABLE 1 Baseline characteristics of the training set.

Variables Total Survival within 28 days Death within 28 days p

Number (sample size) 2865 1975 890

Sex, n (%) 0.204

Female 1316 (46) 891 (45) 425 (48)

Male 1549 (54) 1084 (55) 465 (52)

Ethnicity, n (%) <0.001

Black 259 (9) 183 (9) 76 (9)

White 2041 (71) 1445 (73) 596 (67)

Others 565 (20) 347 (18) 218 (24)

Age, Median (Q1, Q3) 77 (71, 85) 77 (71, 84) 78 (72, 85) 0.006

BMI (kg/m2), Median (Q1,Q3) 27.02 (24.16, 31.25) 27.16 (24.35, 31.57) 26.7 (23.68, 30.75) 0.003

Weight (kg), Median (Q1, Q3) 75.5 (63, 90.6) 76.1 (63.5, 91) 73.75 (62.12, 89.57) 0.019

Height (cm), Median (Q1, Q3) 168 (162.69, 173.18) 168.07 (163, 173.61) 166.75 (160.57, 173) <0.001

SBP (mmHg), Median (Q1,Q3) 150 (135, 167) 153 (138, 169) 143 (130, 160) <0.001

PaO2/FiO2, Median (Q1,Q3) 340.84 (283.33, 419.05) 359.15 (293.33, 422.79) 293.33 (283.33, 379.46) <0.001

GCS, Median (Q1, Q3) 1 (1, 3) 1 (1, 2) 2 (1, 4) <0.001

Heart failure, n (%) 1255 (44) 857 (43) 398 (45) 0.534

Respiratory failure, n (%) 1419 (50) 847 (43) 572 (64) <0.001

Hypertension, n (%) 1110 (39) 808 (41) 302 (34) <0.001

AMI, n (%) 431 (15) 288 (15) 143 (16) 0.331

Atrial fibrillation, n (%) 1341 (47) 910 (46) 431 (48) 0.26

AKI, n (%) 1976 (69) 1308 (66) 668 (75) <0.001

Diabetes, n (%) 1188 (41) 816 (41) 372 (42) 0.841

RBC (m/uL), Median (Q1,Q3) 3.71 (3.3, 4.15) 3.75 (3.33, 4.16) 3.62 (3.23, 4.11) <0.001

Lactate (mmol/L), Median (Q1,Q3) 2.8 (1.9, 4.8) 2.4 (1.7, 3.7) 4.4 (2.6, 8.5) <0.001

WBC (K/uL), Median (Q1,Q3) 18.8 (13.4, 26.1) 18.1 (13.15, 25.1) 20.2 (14.62, 29) <0.001

Sodium (mEq/L), Median (Q1,Q3) 144 (141, 148) 144 (141, 148) 143 (139, 148) <0.001

Platelets (K/uL), Median (Q1,Q3) 273 (186, 386) 296 (205, 415) 230 (144, 318) <0.001

Total_Calcium (mg/dL), Median (Q1, Q3) 8.8 (8.4, 9.3) 8.9 (8.4, 9.3) 8.8 (8.2, 9.4) <0.001

Hemoglobin (g/L), Median (Q1,Q3) 11 (9.8, 12.3) 11.1 (9.8, 12.3) 10.8 (9.6, 12.2) 0.01

RDW (%), Median (Q1,Q3) 16.8 (15.1, 19.1) 16.6 (15, 18.8) 17.4 (15.62, 19.7) <0.001

ALT (IU/L, Median (Q1,Q3) 49 (22, 136) 46 (22, 117.5) 56 (23, 252.75) <0.001

Lymphocytes (%), Median (Q1,Q3) 11.1 (7, 16.6) 11.7 (7.5, 17) 10 (6, 15.2) <0.001

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristics of the training set.

Variables Total Survival within 28 days Death within 28 days p

ALP (IU/L), Median (Q1,Q3) 131 (85, 215) 130 (84, 213.5) 135.73 (86, 220.75) 0.188

Potassium (mEq/L), Median (Q1,Q3) 4.9 (4.4, 5.5) 4.8 (84, 213.5) 5.1 (4.6, 5.8) <0.001

Neutrophils (%), Median (Q1,Q3) 86 (80.4, 90.5) 86 (81, 90.5) 86.17 (79, 90.5) 0.054

INR, Median (Q1,Q3) 1.7 (1.4, 2.7) 1.6 (1.3, 2.4) 2 (1.5, 3.1) <0.001

HCT (%), Median (Q1,Q3) 34.2 (30.8, 38.1) 34.3 (30.9, 38) 33.9 (30.5, 38.3) 0.278

Chloride (mEq/L), Median (Q1,Q3) 110 (106, 114) 110 (106, 114) 109 (104, 114) <0.001

BUN (mg/dL), Median (Q1,Q3) 45 (28, 72) 41 (26, 65) 56.5 (36, 83) <0.001

Albumin (g/dL), Median (Q1,Q3) 2.9 (2.6, 3.2) 2.9 (2.68, 3.2) 2.8 (2.4, 3.2) <0.001

Glucose (mg/dL), Median (Q1, Q3) 191 (148, 266) 186 (144.5, 258.5) 204.5 (158, 282.75) <0.001

Scr (mg/dL), Median (Q1,Q3) 1.9 (1.2, 3.2) 1.6 (1.1, 2.7) 2.6 (1.6, 3.9) <0.001

TBIL (mg/dL), Median (Q1,Q3) 1.03 (0.53, 2.3) 1 (0.5, 2) 1.3 (0.6, 3.2) <0.001

PT (S), Median (Q1,Q3) 18.4 (15, 28.7) 17.2 (14.5, 25.5) 21.45 (16.5, 32.3) <0.001

Monocytes (%), Median (Q1,Q3) 6.72 (4.6, 9.1) 7 (4.7, 9.31) 6.1 (4, 8.8) <0.001

Bicarbonate (mEq/L), Median (Q1,Q3) 28 (25, 32) 29 (26, 32) 25 (20, 29) <0.001

PTT (S), Median (Q1,Q3) 45.2 (34, 92.2) 41.7 (33.1, 85.52) 55.25 (37.5, 106.72) <0.001

Basophils (%), Median (Q1,Q3) 0.3 (0.1, 0.5) 0.3 (0.2, 0.5) 0.2 (0, 0.4) <0.001

MCV (%), Median (Q1,Q3) 96 (91, 101) 95 (91, 100) 97 (92, 102) <0.001

AG (mEq/L), Median (Q1,Q3) 19 (16, 23) 18 (16, 21) 21 (18, 26) <0.001

pH value, Median (Q1, Q3) 7.37 (7.3, 7.42) 7.37 (7.31, 7.42) 7.35 (7.27, 7.42) <0.001

SOFA, Median (Q1, Q3) 8 (5, 11) 7 (5, 10) 11 (8, 13) <0.001

BMI: body mass index; SBP: systolic blood pressure; GCS: glasgow coma scale; AMI: acute myocardial infarction; AKI: acute kidney injury; RBC: red blood cell; WBC: white blood cell; RDW:
red blood cell distribution width; ALT: alanine aminotransferase; ALP: alkaline phosphatase; INR: international normalized ratio; HCT: hematocrit; BUN: blood urea nitrogen; Scr: Serum
creatinine; TBIL: total bilirubin; PT: prothrombin time; PTT: partial thromboplastin time; MCV: mean corpuscular volume; AG: anion gap.

influence on the results. The length of each arrow accurately
reflects the strength of influence of each feature, proportional to
the SHAP value of the corresponding feature. Figure 3C presents
the characteristic attributions of a patient who unfortunately passed
away. In contrast, Figure 3D shows the characteristic attributions
of a patient who successfully recovered. The identified high-risk
factors that increased the risk of mortality were high lactate levels,
low PaO2/FiO2, high centrocytes, low platelet count, and low
bicarbonate. Although a low PaO2/FiO2 ratio is still considered a
risk factor for mortality, it is important to note that this patient’s
high bicarbonate levels, low GCS, and high platelet count were
found to significantly reduce the risk of death. This comparative
analysis highlights the complex interplay of various factors in risk
assessment.

To further elaborate on our constructed models, we have also
employed lime, an interpretable tool commonly used in the field of

machine learning (Peng and Menzies, 2021). Figure 4 demonstrates
how physicians can improve their decision-making process with the
assistance of the model, provided that clear and comprehensible
explanations are given. The blue color in the figure represents
features that contribute to the predicted outcome, while the red
color indicates features that detract from it. The graph illustrates
the weight assigned to supporting (blue) or not supporting (red)
on the horizontal axis, while the importance of features is ranked
on the vertical axis. In the case of the patient who survived, it
can be concluded that bicarbonate in the range of 28–32 and
lactate in the range of 1.9–2.8 are supportive, as well as a blood
pressure between 150–167. The prediction accuracy for this case is
high at 0.89, which demonstrates the excellent performance of our
prediction model.

Figure 5 presents a global analysis of 2,500 randomly
selected patients, demonstrating the range of features and their
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FIGURE 1
Non-linear relationships among eight screened variables and the risk of death from sepsis in elderly patients.

TABLE 2 Predictive power of eight machine learning models.

CLS Sensitivity Specificity Pos pred value Neg pred value

XGBoost 0.64 (0.59.0.69) 0.93 (0.91.0.94) 0.80 (0.75.0.84) 0.85 (0.83.0.87)

Neural Network 0.62 (0.57.0.67) 0.93 (0.91.0.94) 0.79 (0.74.0.84) 0.84 (0.82.0.87)

SVM 0.62 (0.57.0.67) 0.91 (0.89.0.93) 0.76 (0.71.0.81) 0.84 (0.82.0.87)

Naive Bayes 0.80 (0.76.0.84) 0.71 (0.68.0.74) 0.55 (0.51.0.60) 0.89 (0.86.0.91)

Multilayer Perceptron 0.61 (0.56.0.66) 0.92 (0.89.0.93) 0.76 (0.71.0.81) 0.84 (0.81.0.86)

Logistic Regression 0.59 (0.54.0.64) 0.92 (0.89.0.93) 0.76 (0.71.0.81) 0.83 (0.81.0.86)

TABLE 3 Predictive power of eight machine learning models.

CLS F1 score Recall AUC(95%CI) Accuracy

XGBoost 0.71 0.64 0.88 (0.86.0.90) 0.84 (0.81.0.86)

Neural Network 0.70 0.62 0.86 (0.83.0.88) 0.83 (0.81.0.85)

SVM 0.69 0.62 0.85 (0.82.0.87) 0.82 (0.80.0.84)

Naive Bayes 0.65 0.80 0.84 (0.82.0.87) 0.74 (0.71.0.76)

Multilayer Perceptron 0.68 0.61 0.83 (0.80.0.86) 0.82 (0.80.0.84)

Logistic Regression 0.66 0.59 0.82 (0.79.0.84) 0.82 (0.79.0.84)

CLS, classifiers; AUC, area under the curve; CI, confidence interval; SVM, support vector machine; XGBoost: Extreme Gradient Boosting.
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FIGURE 2
(A) pertains to the training set, while (B) pertains to the validation set. (A, B) display the ROC curves of eight machine learning models used to predict
the risk of death in elderly patients with sepsis. Additionally, (C, D) show the DCA curves of the XGBboost machine learning model used to predict the
risk of death in elderly sepsis patients. (C) represents the training set, while (D) represents the validation set. Figures (E, F) display the calibration curves
of the XGBboost machine learning model that was used to predict the risk of death in elderly sepsis patients. Figure E pertains to the training set,
whereas Figure F pertains to the validation set.
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FIGURE 3
(A) displays the SHAP values for macro feature importance, while (B) presents a scatterplot of macro feature density. Each row of the plot represents a
feature, with the SHAP value as the horizontal coordinate. Features are ranked according to the average absolute value of SHAP, the most important
feature of the model. Wide areas indicate a large number of samples clustered together. The diagram employs a dot to represent a sample, with yellow
indicating a higher value of the feature and purple indicating a lower value. This generates a ranking graph of the feature’s significance. (C, D) show the
micro single-sample feature influence diagram.

corresponding weight assignments for these cases. The gradient
from red to blue in the figure shows the dynamic evolution of
the feature weights. The dark blue region indicates strong support
for the predicted outcome, while the increasingly reddish regions
suggest a gradual weakening of the support for the predicted
outcome. The construction of the prediction model involves
feature ranges represented by vertical coordinates. The shade
of their color directly maps the importance and influence of
the feature in the model. These feature range values may be

more suitable for clinicians to make decisions and may be more
easily understood.

Discussion

In this study, a machine learning model was developed and
validated to predict short-term mortality risk in elderly sepsis
patients. The model is designed to be highly interpretable and easy
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FIGURE 4
LIME interpretability-based prediction of mortality risk in patients with sepsis: analysis of key physiological indicator weights, supportive/contradictory
effects, and clinical decision value in Case1 and Case2.

to understand. This study analyzed 49 variables of elderly sepsis
patients in detail after hospital admission, including demographic
data, vital signs, and laboratory test indices. A feature recursive
elimination algorithm was used to accurately select the eight key
feature variables with the highest association with the risk of death
from a large number of feature variables for use in constructing
the model. The study suggests that the XGBoost algorithm may be
more effective than other machine learning algorithms in predicting
short-term death risk in elderly sepsis patients. XGBoost is known
for its efficiency, flexibility, and widespread use in data mining,
medicine, and other fields (Li J. et al., 2022; Hou et al., 2020).

In recent years, machine learning-based predictive models
have become increasingly prevalent. However, it is important to
acknowledge that these models can be difficult to interpret, often
resembling opaque ‘black boxes’ that hinder understanding of
the decision-making process, even for those who comprehend
the underlying mathematical algorithms (Fleuren et al., 2020;
Giannini et al., 2019). We aim to establish trust and encourage the
use of our machine-learning predictive models among physicians.
To achieve this, we utilized two advanced interpretable analysis
techniques, SHAP and lime, to provide a detailed analysis of
our XGBoost machine learning predictive model. Our analysis
systematically explored the associations between characteristic
variables and the risk of death from sepsis in the elderly. We
are confident that our approach will provide physicians with the
necessary information to make informed decisions (Azodi et al.,
2020). The lime interpretable analysis technique has the advantage
of representing the weighting of the predictive model accounted
for by the ranges of the characteristic variables. This approach is
clinically applicable and provides physicians with clear and intuitive
decision support.

Figure 5 displays the interpreter that was constructed after
screening 2,500 samples. This demonstrates the full range of feature
values and their corresponding feature importance weights in the
prediction. The figure displays negative values in red and positive
values in blue, with the shade of blue indicating the strength of
support for the conclusion. It is worth noting that the right side
of the graph represents cases where deaths occurred, while the
left side represents cases where no deaths occurred. According
to the graph, it can be observed that when bicarbonate levels
are 25 mEq/L or lower, there is a significant increase in the risk
of death for patients. This finding highlights the importance of
monitoring bicarbonate levels in patient care. Acid-base imbalances
are a common occurrence in critically ill patients, and it is important
to address them promptly and effectively (Achanti and Szerlip,
2023). According to a cohort study, there is an association between
low bicarbonate levels and increased mortality (Mitra et al., 2020).
According to the study, patients with a GCS score greater than
three were found to have an increased risk of death. It has been
previously suggested by research that hypotension accompanying an
abnormal GCS can be a crucial indicator for identifying patients at
high risk of sepsis infection (Lane et al., 2020). The study suggests
that a lactate value exceeding 4.8 mmol/L is a significant high-risk
factor for sepsis patients facing mortality risk. Furthermore, Liu and
Yang et al.'s study provides evidence of a strong association between
plasma lactate levels and poor prognosis and mortality prediction
in sepsis patients (Liu et al., 2019; Yang et al., 2022). In elderly
patients with sepsis, a PaO2/FiO2 ratio below 283 is a significant risk
indicator for life-threatening conditions. It is crucial to intervene
rapidly when the ratio decreases to prevent patient mortality,
as confirmed by previous studies (Annane et al., 2017). Platelet
count is a critical factor in thrombosis, and thrombocytopenia is
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FIGURE 5
LIME-based interpretable predictive analysis of sepsis death: visualization of dual-category (survival/death) key physiological indicators with
multi-interval weight distribution and positive and negative contribution.

a prevalent condition in sepsis patients. Therefore, platelet count
serves as a crucial indicator for assessing sepsis severity (Iba and
Levy, 2018; Lyons et al., 2018).

There are, of course, limitations to this study. The data used in
this study were obtained from publicly available databases, which
may not include all the necessary variables. Moreover, the study
sample is predominantly fromWestern countries, whichmay restrict
the applicability of our model to other ethnic groups. Additionally,
the retrospective and observational nature of this study may be
susceptible to selection bias. We are confident that the model
developed in this study can accurately predict the short-term risk
of mortality in elderly patients with sepsis.

Conclusion

Wehave developed anXGBoostmodel that is easy to understand
and accurately predicts the risk of death in elderly sepsis patients.
Our interpretable machine learning tools have helped to identify
the risk factors for elderly patients with sepsis, which has increased
the confidence of healthcare providers in the predictions. The
model’s variable influence ranges and weight assignments are
easily understandable, which makes it more practical for clinical
applications.This provides physicians with a clear and intuitive basis
for decision support. It is worth noting that this feature enhances the
model’s credibility and reliability.
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