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Introduction: The effect of micro-gravity on the lumbar and in particular
thoracic regions is poorly understood. The aim of this study was to evaluate
spinal curvature across the lumbar and thoracic region, and extensor muscle
activity during acutemicro-gravity and hyper-gravity induced by parabolic flight.
In addition, the association between our proxy measure of spinal curvature, and
extensor muscle activity in micro-gravity was investigated.

Methods: During two ESA parabolic flight campaigns, 18 participants (8 female;
33 ± 11 years) were measured under earth-gravity, micro-gravity and hyper-
gravity conditions. Spinal curvature was assessed using “spinal curvature
backpacks” equipped with 15 laser distance sensors to measure the distance
between the backpack and the subject’s back. Change in the area enclosed
between the back and the backpack was used to measure change in spinal
curvature. Muscle activity of the erector spinae (in 4 locations) and multifidus
muscles (1 location) was assessed using surface electromyography transmitters.
In addition, the spearmen correlation between muscle activity and spinal
curvature in micro-gravity was investigated.

Results: Spinal flattening was observed during micro-gravity exposure, with
changesmost pronounced in the upper lumbar and lower thoracic spine. Mean-
normalized area between the back and backpack decreased significantly in
micro-gravity compared to earth-gravity (p = 0.001), but not during hyper-
gravity (p = 1.00). The erector spinae responded heterogeneously to different
gravity conditions across different assessment sites. Multifidus activity at L5 and
erector spinae activity at L4 significantly decreased in micro-gravity compared
to earth-gravity and hyper-gravity (p’s < = 0.01) and correlated with spinal
flattening (ρ = 0.69, p = 0.004; ρ = 0.67, p = 0.030).

Discussion/Conclusion: Parabolic flight-induced gravity changes caused
upper lumbar and lower thoracic spine flattening in micro-g, while spinal
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curvature remained unchanged in hyper-g. In micro-g, Multifidus (L5) and
Erector Spinae (L4) activity decreased, while in hyper-g, increased ES activity
was observed at the upper middle transmitter. The maintained curvature and
targeted muscle activation in hyper-g demonstrate protective mechanisms
against increased axial loading, crucial for posture and injury prevention in both
terrestrial and space environments. The spinal andmuscular changes in micro-g
indicate the need for targeted countermeasures during spaceflight, warranting
comprehensive assessment in future research.

Ethics: French “EST-III” (Nr-ID-RCB: 2022-A01696-37).
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1 Introduction

The human spine is designed to withstand the force of Earth’s
gravity (earth-g), playing a crucial role in supporting the head, neck,
and torso when upright. This is evidenced by the spine’s normal
curvature, which optimizes balance and minimizes strain. However,
the spine’s structure and function undergo notable changes during
a prolonged space mission, in the absence of earth-g (Green and
Scott, 2018). These changes, which include trunk muscle atrophy
and lumbar spine flattening (Young et al., 2011; Chang et al., 2016),
may adversely affect spinal functionality, potentially resulting in
issues such as lower back pain (Pool-Goudzwaard et al., 2015)
and increased risk of intervertebral disc (IVD) herniation post-
flight (Johnston et al., 2010).

In fact, astronauts are considered to be four times more likely
to suffer from disc herniation within the first-year post-mission
compared to control groups (Johnston et al., 2010). The flattening of
the spine in space is attributed to the absence of Earth’s gravitational
load. In micro-gravity (micro-g), the spine is no longer compressed
by this force, presumably leading to a relaxation of the muscles that
normally support it. As a consequence, the spine appears to elongate
and straighten, as evidenced by an 11% reduction in lumbar lordosis
(flattening of the lumbar curve) immediately after returning from a
long duration (approx. 6 months) ISS mission (Bailey et al., 2018).
Similarly flattened lower lumbar lordosis was reported following a
60-day bedrest, whereas the upper lumbar spine exhibited increased
lordotic curvature (Belavý et al., 2011).

In a study executed by our team, a reduction in lordosis,
along with reduced trunk muscle activity and an increase in
lumbar spinal stiffness, was observed even when the spine was
exposed only briefly (approx. 22s) to micro-g during parabolic
flight (Swanenburg et al., 2020). Studies on spinal curvature in
varying gravity conditions have produced conflicting results. Initial
findings suggested lumbar flattening during micro-g and hyper-
gravity (hyper-g) phases (Swanenburg et al., 2020), but a later study
failed to replicate these changes in hyper-g (Swanenburg et al.,
2023). This discrepancy revealed limitations in sensor precision and
coverage, indicating the need for more precise sensors and a larger
array of sensors along the spine.

Furthermore, very few studies have investigated the thoracic
or the transitional segments of the spine in response to
gravitational change (Andreoni et al., 2000; de Martino et al.,
2020; Somasundaram et al., 2021). This is unfortunate given that

the transition segment between the relatively immobile thoracic,
and the more flexible lumbar regions is known to be prone to
injury (Somasundaram et al., 2021). Moreover, dry immersion
(Treffel et al., 2017; Plehuna et al., 2022) and 8-hour hyper-bouyancy
floatation (Green and Scott, 2018) studies have also revealed
vertebral dysfunction and pain in the thoracolumbar region.
However, the origin of the pain and the structures involved remain
unknown. The concurrent measurement of extensor muscle activity
and spinal curvature will provide insights into the underlying
mechanisms as these muscles play a significant role in maintaining
spinal curvature and stability (Hodges and Moseley, 2003). Indeed,
changes in extensor activity may directly contribute to spinal
curvature modulation, back pain, and risk of IVD herniation.

As a result, a comprehensive analysis of spinal curvature,
including both the lumbar and thoracic regions, combined with an
enhanced array of sensors in these regions is warranted. In addition,
simultaneous measurement of extensor muscle activity at multiple
points along the vertebral column might significantly contribute to
our understanding of segmental spinal curvature adaptation. Such
knowledge may inform the development of strategies to ameliorate
in-flight back pain and attenuate post-flight disc herniation risk.

Therefore, the aim of this study is to evaluate spinal curvature
across the lumbar and thoracic region, and extensor muscle activity
during acute micro-g and hyper-g induced by parabolic flight. In
addition, we investigated the association between our proxymeasure
of spinal curvature and extensor muscle activity in micro-g.

2 Methods

2.1 Participants and parabolic flight

18 healthy participants (8 females; mean age 33 ± 11 years)
without low back pain participated in the parabolic flight study.
Three male participants were experienced participants in parabolic
flight missions. Participants completed the mandatory aviation
medical screening, during which neurological and musculoskeletal
disorders were ruled out (Ullrich and Buhler, 2019). Written
informed consent was obtained from all participants before the
study. Measurements were conducted during the European Space
Agency (ESA) 80th and 83rd parabolic flight campaign (PFC)
in Bordeaux, France. Both PFCs were operated by Novespace
(Bordeaux, France) on board the Airbus A310 ZERO-G. The French
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FIGURE 1
Measurement setup during PFC. Frontal and side view.

“Comité de protection des personnes EST-III” approved the study
(Nr-ID-RCB: 2022-A01696-37 21.07.2022).

2.2 Experimental design

Spinal curvature and muscle activity were assessed at three
gravitation levels (Gz): micro-g (μ-Gz), earth-g (1.0-Gz), and hyper-
g (approx. 1.8 Gz) induced by parabolic flight. Six flights were
conducted during the two PFCs, each consisting of 31 parabolas
(10/11 per participant). Each parabola beganwith horizontal flight at
earth-g, subsequently transitioning into a steep ascent that resulted
in hyper-g. The airplane then transitioned into micro-g as it pushed
over the top of the parabola. Subsequently, a second phase of hyper-g
followed during the return to level flight level. To mitigate potential
motion sickness, each participant received a personalized dosage
of scopolamine half an hour before the flight (Spinks and Wasiak,
2011; Ritzmann et al., 2016). To ensure participant safety, during
parabolic flights, tethers connected the participant harness to the
aircraft (Figure 1), preventing drifting in micro-g, or falling during
hyper-g phases (Swanenburg et al., 2018).

2.3 Measurement setup

2.3.1 Spinal curvature
Spinal curvature (combination of lumbar and thoracic) was

evaluated using an array of fifteen optical distance sensors Class
1 laser (OM20-P0120.HH.YIN, Baumer Electric AG, Frauenfeld,

Switzerland) affixed to two (long and short) aluminum back-plates
mounted with a full-body harness. The sensors are designed to
measure the distance to the participant’s skin with an accuracy of
± 0.05 mm and a repeatability of ± 0.01 mm. The small back-plate
was used on two flights (6 participants) and the long back-plate on
four flights (12 participants), depending on the trunk length of the
participants. In either case the uppermost sensor was aligned with
the height of cervical C7 with other sensors mounted 3 cm apart
on the short back-plate and 3.5 cm on the long back-plate. Skin
distances and acceleration were recorded continuously (effective
average sampling rate of 1.26 Hz) during flight and transmitted to
a laptop. In addition, the distance between the cervical C7 and the
line connecting the two spina iliaca posterior superior (SIPS) was
determined before the flight for each subject. These measurements
were used to remove data from sensors positioned below the SIPS
line from the analysis. The distance sensor array was powered by a
0.86 kg rechargeable battery (RS Pro NiMH Cs × 20 3200 mAh 24 V
Pack, RS Components GmbH, Wädenswil, Swizerland), which was
attached to a leg holster connected to the sensor array via a flexible
cable to negate any impact on back alignment.

2.3.2 Muscle activity
Muscle activity of the erector spinae (ES) and the multifidus

(MF) muscles were assessed with wireless surface electromyography
(EMG) transmitters (pico/aktos; Myon AG, Schwarzenberg,
Switzerland) equipped with integrated accelerometers (McGill et al.,
1996; Jiroumaru et al., 2014). Preparation of each subject was
in accordance with the Surface ElectroMyoGraphy for the
Non-Invasive Assessment of Muscles (SENIAM) guidelines
(Swanenburg et al., 2018).The pre-filtered EMG (2000 Hz, bandpass
10–500 Hz) and acceleration (148 Hz, bandpass 1–70 Hz) signals
were captured by five transmitters. To gain information on ES
activity across multiple sites, the first of four transmitters was
attached on the right side at the level of L4 (ES lower) and three
further transmitters (ES lower middle, ES upper middle, ES upper)
were placed successively above (Figure 2). MF activity was assessed
at the level of L5, with one transmitter placed on the left side.

2.4 Data preparation

All data was cleaned and aggreagted in MATLAB R2023a
(MathWorks, 2023). Distance, electrical muscle activity (EMG),
and acceleration data were recorded continuously during the
flight. The acceleration signals were used for time-synchronizing
distance and EMG data with continuous gravity recordings
provided by the flight operator (Novespace), which were used for
threshold-based segmentation into the different gravity phases as
described in Supplementary Material S1.

2.4.1 Spinal curvature
For the distance sensor array, the identified gravity segments

were cut to windows of 17 s (.25th quantile of durations), and the
mean distance was calculated within each window. In cases where
female participants’ bra elastics interfered with a distance sensor, the
mean value of the upper and lower adjacent sensors was used. The
recordings of the upper most sensor was omitted due to intermittent
data loss. Due to a temporary disruption of the recording system,

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1549249
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Meinke et al. 10.3389/fphys.2025.1549249

FIGURE 2
EMG transmitter placement.

data from two participants, loosing data from ten respectively three
parabolas. Furthermore, one participant was affected by motion
sickness for two parabolas, and thus, this data was discarded. In one
participant, the posture moved in and out of the recording range
for some of the sensors during the flight. Where this resulted in
missing values for an entire gravity segment (per parabola), the
affected sensors’ values were set to the sensors’ recording limits
(16 mm min for sensors 8–10, 120 mm max for sensor 2).

The overall area captured between the backpack and the back was
calculated as a proxy measure for spinal curvature. For comparison
between gravity conditions, the data were normalized to the mean of
all recordings for each participant to offset differences between the
trunk heights of the participants. To correlate spinal curvature area
and muscle activity during micro-g, the area was normalized to the
area calculated for the participant in earth-g. The impact of repeated
parabolas on spinal curvature was evaluated by comparing mean-
normalized area (averaged across all gravity conditions) between the
first, the last, and the average of all intermediate parabolas.

Greenhouse Geisser adjusted repeated measures ANOVA
showed no significant difference between the parabolas (F (1.14,
15.98) = 0.15, p = 0.733).Therefore, data from all available parabolas
was retained for further analysis.

In addition to area, we assessed spinal curvature via the angle
formed between three adjacent sensors (inter-sensor angle). Inter-
sensor angles of 180° indicate no curvature at that location, whereas
angles <180° describe local lordosis, and angles >180° kyphosis.

2.4.2 Muscle activity
ES and MF EMG records were time-synchronized with

acceleration data provided by the flight operator by using the
acceleration data recorded from the EMG transmitters.The resultant
data was filtered using a second-order Butterworth filter with 10 and
500 Hz cutoff frequencies and rectified.

Following initial segmentation (Supplementary Material S1), all
data segments were cut to the duration of the shortest recorded
segment (14.86 s). Data segments that were affected by motion
sickness were removed. Three times an EMG transmitter detached,
resulting in data loss for all parabolas during those instances. In five
cases, an EMG transmitter detached during recording, but sufficient
data from multiple parabolas was retained for analysis.

EMG root mean square was calculated for each segment. To
determine validity, muscle activity was compared between the
averaged segments of the first, the last and the mean of all other
parabolas. Outliers [beyond 3∗inter quartile range from the first
and third quartile (Kassambara, 2023)] were detected and the
data was not normally distributed (Shapiro-Wilk Test). Therefore,
robust repeated measures ANOVA (Mair and Wilcox, 2020) was
used. There was a significant difference between parabolas for ES
transmitters 1, 3 and 4, and the MF transmitter. Based on these
results, data from the first parabola was removed from the analysis
of the EMG data (Supplementary Material S2).

EMG data for each transmitter was normalized to the mean
value of all segments of each participant across all gravity conditions.
Thus, values of 100% reflect the average EMG activity on the
corresponding sensor for a person, independently of the assessed
gravity condition. For correlation (with spinal curvature data in
micro-g), EMG data was normalized to the mean of the earth-g
conditions of each participant.

2.5 Data analysis

Data was analyzed in R (R Core Team, 2023) with statistics
calculated using the R package rstatix (Kassambara, 2023).
Following confirmation of normality using Shapiro-Wilk tests
and testing for the presence of extreme outliers (beyond 3∗inter
quartile range from the first and third quartile (Kassambara, 2023))
within each gravity condition, one-way repeated measures ANOVA
was used to compare mean-normalized area between the gravity
conditions with Post-hoc Bonferroni-corrected pairwise t-tests.
Post hoc power analysis was performed for the post hoc comparisons
using G∗Power (Faul et al., 2007) Version 3.1.9.7.

ES EMG activity was compared between gravity conditions
separately for each EMG sensor by using Friedman tests with
Bonferroni correction. Post-hoc comparisons were performed (if
indicated) via Bonferroni-corrected Wilcox signed-rank tests. MF
activity was compared across gravity conditions by using Friedman
test and Wilcox signed-rank testing after the assumption of
normality was rejected for the earth-g condition.

In addition, the association between muscle activity and spinal
curvature was investigated for the transition to micro-g with all data
normalized to earth-g. Spearman (ρ)was used, as Shapiro-Wilk tests
indicated that the data was not normally distributed.

3 Results

3.1 Spinal curvature

There was a significant (F (1.19, 19.02) = 22.45, p < 0.001)
effect of gravity level on the mean-normalized area (earth g: M
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FIGURE 3
(A) Mean distance from backplate under different gravity conditions per sensor. (B) Mean deviation from earth-g during hyper-g and micro-g per
sensor. Error bars show standard deviations. (C) Mean angles between adjacent sensors. Angles of 180° indicate no curvature. Smaller angles indicate a
lordotic, larger angles a kyphotic alignment.

= 101.9, SD = 1.9; hyper-g: M = 102.4, SD = 2.2; micro-g: M
= 95.7, SD = 3.6). Post-hoc tests showed no difference between
earth-g and hyper-g (t (16) = −0.94, p = 1.00). However, the
mean-normalized area was significantly smaller in micro-g vs. both
earth-g (t (16) = 4.84, p = 0.001) and hyper-g (t (16) = 4.91, p
= 0.001) indicative of spinal flattening. Post-hoc power analysis
indicated sufficient power for detecting differences between micro-
g and earth-g (97%) and micro-g and hyper-g (98%), but not for
differences between earth-g and hyper-g (8%) in mean-normalized
area. Inspection of the sensor data revealed that the area reduction
occurred between the 7th and 12th sensor (Figures 3A,B). Spinal
curvature described by inter-sensor angle (Figure 3C), suggested a
“flattened” lordotic angle (closer 180°), at sensor 11 (earth-g: M =
175.0°, SD = 3.2°; micro-g: M = 178.4°, SD = 3.8°) and sensor 12
(earth-g: M = 170.7°, SD = 5.3°; micro-g: M = 175.7°, SD = 4.0°)
during micro-g.

3.2 Muscle activity

3.2.1 Erector spinae activity
The gravity level significantly affected ES muscle activity at the

lower ES transmitter (L4) and upper middle, but not lower middle
and upper (Tables 1, 2). Post-hoc tests indicate that lower ES muscle
activity was significantly reduced in micro-g vs. earth-g and hyper-
g (Table 3; Figure 4D). In contrast, the upper middle ES transmitter
muscle activity was significantly higher in hyper-g, compared to the
other conditions (Table 3; Figure 4B).

3.2.2 Multifidus activity
A significant effect of gravity level on MF muscle activity was

observed at L5 (χ2 (2) = 12.4, p = 0.002). Post-hoc tests showed
no significant difference between earth-g and hyper-g (W = 39, p
= 0.756). However, MF activity was significantly lower in micro-g
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TABLE 1 Means and standard deviations of mean normalized muscle activity for different gravity segments.

Assessment Participants Earth-g Hyper-g Micro-g

n Mc ± SDd M ± SD M ± SD

gravity [m/s2] 16 1.00 ± 0.01 1.79 ± 0.01 −0.00 ± 0.00

ESa upper [%] 16 92.19 ± 18.71 119.16 ± 26.06 88.64 ± 31.28

ES upper middle [%] 16 96.63 ± 15.11 124.60 ± 23.70 78.77 ± 25.26

ES lower middle [%] 16 103.26 ± 15.66 120.81 ± 23.16 75.93 ± 25.83

ES lower [%] 14 111.64 ± 14.87 117.52 ± 22.11 70.84 ± 18.63

MFb [%] 15 113.34 ± 14.57 122.53 ± 24.32 64.14 ± 30.46

Note.a Erector Spinae;b Multifidus;c Mean;d Standard Deviation.

TABLE 2 Comparison in mean normalized Erector Spinae activity [%]
between gravity conditions for different sensors.

Transmitter position n χ2 df p-valuea

ES upper 16 6.50 2 0.155

ES upper middle 16 11.38 2 0.014

ES lower middle 16 8.00 2 0.073

ES lower 14 15.43 2 0.002

Note.a p-values are Bonferroni corrected.

TABLE 3 Post-hoc comparison of mean normalized Erector Spinae
activity [%] between gravity conditions.

Transmitter position Comparison W p-valuea

ES upper middle earth-g vs.hyper-g 11 0.005

ES upper middle earth-g vs. micro-g 106 0.152

ES upper middle hyper-g vs. micro-g 125 0.005

ES lower earth-g vs. hyper-g 44 1

ES lower earth-g vs. micro-g 104 < .001

ES lower hyper-g vs. micro-g 103 0.001

Note.a p-values are Bonferroni corrected.

compared to both earth-g (W = 114, p = 0.003) and hyper-g (W =
112, p = 0.005) (Figure 5).

3.3 Association between spinal curvature
and muscle activity during micro-g

There was a positive association between earth-normalized
muscle activity and earth-normalized area at the lower ES (L4) level

during micro-g, but not for the other 3 ES transmitters. There was
also a positive association between earth-normalized area and MF
(L5) muscle activity (Table 4).

4 Discussion

The study’s main findings were that even acute exposure to
micro-g significantly modulated spinal curvature with flattening of
the upper lumbar and lower thoracic spine. Spinal flattening was
evident both as cumulative area, and inter-sensor angle derived
from a novel optical distance sensor array. Multifidus (MF) activity
at L5 and Erector Spinae (ES) activity at L4 were also reduced
in micro-g, but no other muscle activity changes were observed.
Increased ES activity was observed at the upper middle transmitter
during hypergravity. Significant positive correlations were observed
between spinal flattening in micro-g and both MF activity at L5, and
lower ES activity (L4).

4.1 Spinal curvature

4.1.1 Micro-g
The cumulative area, and inter-sensor angle measurements

based on a novel optical distance array revealed rapid and reversible
spinal flattening in response to micro-g induced during parabolic
flight. Previous research has reported flattening of the spinal lumbar
lordosis following post-long-duration space missions (Bailey et al.,
2018). While our study measured immediate spinal adaptations
in standing position during parabolic flights, Bailey et al. (2018)
observed similar patterns of lumbar flattening after long-duration
spaceflight using supine MRI positioning, a posture that naturally
induces some spinal flattening, with post-mission measurements
showing even greater flattening compared to pre-mission baseline,
suggesting these adaptations represent fundamental physiological
responses to microgravity that manifest immediately and persist
or potentially worsen regardless of measurement position or
exposure duration. However, the time course, and mechanisms
underlying lumbar flattening are unknown (Green and Scott,
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FIGURE 4
Comparison of mean normalized erector spinae activity at different
transmitter positions between gravity conditions. (A) Erector spinae
activity at the upper transmitter, (B) Erector spinae activity at the upper
middle transmitter, (C) Erector spinae activity at the lower middle
transmitter, (D) Erector spinae activity at the lower transmitter. ∗∗p <
.01;∗ ∗ ∗p < .001

FIGURE 5
Comparison of mean normalized multifidus activity between different
gravity conditions. ∗∗p < .01;∗ ∗ ∗p < .001

TABLE 4 Correlation between area measures and muscle activity
normalized to earth-g.

Muscle, transmitter nc ρd p-valuee

ESa upper [%] 15 0.25 0.750

ES upper middle [%] 15 0.51 0.105

ES lower middle [%] 15 0.39 0.313

ES lower [%] 13 0.67 0.030

MFb [%] 14 0.69 0.004

Note.a ES = Erector Spinae;b MF = Multifidus;c complete cases;d Spearman correlation
coefficient;e p-values of the Erector Spinae assessments are Bonferroni corrected.

2018). Spinal tissue, including ligaments and IVDs are reported
to deteriorate in-flight, with a range of IVD pathologies reported
with in-flight ultrasound (Garcia et al., 2018). Such changes
may contribute to reported post-flight spinal issues such as
IVD prolapse (Johnston et al., 2010).

The optical sensor array identified the upper lumbar and
lower thoracic spine as areas that account for the majority of
micro-g induced flattening. This contrasts with the hypothesis that
the lower lumbar spine is the most affected by micro-g as it
typically bears the highest (cumulative) load (Belavý et al., 2011).
However, our findings may explain why approx. 60% of all spinal
injuries in astronauts found in post-flight MRI occur in the upper
lumbar spine (Bailey et al., 2022).

The curvature flattening we report is rapidly induced but
appears consistent with changes in lumbar geometry and kinematics
observed post-flight (Bailey et al., 2022) and in 4 hours of lying
on a ground-based analogue of micro-g; hyper-buoyancy floatation
(HBF) (Breen et al., 2023). It may also be consistent with, or
even a factor in the generation of complex vertebral stiffness
changes reported in PFCs (Swanenburg et al., 2020) and 4 hours
of HBF unloading (Marcos-Lorenzo et al., 2024) across the spine.
Interestingly, in the latter study, reloading did not reverse micro-g
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changes, suggesting that unloadingmay generate persistent vertebral
vulnerability.

4.1.2 Hyper-g
Hyper-g spinal curvature measures were observed to not

differ from earth-g. Interestingly, our earlier studies using
two ultrasonic distance sensors yielded contradictory spinal
curvature changes during hyper-g conditions (Swanenburg et al.,
2020; Swanenburg et al., 2023). As a result, we evaluated
this disparity by employing a bespoke array of 15 optical
instead two less accurate ultrasonic distance sensors
(Swanenburg et al., 2020; Swanenburg et al., 2023). Thus, we believe
that the changes previously reported may be artefactual.

Whilst 1.8 g did not induce significant spinal curvature
modifications compared to 1 g, the data suggests it rapidly
‘corrects’ micro-g-induced spinal changes. Interestingly, whilst
spinal curvature is restored - there are notable changes in spinal
motor activity during hyper-g.

4.2 Muscle activity

4.2.1 Erector spinae
Our multi-transmitter EMG analysis revealed differential ES

muscle responses along the spinal axis. During micro-g conditions,
a significant reduction in muscle activity was observed at the
lower ES transmitter (L4), while earth-g and hyper-g conditions
demonstrated similar muscle activation patterns. Conversely, the
upper middle ES muscle exhibited increased activity during hyper-
g exposure, significantly greater than both earth-g and micro-
g conditions. Bedrest studies have reported that ES and MF
muscle atrophy exhibits significant inter-muscular and segmental
variations (Belavý et al., 2011). Similarly, post-flight investigations
suggest that MF muscle atrophy is particularly pronounced in
the lower lumbar region, highlighting the need for a nuanced
segment-specific approach when evaluating spinal muscle responses
(Bailey et al., 2022; Hides et al., 2021). During earth-g and hyper-
g conditions, the lower lumbar muscular segments actively engage
to stabilize the body’s upright posture. Notably, hyper-g conditions
revealed additional paraspinal muscular activation in the upper
lumbar and lower thoracic spine, starkly contrasting with the
muscular inactivation observed in the lower spinal region during
micro-g exposure. These differential activation patterns suggest that
muscular stabilization mechanisms during hyper-g are robust and
maintain spinal structural integrity without inducing significant
curvature alterations.

4.2.2 Multifidus
In our study, activation of the MF at L5 decreased in micro-

g but did not differ in response to hyper-g compared to 1 g. This
pattern is similar to that which we observed for the ES muscle at L4.
A reduction of MF activity in micro-g is consistent with research
that has demonstrated MF muscle atrophy following unloading
induced by bed-rest (Belavý et al., 2011) and spaceflight (Bailey et al.,
2022; Hides et al., 2021). However, in a previous parabolic flight
experiment, no significant differences in MF activity were observed
in response to various levels of hypogravity (de Martino et al.,
2020). Yet, response to trunk perturbations was attenuated - with

attenuation increasing as g levels reduced (de Martino et al., 2020).
Such changes may underpin the associations reported between
MF atrophy and low back pain in bed rest (Belavý et al., 2011;
Ranger et al., 2017), and inter-vertebral disc herniation post
spaceflight (Bailey et al., 2022).

4.3 Interaction between spinal curvature
and muscle activity

Our analysis revealed significant correlations between earth-
normalized area during micro-g conditions and muscle activity of
the lower ES at L4, and MF at L5. These findings indicate a direct
relationship between spinal curvature flattening and reducedmuscle
activity at these lower spinal segments.

A relationship between spinal curvature flattening and
reduced ES (L4) and MF (L5) muscle activity is consistent
with the research in astronauts by Bailey and colleagues
(Bailey et al., 2018), who demonstrated a strong association
between lumbar flattening,MFmuscle atrophy, and increased spinal
stiffness. On earth, such biomechanical alterations are typically
associated with compromised spinal mechanics and frequently low
back pain (Matheve et al., 2023). Consequently, these changes may
substantially elevate the risk of injury upon return to gravitational
conditions, particularly in individuals with pre-existing vertebral
end plate insufficiency.

Injury risk is likely linked to changes in spinal biomechanics.
Complex, level dependent changes in spinal biomechanics have
been reported in response to spaceflight (Bailey et al., 2018) and
following a 4 h of HBF via fluoroscopy (Breen et al., 2023). Whilst
sensitive, these measures are not compatible with spaceflight whilst
‘spinal stiffness’ – which can be measured with a small hand-held
devices has been proposed as a proxy measure for motor control
contribution to spinal stability (Hofstetter et al., 2018).

Spinal stiffness has demonstrated nuanced changes in spinal
stabilization strategies under hyper-g conditions (Swanenburg et al.,
2018; Swanenburg et al., 2020). Large-scale ground-based
investigations using axial loading have confirmed the modulation
of spinal stabilizers (Häusler et al., 2020; Glaus et al., 2021) although
the picture post-HBF unloading is unclear (Marcos-Lorenzo et al.,
2024). These findings collectively underscore the complex and
dynamic adaptive capabilities of the musculoskeletal system when
subjected to acute changes in axial loading. One hypothesis is that
increases in spinal stiffness during hyper-g can be attributed to
the mechanical response of abdominal muscle activation under
additional axial loading (Bergmark, 1989) that attempts to facilitate
load redistribution, including ‘load-sharing’ with the thoracic
cage and pelvis (Bergmark, 1989; Swanenburg et al., 2023). The
apparent contradiction between stable spinal curvature anddynamic
spinal stabilization strategies reveals the intricate neuromuscular
adaptability of the human spine in response to altered gravitational
conditions.

4.4 Other considerations and implications

This study demonstrates that even brief exposures to micro-g,
lasting about 20 s, can induce temporary flattening mainly of the
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upper lumbar and lower thoracic spine.The rapid spinal adaptations
we observed during PFC short-duration micro-g exposure raise
important questions about the cumulative effects of long-duration
space missions on spinal health. An unanswered question is how
long it takes for themotor control of the spine to return to its original
state after exposure to altered gravity.

Flattening of the upper lumbar and lower thoracic spine initially
results in frontal extension and potential contraction of dorsal
ligaments (Panjabi et al., 1982). While these structures maintain
their integrity at the beginning of a micro-g mission, extended
exposure significantly degrades tissue quality (Chang et al., 2016;
Moosavi et al., 2021; Bailey et al., 2022). Upon re-exposure to Earth’s
gravitational forces, these structures must re-adapt, whilst under 1 g
loading but compounded by the micro-g induced degradation of
passive structural integrity, potentially increasing the risk of injury
or dysfunction.

The biomechanical flattening of lumbar lordosis during micro-g
exposure reveals critical implications for musculoskeletal dynamics,
particularly concerning the psoas muscle. As the lordosis flattens,
the psoas muscle, which attaches to the anterior sides of the lumbar
vertebral bodies, is placed in an elongated position (Jorgensson,
1993). In a micro-g environment, this muscle elongation, combined
with the absence of axial load, might lead to its constant activation.
While most back muscles experience decreased activity and mass
degeneration during extended space missions (Chang et al., 2016;
LeBlanc et al., 2000), the psoas muscle uniquely maintains its size
and may even increase its activity (Andreoni et al., 2000; Penning
2000 suggested that the psoas adjusts its activity based on the
degree of lumbar curvature in micro-g, which may contribute
to this persistent activation (Swanenburg et al., 2020; Penning,
2000). The constant involvement of the psoas in this elongated
state could cause muscle fatigue and lumbar pain (Granata et al.,
2004; Johnston et al., 1998; Barker et al., 2004), which may explain
the low back pain experienced by some astronauts early in their
missions (Johnston et al., 2010). Adopting a fetal “tuck” position
in weightlessness can provide relief (Penning, 2000), probably by
returning the psoas muscle to a more normal length. These findings
support the hypothesis that flattening of the spine and subsequent
changes in psoas muscle function is central to the development of
back pain in astronauts.

Our segmental EMG analysis revealed heterogeneous acute
responses along the ES muscle, emphasizing the importance of
considering regional variations in muscle activity when studying
spinal adaptations to altered gravity. This finding suggests that
single-site EMG measurements are inadequate to capture the
complexity of trunk muscle responses to gravitational changes.
Future studies should consider multi-site (per muscle) or high-
density EMG techniques. Understanding changes in motor control
of the spine under varying gravitational loads may also explain
changes in proprioception (Swanenburg et al., 2023), which plays
a crucial role in promoting posture, balance, and coordinated
movement (Proske and Gandevia, 2012). Whilst peripheral
proprioception has been evaluated as a risk factor for crew falls
or impaired performance (Bloomberg et al., 2015). Less attention
has been paid to the role of trunk (core) proprioception.

The results reported in this manuscript may have implications for
spacesuit and spacecraft seat design.The immediate spinal adaptations
observed during microgravity exposure suggest that such equipment

might benefit from considering dynamic support elements and
modified curvature profiles. Additionally, approaches that potentially
promote active muscle engagement during movement could possibly
help maintain proper spinal function and might reduce the risk of
injuries during gravitational transitions.

4.5 Limitations and strengths

Although ourmethodology allowed us to investigate the effects of
micro-g on spinal curvature more comprehensively and beyond the
lumbar spinal segment, no exact mapping of anatomical landmarks
with the recorded data was possible and should be considered for
future experiments. Although the sensor array was fitted to the
participantswithbackpackstrapsandsecuredatthehip,potentialshifts
of the backpack were not measured and cannot be excluded. Large
standard deviations were observed at the lowest sensors for angles
calculated from distance data. These may be influenced by clothing
having moved into the sensor’s fields. Regarding the EMG data, the
overall muscular activity was low due to the static assessment posture.
Therefore, the EMG sensors captured additional electric activity from
the heart, which could not be removed from the signal. However,
the impact of this crosstalk effect was deemed minor. In addition,
potential rapid fluid displacements are unlikely to having affected
the results (Von Walden et al., 2008).

5 Conclusion

In conclusion, brief changes in gravity induced by parabolic
flight significantly modulated spinal curvature with flattening of the
upper lumbar and lower thoracic spine observed in response to
micro-g, but no curvature change in hyper-g. Multifidus at L5 and
Erector Spinae muscle activity at L4 were also reduced in micro-g,
but no other muscle activity changes were observed. Increased ES
activity was observed at the upper middle transmitter during hyper-
g. The maintained spinal curvature combined with targeted muscle
activation during hyper-g demonstrates the spine’s natural protective
mechanisms against increased axial loading. This robustness is
crucial for maintaining posture and preventing injury during
exposure to increased axial loading and is key to understanding
spinal health in terrestrial and space environments. The observed
changes in spinal curvature and segmental muscle activity patterns
in micro-g underscore the need for targeted countermeasures to
maintain spinal health during spaceflight.
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