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Objectives: This study aims to build a machine learning (ML) prediction model
integratedwith explainable artificial intelligence (XAI) to categorize obesity levels
from physical activity and dietary patterns. The inclusion of XAI methodologies
facilitates a comprehensive understanding of the risk factors influencing the
model predictions and thus increases transparency in the identification of
obesity risk factors.

Methods: Six ML models were used: Bernoulli Naive Bayes, CatBoost,
Decision Tree, Extra Trees Classifier, Histogram-based Gradient Boosting and
Support Vector Machine. For each model, hyperparameters were tuned by
random search methodology and model effectiveness was evaluated by
repeated holdout testing. SHAP (SHapley Additive Annotations) and LIME (Local
Interpretable Model Independent Annotations) interpretability methods were
used to generate local and global feature importance measures.

Results: The CatBoost model exhibited the highest overall performance
and achieved superior results in accuracy, precision, F1 score and
AUC metrics. Nonetheless, other models such as Decision Tree and
Histogram-based Gradient Boosting also yielded strong and competitive
results. The results also highlighted age, weight, height and specific food
patterns as key predictors of obesity. In terms of interpretability, LIME
showed superior in fidelity, whereas SHAP showed improved sparsity and
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consistency across models, facilitating a comprehensive understanding of trait
importance.

Conclusion: This research demonstrates that ML algorithms, when integrated
with XAI technologies, can accurately predict obesity levels and explain
important contributing risk factors. The use of SHAP and LIME increases model
transparency, facilitating the identification of specific lifestyle patterns linked
to obesity risk. These findings help to formulate more precise intervention
techniques guided by a reliable and understandable predictive framework.

KEYWORDS

obesity prediction, machine learning, explainable artificial intelligence, physical activity
and diet, feature importance

1 Introduction

Obesity has become a major global health issue, with its
incidence rising rapidly in both developed and developing
countries (Mohajan and Mohajan, 2023). The World Health
Organization reports that global obesity rates have nearly tripled
since 1975, rendering it a significant public health issue of the
21st century (Lim et al., 2020). The syndrome is linked to several
comorbidities, such as cardiovascular diseases, type 2 diabetes,
specific malignancies, and musculoskeletal ailments, resulting
in significant healthcare expenses and diminished quality of life
(Adebibe and Coppack, 2022; Afolabi et al., 2023).

Conventional methods for predicting obesity and assessing risk
have predominantly depended on rudimentary measurements like
Body Mass Index (BMI) and fundamental demographic variables
(Liu et al., 2024; Kovacic et al., 2012). These strategies often
do not examine the complex interactions among lifestyle factors,
physical activity patterns, and dietary habits that lead to the onset
of obesity. Additionally, traditional methods may fail to provide
specific insights into specific risk variables and possible intervention
techniques.

The emergence of machine learning (ML) methods has created
new opportunities for more advanced and precise predictive
models in healthcare. ML algorithms can analyze extensive
amounts of multidimensional data and discern intricate patterns
that may not be evident with traditional statistical techniques.
Nonetheless, a notable constraint of numerous ML models is
their “black box” characteristic, rendering the decision-making
process inscrutable to both healthcare personnel and patients
(Rudin, 2019; Castelvecchi, 2016).

Explainable Artificial Intelligence (XAI) has arisen as an
essential remedy to mitigate this constraint. XAI techniques seek
to enhance the transparency and interpretability of ML models,
enabling stakeholders to comprehend the rationale behind certain
predictions.The transparency offered by XAI is critical in healthcare
applications where understanding the logic behind predictions is
critical to clinical decision making and patient safety (Angelov et al.,
2021; Minh et al., 2022; Khosravi et al., 2022). Despite the potential
advantages of combiningMLmodelswithXAI approaches in obesity
prediction, research adopting this integrated methodology is yet
to be widely used. Although numerous studies have investigated
ML applications in obesity prediction (Ferdowsy et al., 2021;
Dugan et al., 2015; Tanvir et al., 2025; Rodríguez et al., 2021;

Singh and Tawfik, 2020; Jeon et al., 2023; Cheng et al., 2021),
only a limited number have integrated XAI approaches to yield
interpretable outcomes that can inform clinical practice and patient
education.

In a similar study predicting obesity levels, the authors achieved
86.5% accuracy using the Random Forest algorithm regardless
of BMI parameters (Khater et al., 2024). Our optimized model
developed in the current study performed better with an accuracy
of 93.67%. M Al-Hazzaa et al., assessed the correlations between
obesity markers and various lifestyle factors, including physical
activity, sedentary behaviors, and dietary habits, among Saudi
adolescents aged 14–19 years. The research included measuring
BMI, waist circumference, waist-to-height ratio (WHtR), screen
time (i.e., duration spent on television, video games, and computer
usage), and dietary habits (i.e., frequency of food consumption
per week), as well as administering a validated questionnaire
to evaluate the level of physical exercise. The correlations
between obesity indices and lifestyle factors were analyzed by
logistic regression. The logistic regression analysis indicated
that being overweight or obese (based on BMI categories) or
possessing abdominal obesity (according to WHtR categories)
was significantly and inversely correlated with high levels of
vigorous physical activity, regular consumption of breakfast
and vegetables, and the restriction of sugary beverage intake
(Al-Hazzaa et al., 2012).

Tharmin et al. (2021) utilized advanced ML approaches to
predict obesity using publicly available health data from the
Indonesian Basic Health Research. The aim of their research
was to exceed traditional prediction models and identify an
extensive array of risk factors for adult obesity utilizing easily
accessible variables. The authors assessed the efficacy of machine
learning techniques in identifying obesity by comparing three
distinct methodologies: Logistic Regression, Naive Bayes, and
Classification and Regression Trees (CART). Furthermore, they
utilized the Synthetic Minority Oversampling Technique to
rectify data imbalance. The results demonstrated that the Logistic
Regression approach displayed the most efficacy, attaining an
accuracy rate of roughly 72%. The authors indicated that various
characteristics were significantly correlated with adult obesity,
including marital status, geographical region, age category, and
educational attainment. Consumption of sugary beverages, grilled
foods, seasoning powders, fatty or oily foods, soft or carbonated
drinks, alcoholic beverages, preserved foods, mental-emotional
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disorders, physical activity, smoking, diagnosed hypertension, and
intake of fruits and vegetable (Thamrin et al., 2021).

Seyla et al. investigated the classification of obesity based on
food and physical activity patterns via ML methods, concluding
that the support vector machine (SVM) surpassed other classifiers
in performance (Lundberg and Lee, 2017). Jindal et al. conducted
ensemble ML methods for predicting obesity based on the primary
determinants: age, height, weight, and BMI. The ensemble model
employed Random Forest (RF), a generalized linear model, and
partial least squares, achieving a prediction accuracy of 89.68%
(Selya and Anshutz, 2018). Golino et al. employed a machine
learning method, namely, a classification tree, to examine the
prediction of elevated blood pressure based on BMI, waist
circumference (WC), hip circumference (HC), and waist–hip ratio
(WHR) in a cohort of 400 college students aged 16–63 years (56.3%
female). The model surpassed the conventional logistic regression
model for predicting efficacy. The model exhibited a sensitivity of
80.86% and specificity of 81.22% in the training set, and 45.65% and
65.15% in the test sample for women. The sensitivity was 72% and
specificity was 86.25% in the training set, and 58.38% and 69.70% in
the test set for men, respectively (Golino et al., 2014).

Prior research on obesity prediction using ML has often focused
on either conventional classifiers or clinical datasets with limited
behavioral diversity, with minimal integration of explainability
mechanisms. Almeida et al. (2016) and Chen et al. (2015) used
neural networks or SVMs for body fat or overweight classification
but did not provide model interpretability beyond raw accuracy.
While Gupta et al. (2022) applied LSTM models on longitudinal
EHRs, they acknowledged the “black box” nature of deep learning.
More recent studies such as those by Lin et al. (2023), Du et al.
(2024), and Lian et al. (2025) have employed SHAP to enhance
interpretability, but their work primarily emphasized either global
feature importance or limited case-specific visualizations. Our study
advances this body of work by not only employing a wide variety
of classification models on lifestyle and behavioral data but also
systematically integrating and comparing two complementary XAI
methods—SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) —for both local and
global interpretability. This dual-method approach, combined with
repeated holdout evaluations and diverse lifestyle predictors, offers a
more transparent, rigorous, and generalizable framework for obesity
risk assessment. Furthermore, our methodological contribution
includes a comparative evaluation of fidelity, sparsity, and
consistency—metrics often underexplored in previous literature.

This research tackles this deficiency by formulating and
assessing an innovative ML-based method combined with XAI
techniques for predicting obesity. Our study utilizes six different
ML models: Bernoulli Naive Bayes, CatBoost, Decision Tree, Extra
Trees Classifier, Histogram-based Gradient Boosting, and Support
Vector Machine. Each model is associated with two notable XAI
approaches - SHAP and LIME - to facilitate both local and global
interpretability of the predictions. The main contributions of this
study are summarized as follows:

1) The first contribution of this study is the development
of various classification algorithms for predicting obesity
levels and their subsequent explanation using two distinct
XAI methods.

2) The second contribution lies in identifying the attributes that
significantly influence the training ofmachine learningmodels
for obesity level prediction, employing both local and global
explanation techniques.

3) Finally, the third contribution involves evaluating and
comparing the performance of the XAI methods in predicting
obesity levels based on the proposed evaluation metrics.

This study seeks to enhance the field by offering a more
thorough and interpretable methodology for predicting obesity. The
results may enhance the development of more effective, tailored
intervention options and deepen our comprehension of obesity risk
factors. The methodology established in this study may function
as a framework for deploying ML solutions in further healthcare
applications where transparency and interpretability are essential.

2 Materials and methods

2.1 Participants

The present study employed an observational design and
received approval from the Inonu University Health Sciences
Non-Interventional Clinical Research Ethics Committee (approval
number: 2024/5989). It utilized open access data to assess obesity
levels among 498 participants aged between 14 and 61 years,
considering their eating habits and physical activity patterns
(Palechor and De la Hoz Manotas, 2019). The dataset comprised
17 features gathered from an online survey filled out anonymously.
Eating-related variables included frequent high-calorie food
consumption (FAVC), vegetable consumption frequency (FCVC),
number of main meals per day (NCP), food intake between meals
(CAEC), daily water intake (CH20), and alcohol use (CALC).
Physical condition variables covered calorie tracking (SCC),
frequency of physical activity (FAF), time spent on electronic devices
(TUE), and type of transportation used (MTRANS). Additional
variables such as gender, age, height, and weight were also collected.
After calculating the BMI for each participant, obesity levels were
classified based on WHO criteria: underweight (<18.5), normal
(18.5–24.9), overweight (25.0–29.9), obesity I (30.0–34.9), obesity
II (35.0–39.9), and obesity III (>40). Detailed information about the
dataset properties is provided in the Supplementary Material.

2.2 Proposed methods

In this study, several ML models, which are Bernoulli Naive
Bayes, CatBoost, Decision Tree Classifier, Extra Trees Classifier,
Histogram-Based Gradient Boosting Classifier and Support Vector
Machine, are proposed to predict obesity levels based on physical
activity and eating habit features. The selection of ML models in
this study was motivated by their diverse algorithmic approaches,
proven effectiveness in classification tasks, and their ability to
handle both categorical and numerical features present in our
dataset. Bernoulli Naive Bayes was chosen for its simplicity and
efficiency with binary features, while CatBoost and Histogram-
Based Gradient Boosting were included due to their robustness
in handling categorical data and resistance to overfitting. Decision
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FIGURE 1
Flow diagram of analysis stages in this study.

Trees and Extra Trees were selected for their interpretability
and ensemble advantages, whereas Support Vector Machines were
included for their capability tomodel complex boundaries via kernel
functions.This variety ensures a comprehensive evaluation ofmodel
performance across different algorithmic paradigms. The hyper-
parameters of the proposed models are optimized using a random
search technique. To ensure the reliability of the results, repeated
holdout tests are conducted. Additionally, to assess the importance
of the features used by the models in making predictions, each
model is explained using two distinct XAI methods. While the use
of XAI methods has gained popularity, determining which method
is superior remains a contentious issue. Therefore, the XAI models
employed in this study were compared for each classification model
using various evaluation metrics. For explainability, both SHAP
and LIME were employed to address potential biases inherent in
relying on a single XAI method. SHAP, grounded in game theory,
provides global interpretability by quantifying feature importance
consistently across the dataset, while LIME offers local, model-
agnostic explanations for individual predictions. SHAP is generally
more popular in research due to its mathematical rigor, but
LIME’s simplicity makes it accessible for real-time applications.
Performance-wise, SHAP tends to be computationally heavier but
more consistent, whereas LIME may vary in fidelity depending
on perturbation settings. By comparing both methods, we aim
to mitigate methodological limitations and provide a balanced
assessment of feature importance. The flow diagram of the analysis
stages in this study is shown in Figure 1.

As illustrated in Figure 1, the experimental process began with
the selection of random samples from the dataset, resulting in the
creation of three distinct datasets: training, test, and validation sets.
The random sampling process was conducted in a stratified manner
to ensure that each subset (training, test, and validation) maintained
a balanced representation of all obesity-level classes present in the
original dataset. Specifically, the data was partitioned such that the
proportion of classes in each subset mirrored the distribution of the
full dataset. This approach mitigates potential biases introduced by
random sampling and enhances the generalizability of the model
evaluations. The sampling was performed without replacement
to guarantee that no data point appeared in more than one
subset, thereby maintaining independence between the splits.
Subsequently, the hyper-parameters of the classification model were
optimized using the training and validation datasets. For this
purpose, random search was employed to optimize the hyper-
parameters of each classification model individually. Following
the optimization, the final model was trained using the optimum
hyper-parameters, and its performance scores were evaluated on
the test dataset. Additionally, model explanations were generated
using XAI methods, and the performance scores of these methods
were also calculated. This entire process was repeated 100 times,
yielding 100 distinct performance scores. The repeated holdout
method was chosen to mitigate potential biases arising from
random data partitioning and to ensure robust evaluation of model
performance. By repeating the holdout process 100 times, we
account for variability in training-test splits, thereby reducing the
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risk of overfitting and providing a more reliable estimate of model
generalizability. Additionally, class balance was maintained across
all splits to prevent skewed performance metrics. This approach
aligns with best practices in machine learning, particularly when
dealing with moderate-sized datasets, as it enhances the stability of
performance estimates without requiring computationally intensive
cross-validation.

2.2.1 Classification methods
2.2.1.1 Bernoulli Naive Bayes

Bernoulli Naive Bayes (BNB) is a probabilistic classifier
that works based on Bayes’ theorem with strong independence
assumptions between the features. Each feature is modeled as a
Bernoulli variable, assuming its presence or absence contributes
independently to the likelihood of a class. Despite its simplicity, it
performs well in high-dimensional data scenarios, especially when
features are binary. However, it may struggle with complex, non-
linear relationship (Murphy, 2012).

2.2.1.2 CatBoost
CatBoost is an implementation of gradient boosting designed

specifically to handle categorical data without requiring extensive
preprocessing, such as one-hot encoding. The model efficiently
incorporates categorical variables through its internal encoding
mechanism. It also reduces the chances of overfitting by utilizing
ordered boosting, which uses subsets of training data to build
models iteratively, preventing bias from earlier predictions.
CatBoost often outperforms other boosting algorithms on
datasets with mixed data types due to its efficiency in managing
categorical features and handling large-scale datasets. It has
demonstrated strong performance in ranking, regression, and
classification tasks (Prokhorenkova et al., 2018).

2.2.1.3 Decision Tree Classifier
Decision Tree (DT) is a non-parametric supervised learning

algorithm used for both classification and regression tasks. DT
works by recursively partitioning the feature space into homogenous
subsets based on feature values that maximize a chosen metric
like Gini impurity or information gain. The tree is constructed
from a root node, where each split represents a decision rule
leading to terminal leaves that correspond to class labels. One of
the main advantages of decision trees is their interpretability, as
they provide an easy-to-understand representation of the decision-
making process. However, they are prone to overfitting, especially
when deep trees are constructed (Quinlan, 1986).

2.2.1.4 Extra Trees Classifier
The Extra Trees Classifier (ETC) is an ensemble method similar

to Random Forest, but it introduces more randomness in the
tree construction process. Unlike traditional decision trees, where
the best split is determined from the data, Extra Trees selects
splits randomly. This additional randomness leads to increased
variance reduction and generally better generalization performance,
particularly when dealing with noisy data. It is computationally
efficient as it reduces the variance without requiring bootstrap
sampling. Extra Trees is particularly useful in high-dimensional
datasets due to its resilience against overfitting compared to single
decision trees (Geurts et al., 2006).

2.2.1.5 Histogram-Based Gradient Boosting Classifier
The Histogram-Based Gradient Boosting Classifier (HistGB)

is an efficient implementation of the gradient boosting algorithm
that discretizes continuous features into integer-based histograms
to reduce the memory footprint and computation time. This
approach enhances performance, particularly for large datasets,
by enabling faster training and inference compared to traditional
gradient boosting methods. The model constructs weak learners,
such as typically decision trees, in a stage-wise manner, focusing
on correcting the errors made by previous models. HistGB is
particularly useful for tabular data and has been shown to
deliver robust results in both classification and regression tasks
(Tamim Kashifi and Ahmad, 2022; Ke et al., 2017).

2.2.1.6 Support vector machine
Support Vector Machine (SVM) is a supervised learning

algorithm used for classification and regression tasks. SVM aims to
find the optimal hyperplane that best separates the classes in the
feature space by maximizing the margin between the nearest data
points of different classes, called support vectors. SVM is particularly
effective in high-dimensional spaces and is versatile with both linear
and non-linear decision boundaries, thanks to the kernel trick,
which allows it to work efficiently in a transformed feature space.
It is robust to overfitting, particularly in high-dimensional datasets,
though it can be computationally intensive on large datasets (Cortes
and Vapnik, 1995).

2.2.2 Explainable artificial intelligence
2.2.2.1 Shapley additive explanations

SHapley Additive exPlanations (SHAP) is a game-theoretic
approach used to explain the output of machine learning models by
attributing each feature’s contribution to the final prediction. SHAP
values are based on the Shapley value concept from cooperative
game theory, which ensures fair allocation of the prediction’s
contribution among all features. For any model prediction, SHAP
values measure how each feature contributes to moving the
prediction away from a baseline value. The main advantage
of SHAP is its consistency and local accuracy, meaning that
features contributing more to the prediction are assigned larger
SHAP values. SHAP ensures that the sum of individual feature
contributions equals the difference between the model’s output
and the baseline. Additionally, SHAP values provide both global
and local interpretability, allowing users to understand individual
predictions and general feature importance across the dataset.
While SHAP provides a unified measure of feature importance for
any machine learning model, one downside is its computational
complexity, especially for large datasets or highly complex models.
SHAP is commonly used for black-box models like gradient
boosting machines, random forests, and deep neural networks,
making it a versatile tool for model interpretability (Lundberg and
Lee, 2017).

2.2.2.2 Local Interpretable Model-agnostic explanations
Local Interpretable Model-agnostic Explanations (LIME)

is a model-agnostic technique designed to explain individual
predictions of any black-box machine learning model by
approximating the local decision boundary of the model with a
simpler, interpretable model. It works by perturbing the input
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data instance and then observing how the black-box model’s
predictions change. LIME then fits a local surrogate model,
typically a linear model or decision tree, on this perturbed data
to approximate the decision boundary around that specific instance.
The simplicity of the surrogate model makes it interpretable
and enables the user to understand the most influential features
contributing to that particular prediction. One of LIME’s key
strengths is that it can be applied to any machine learning
model, making it extremely flexible. However, because it only
focuses on local interpretability, it does not provide insights
into the global behavior of the model. Another limitation
of LIME is the randomness introduced by the perturbation
process, which can lead to slightly different explanations across
multiple runs unless the perturbation settings are carefully
managed. Despite this, LIME is widely used in practice for
understanding individual predictions of models like deep
learning networks, ensemble methods, and other non-transparent
algorithms (Ribeiro et al., 2016).

2.2.3 Random search
Random search is a popular method for hyper-parameter

optimization that selects values for hyper-parameters randomly
from predefined distributions. Unlike grid search, where all possible
combinations of hyper-parameters are exhaustively tested, random
search samples a fixed number of random combinations from
the hyper-parameter space. This allows the algorithm to explore
a broader set of configurations more efficiently. One of the main
advantages of random search is that it tends to find better models
with fewer iterations, especially when only a small subset of hyper-
parameters has a significant impact on model performance. In
high-dimensional spaces, grid search can become computationally
expensive, whereas random search can provide similar or better
results with much less computation, particularly when certain
hyper-parameters are more important than others. Random search
is also easier to parallelize, as each trial is independent, and its
flexibility allows practitioners to define different distributions for
each hyper-parameter. Random search is particularly useful for
complex models, such as deep learning networks and ensemble
methods, where the number of hyper-parameters is large. However,
random search does not guarantee finding the global optimum, as it
does not systematically cover the search space. Despite this, it often
performs well in practice, especially when coupled with techniques
like cross-validation to ensure robust model evaluation (Bergstra
and Bengio, 2012).

2.2.4 Performance metrics
2.2.4.1 Accuracy

Accuracy (acc) is a widely used evaluation metric for
classification models and represents the proportion of correctly
classified instances out of the total number of instances.
Mathematically, it is defined as the sum of true positives and
true negatives divided by the total number of predictions. While
accuracy is simple and intuitive, it can be misleading in cases of
imbalanced datasets. Accuracy is most effective when the dataset is
balanced and when the cost of false positives and false negatives is
comparable (Powers, 2020).

2.2.4.2 Precision
Precision (pre), also known as positive predictive value, is a

metric that quantifies the accuracy of positive predictions made by
a model. It is defined as the ratio of true positives to the sum of
true positives and false positives. Precision is particularly important
in situations where false positives are costly or undesirable, such
as in medical diagnoses, where incorrectly identifying a patient
as having a disease may lead to unnecessary treatments. A high
precision value indicates that the model makes few false positive
errors, meaning that when it predicts a positive outcome, it is likely
to be correct (Powers, 2020).

2.2.4.3 F1 score
The F1 score (f1) is the harmonic mean of precision and

recall, providing a single metric that balances both concerns. It is
particularly useful when dealing with imbalanced datasets, where
high precision may come at the cost of low recall or vice versa.
By combining precision and recall, the f1 ensures that both false
positives and false negatives are taken into account. A perfect
f1 of 1.0 indicates that both precision and recall are maximized,
whereas a lower f1 indicates a trade-off between these metrics.
The f1 is most useful when the cost of false positives and false
negatives are similar and when there is a need to balance precision
and recall (Powers, 2020).

2.2.4.4 Area under the ROC curve
The Area under the Receiver Operating Characteristic (ROC)

Curve (AUC)measures the ability of amodel to distinguish between
classes and is based on the ROC curve, which plots the true
positive rate against the false positive rate at various threshold
levels. The AUC value ranges from 0 to 1, where a value of 1
represents a perfect model, 0.5 indicates random guessing, and
values below 0.5 suggest a model performing worse than random.
AUC is particularly useful when dealing with imbalanced datasets,
as it is less affected by class distribution than metrics like accuracy.
AUC provides an aggregate measure of performance across all
classification thresholds, making it effective for comparing models.
AUC is especially valuable in situations where the trade-off between
sensitivity and specificity is critical, such as in medical diagnostics
or fraud detection (Powers, 2020).

2.2.4.5 Fidelity
Fidelity is a key metric used to assess how closely an explanation

provided by an XAI method aligns with the behavior of the
original model. Specifically, fidelity measures the extent to which
the explanations reflect the true decision-making process of the
underlying black-box model. High fidelity indicates that the
explanations are faithful to themodel’s predictions,meaning that the
interpretable model used to generate explanations closely mimics
the behavior of the original complex model. Fidelity is crucial
because an explanation is only useful if it accurately represents
the model’s reasoning process. In this study, fidelity is calculated
based on the compatibility between the globally obtained feature
ranking and the locally calculated features. The fidelity score ranges
from 0 to 1, with values closer to 1 indicating higher success of
the method (Ribeiro et al., 2016).
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2.2.4.6 Sparsity
Sparsity refers to the degree to which an explanation is

concise and focuses on a minimal set of important features. A
sparse explanation is easier to understand and interpret because
it emphasizes only the most relevant factors contributing to the
model’s decision. Sparsity is particularly important for models with
high-dimensional input spaces, where explanations could otherwise
become overwhelming or cluttered with irrelevant details. By
limiting the number of features included in the explanation, sparsity
enhances interpretability without sacrificing too much information.
XAI methods like LIME or SHAP can be tuned to produce sparser
explanations by adjusting their regularization or threshold settings,
focusing on fewer influential features. In this study, the average
attribute importance score was used as the threshold for calculating
sparsity. Sparsity represents the number of attributes with scores
higher than this average (Rudin, 2019).

2.2.4.7 Consistency
Consistency is a metric that evaluates whether an XAI method

provides stable and reliable explanations across different instances
or models. In other words, an XAI method is consistent if the
explanations remain coherent when the underlying model or the
data slightly changes. Consistency ensures that small variations in
input data or model parameters do not lead to drastically different
explanations, which is important for building trust in the model’s
interpretability. Consistent explanations also help ensure that users
can rely on the model across various scenarios without constantly
questioning its rationale. Lack of consistency can lead to confusion
and reduce trust in the model’s predictions, especially in high-
stakes domains such as healthcare or criminal justice. In this study,
consistency was calculated by measuring the L1 distance between
the global explanations generated for each holdout set (Lundberg
and Lee, 2017).

3 Experiment results

In the experimental phase of this study, six different classification
models for obesity level prediction were analyzed, with each
model explained using two different XAI methods. To ensure
the significance of the results, a repeated holdout approach was
employed. In the first step, the dataset was divided into three subsets:
training, testing, and validation sets. Specifically, 20% and 10%of the
samples were randomly selected to form the testing and validation
datasets, respectively, while the remaining samples were used to
generate training dataset. To facilitate repeated holdout, this process
was repeated 100 times, resulting in 100 distinct training, testing,
and validation datasets. The training sets were used to train the
models, the validation sets were used to evaluatemodel performance
during hyper-parameter optimization, and the testing sets were
used to assess the final model’s performance. Hyper-parameter
optimization and model training were performed separately for
each holdout. For hyper-parameter optimization, the random search
method was employed with the number of iterations set to 50. The
optimized hyper-parameters, their types, and the search spaces for
each model are detailed in Table 1.

Table 2 presents the average values across holdouts for acc,
pre, f1, and AUC. While high metric values indicate strong model

performance, it is equally important for models to be robust.
Consistency of results across holdouts is considered an indicator of
robustness. In this regard, the standard deviation (std) values across
holdouts for each model are also included in Table 2.

Analysis of the results in Table 2 reveals that the CatBoost
model achieved the highest performance across all metrics, with an
accuracy of 93.67% ± 1.37%, precision of 92.36% ± 1.78%, F1-score
of 93.57% ± 1.49%, and AUC of 99.39% ± 1.73%. In contrast, the
BNB model exhibited the lowest performance, with an accuracy of
80.15% ± 0.49%, precision of 75.14% ± 4.65%, F1-score of 79.01% ±
0.87%, and AUC of 82.97% ± 6.11%. The SVM model also showed
comparatively lower performance, particularly with an accuracy of
81.49% ± 1.23%. Regarding std values, the AUC metric exhibited
higher variability across the models compared to other metrics.
Although CatBoost achieved the best results particularly in the
AUC metric, it maintained relatively low standard deviation values,
indicating that CatBoost is both highly performant and robust.

Local plots were generated for a random sample of the test
data using the highest scoring hold for the LIME annotations for
each classification method. The annotation plots for the models are
presented in Figures 2, 3 for SHAP and LIME, respectively.

Upon analyzing the local explanation graphs, it is evident
that each model produces different explanation results, and the
explanations for the same model vary across different XAI
methods. While local explanations provide valuable insights, global
explanations offer a more comprehensive understanding of attribute
importance. Therefore, the attribute importance scores calculated
across the holdouts were averaged to derive a final ranking of
attributes. Table 3 presents the attribute importance rankings for
each model, as determined by the LIME and SHAP methods,
based on the average scores from the holdouts. After generating
global explanations for the models, the SHAP and LIME methods
calculated individual scores for each attribute. These scores indicate
the relative importance of each attribute. In line with the proposed
approach, 100 randomized datasets were created, and model
explanations were generated for each. At this stage, the scores
calculated for each attribute in every holdout iteration were
summed and divided by 100 to compute the average attribute
importance scores. Table 3 presents the ranking of attributes based
on these computed importance scores.

The results presented in Table 3 clearly show that the feature
importance rankings differ between the LIME and SHAP methods.
For instance, according to SHAP, “Weight” and “Height” are
consistently among the top important features across models,
whereas LIME results emphasize features like “SMOKE” and “SCC”.
Comparing these XAI methods is critical to understanding which
features aremoremeaningful for predicting obesity levels. To further
investigate the quality of these explanations, the performance
metrics of LIME and SHAP are detailed in Table 4.

Among the evaluated metrics, fidelity and sparsity are expected
to be closer to 1, while consistency is ideally close to 0. Analyzing
the values in Table 4:

• For the BNB model, LIME achieved a fidelity of 0.6228 ±
0.0260, while SHAP had a fidelity of 0.5605 ± 0.0339. Regarding
sparsity, LIME scored 0.2693 ± 0.0556 compared to SHAP’s
0.4237 ± 0.0037. The consistency values were 4.3977 ± 0.9435
for LIME and 3.8484 ± 0.8559 for SHAP.
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TABLE 1 Details of the name, type, and space of the optimized hyper-parameter for each model.

Model name Hyper-parameter name Hyper-parameter type Hyper-parameter space

BNB

alpha Float Low = 0, High = 1

force_alpha Boolean [True, False]

binarize Float Low = 0, High = 1

CatBoost

depth Integer Low = 3, High = 7

iterations Integer Low = 50, High = 1000

learning_rate Float Low = 0.001, High = 0.3

DT

criterion Categorical [“gini”, “entropy”, “log_loss”]

max_depth Integer Low = 1, High = 10

splitter Categorical [“best”, “random”]

ETC

criterion Categorical [“gini”, “entropy”, “log_loss”]

max_depth Integer Low = 1, High = 10

n_estimators Integer Low = 50, High = 1000

HGB

max_iter Integer Low = 3, High = 7

max_leaf_nodes Integer Low = 5, High = 60

learning_rate Float Low = 0.001, High = 1

tol Float Low = 0.000001, High = 0.003

SVM

max_iter Integer Low = 10, High = 1000

tol Float Low = 0.00001, High = 0.003

C Float Low = 0.0001, High = 10

TABLE 2 Average performance scores of models that trained using optimal hyper-parameters.

Model name acc std acc Pre std pre f1 std f1 AUC std AUC

BNB 80.15% 0.49 75.14% 4.65 79.01% 0.87 82.97% 6.11

CatBoost 93.67% 1.37 92.36% 1.78 93.57% 1.49 99.39% 1.73

DT 91.64% 1.96 90.51% 2.08 91.00% 2.07 97.87% 2.82

ETC 85.75% 0.99 84.96% 3.60 85.90% 1.84 91.89% 4.79

HGB 89.58% 1.44 90.65% 2.52 90.22% 1.74 95.84% 1.32

SVM 81.49% 1.23 81.66% 3.30 84.86% 1.86 90.22% 1.70

• For the CatBoost model, LIME obtained a fidelity of 0.6441 ±
0.0211, sparsity of 0.2781 ± 0.0561, and consistency of 5.3813
± 0.7808, while SHAP recorded a fidelity of 0.6100 ± 0.0150,
sparsity of 0.5100 ± 0.0808, and consistency of 3.4103 ± 0.8108.

• For the DT model, LIME fidelity was 0.6203 ± 0.0154, sparsity
0.2206 ± 0.0903, and consistency 5.1212 ± 0.8095, whereas

SHAPfidelitywas 0.5264 ± 0.0603, sparsity 0.2675 ± 0.0696, and
consistency 4.5138 ± 0.7064.

• For the ETC model, LIME had a fidelity of 0.6440 ± 0.0325,
sparsity of 0.2725 ± 0.0676, and consistency of 4.9179 ± 1.0141.
In contrast, SHAP fidelity was 0.6104 ± 0.0150, sparsity 0.5175
± 0.0739, and consistency 4.6338 ± 0.8607.
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FIGURE 2
Local Explanation of Each Method’s Best Holdout Model using SHAP.

• For the HGB model, LIME achieved a fidelity of 0.6396 ±
0.0228, sparsity of 0.2681 ± 0.0697, and consistency of 5.2121
± 0.8388. SHAP achieved a fidelity of 0.5980 ± 0.0217, sparsity
of 0.4887 ± 0.0698, and consistency of 3.7916 ± 0.8425.

• For the SVMmodel, LIME fidelity was 0.6353 ± 0.0194, sparsity
was 0.2662 ± 0.0832, and consistency was 5.4608 ± 0.9603.
SHAP, on the other hand, achieved a fidelity of 0.6098 ± 0.0159,
sparsity of 0.5056 ± 0.0755, and consistency of 4.0037 ± 0.8165.
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FIGURE 3
Local Explanation of Each Method’s Best Holdout Model using LIME.
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TABLE 3 Feature importance rankings were determined based on the average global LIME and SHAP scores calculated across all holdout iteration.

XAI method Classifier model name Feature importance

SHAP

BNB [“TUE”, “family_history_with_overweight”, “Gender”, “FAF”, “FAVC”, “MTRANS”, “SCC”, “CAEC”, “SMOKE”,
“Weight”, “Height”, “CALC”, “Age”, “CH2O”, “FCVC”, “NCP”]

CatBoost [“Weight”, “Height”, “Age”, “FAF”, “TUE”, “CH2O”, “CAEC”, “CALC”, “FCVC”, “Gender”,
“family_history_with_overweight”, “MTRANS”, “NCP”, “FAVC”, “SCC”, “SMOKE”]

DT [“Weight”, “Height”, “FAF”, “Age”, “CAEC”, “TUE”, “FCVC”, “family_history_with_overweight”, “Gender”, “FAVC”,
“MTRANS”, “CH2O”, “CALC”, “NCP”, “SMOKE”, “SCC”]

ETC [“Weight”, “Height”, “Age”, “FAF”, “TUE”, “CH2O”, “family_history_with_overweight”, “CALC”, “Gender”, “FCVC”,
“CAEC”, “MTRANS”, “FAVC”, “NCP”, “SCC”, “SMOKE”]

HGB [“Weight”, “Height”, “Age”, “FAF”, “TUE”, “CAEC”, “CH2O”, “family_history_with_overweight”, “FCVC”, “FAVC”,
“CALC”, “Gender”, “NCP”, “MTRANS”, “SCC”, “SMOKE”]

SVM [“Weight”, “Height”, “Age”, “FAF”, “TUE”, “CH2O”, “CAEC”, “CALC”, “FCVC”, “Gender”,
“family_history_with_overweight”, “MTRANS”, “NCP”, “FAVC”, “SCC”, “SMOKE”]

LIME

BNB [“SMOKE”, “SCC”, “CH2O”, “FAVC”, “family_history_with_overweight”, “TUE”, “Gender”, “FAF”, “MTRANS”,
“NCP”, “CAEC”, “Height”, “Age”, “Weight”, “CALC”, “FCVC”]

CatBoost [“SCC”, “Weight”, “NCP”, “MTRANS”, “SMOKE”, “FAVC”, “Height”, “CH2O”, “CAEC”,
“family_history_with_overweight”, “TUE”, “CALC”, “FCVC”, “Age”, “Gender”, “FAF”]

DT [“Weight”, “SMOKE”, “Height”, “MTRANS”, “NCP”, “FAVC”, “FAF”, “SCC”, “FCVC”, “Age”, “CAEC”, “Gender”,
“family_history_with_overweight”, “TUE”, “CH2O”, “CALC”]

ETC [“SMOKE”, “SCC”, “FAVC”, “Weight”, “NCP”, “MTRANS”, “family_history_with_overweight”, “CH2O”, “FCVC”,
“CAEC”, “Age”, “TUE”, “FAF”, “CALC”, “Gender”, “Height”]

HGB [“Weight”, “SCC”, “MTRANS”, “NCP”, “FAVC”, “Height”, “CH2O”, “SMOKE”, “CAEC”,
“family_history_with_overweight”, “Age”, “FCVC”, “TUE”, “CALC”, “Gender”, “FAF”]

SVM [“Weight”, “SCC”, “NCP”, “MTRANS”, “Age”, “SMOKE”, “FAVC”, “FCVC”, “CH2O”, “FAF”, “TUE”, “CALC”,
“CAEC”, “Gender”, “family_history_with_overweight”, “Height”]

Overall, LIME consistently demonstrated higher fidelity scores
compared to SHAP across all models, while SHAP generally
showed better sparsity and consistency metrics. Additionally, the
low standard deviations across all models and metrics indicate that
the results are stable and robust.

4 Discussion

Although there are classical ML and XAI based studies on
obesity level prediction in the literature, there is no research
that integrates LIME at local level and SHAP at global level and
evaluates each explanation method by further comparing using
interpretability criteria such as fidelity, sparsity and consistency.
While previous studies have examined ML models combined with
XAI techniques for obesity prediction, our study advances the field
in several important ways. Although several studies have applied
ML and XAI to obesity-related data, our study distinguishes itself
with a more comprehensive model comparison (six different ML
classifiers), double-layer interpretability analysis.

Six different classificationmodels were trained to predict obesity
levels using the repeated retention method. The hyperparameters
of the models were optimized using the random search method.

Then, each model was explained both locally and globally using
the LIME and SHAP methods. Experimental results show that
the CatBoost model outperforms other models in predicting
obesity levels. In terms of performance, the CatBoost model was
followed by DT, HGB, ETC, SVM and BNB models. When the
model explanations were analyzed, it was seen that the feature
importance rankings differed among the XAI methods. According
to the global explanation scores, the features that were consistently
ranked in the top 10 for the first three models (CatBoost, DT
and HGB) were “Age”, “Height”, “Weight”, “FCVC”, “CAEC”, “FAF”
and “TUE” by SHAP and “Height”, “Weight”, “FAVC”, “NCP”,
“SMOKE”, “SCC” and “MTRANS” by LIME. The features that
were consistently ranked in the top 10 for all three models by
both XAI methods were “Height” and “Weight”. When comparing
the XAI methods, LIME consistently outperformed SHAP in the
fidelity metric, while SHAP gave better results in the sparsity and
consistency metrics. Additionally, both XAI methods demonstrated
robustness by achieving relatively low standard deviation values   in
all three metrics.

CatBoost has demonstrated high performance on complex
datasets containing amixture of categorical and continuous features,
possible class imbalance, and nonlinear interactions between
variables (Prokhorenkova et al., 2018; Akbulut et al., 2023). The
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TABLE 4 Performance metrics of XAI models.

Classifier
model name

XAI method Fidelity Std of fidelity Sparsity Std of sparsity Consistency Std of
consistency

BNB
SHAP 0.5605 0.0339 0.4237 0.0037 3.8484 0.8559

LIME 0.6228 0.0260 0.2693 0.0556 4.3977 0.9435

CatBoost
SHAP 0.6100 0.0150 0.5100 0.0808 3.4103 0.8108

LIME 0.6441 0.0211 0.2781 0.0561 5.3813 0.7808

DT
SHAP 0.5264 0.0603 0.2675 0.0696 4.5138 0.7064

LIME 0.6203 0.0154 0.2206 0.0903 5.1212 0.8095

ETC
SHAP 0.6104 0.0150 0.5175 0.0739 4.6338 0.8607

LIME 0.6440 0.0325 0.2725 0.0676 4.9179 1.0141

HGB
SHAP 0.5980 0.0217 0.4887 0.0698 3.7916 0.8425

LIME 0.6396 0.0228 0.2681 0.0697 5.2121 0.8388

SVM
SHAP 0.6098 0.0159 0.5056 0.0755 4.0037 0.8165

LIME 0.6353 0.0194 0.2662 0.0832 5.4608 0.9603

performance ranking of the models is in line with other research
showing the effectiveness of boosting techniques on similar health
prediction tasks (Zhang et al., 2020; Guldogan et al., 2023;
Yagin et al., 2023). The differences between the XAI methods are
consistent with Lundberg and Lee’s (2017) observation that the
results of SHAP and LIME may vary due to different annotation
approaches (Lundberg and Lee, 2017).

A recent study by Khater et al. (2024), also used explainable
AI (specifically SHAP) to investigate its impact on obesity
classification. The authors focused only on a single machine
learning model (Random Forest) and lacked a comparative
analysis based on the performance of different classifiers or
interpretability methods. Additionally, unlike Khater et al. (2024),
who focused on SHAP, where Random Forest was primarily
applied, our approach integrates both SHAP and LIME across
multiple models and provides a more robust and generalizable
framework by comparing XAI approaches with fidelity, sparsity, and
consistency metrics. Azad et al. (2025) used a stacked ensemble
model that included LGBM, Logistic Regression, and Random
Forest with LIME as the sole interpretabilitymethod. Although their
model achieved high accuracy (98.82%), their reliance on a single
XAImethod limited the depth and robustness of interpretability.The
authors obtained local, i.e., patient-based, explanations of the model
using LIME alone.Therefore, our approach provides a more holistic,
transparent, and generalizable framework for understanding obesity
risk through interpretable ML.

Lee et al. (2022) did a study that looked in depth at the
genetic, epigenetic, and environmental factors that affect BMI and
fat. The generalized multifactor dimensionality reduction method
was used to do a genome-wide and epigenome-wide scan and
look for links between a lot of SNPs, food and lifestyle factors,

and DNA methylation sites. After finding statistically significant
markers like genetic variations, epigenetic changes, and nutritional
variables, the scientists used machine learning techniques to guess
how obese people were in a separate test set. The authors looked
closely at the genetic, epigenetic, and environmental factors that
affect BMI and obesity in their study. They used the generalized
multifactor dimensionality reduction method to do a genome-wide
and epigenome-wide scan and look at how a lot of SNPs, DNA
methylation sites, and food and lifestyle factors are connected.
After finding statistically significant markers like genetic variations,
epigenetic changes, and nutritional variables, the scientists used ML
techniques to guess how obese people were in a separate test set.

When our XAI results are analyzed, LIME’s better performance
in the fidelitymetric confirms Ribeiro et al.'s (2016) claim that LIME
is strong in terms of local accuracy (Ribeiro et al., 2016), while
SHAP’s superiority in the consistency and sparsity metrics is in
line with studies showing the effectiveness of this method in global
annotation (Molnar, 2020). The fact that both XAI methods show
low standard deviation values in all metrics is in line with previous
studies emphasizing the reliability of these techniques (Adadi and
Berrada, 2018; Yagin et al., 2024).

A meta-analysis study in the literature examined the
performance of logistic regression (LR) and ML methods to predict
obesity risk. The results of the study show that both LR and ML
methods achieve equally good performance in predicting obesity,
and they reported that there was no significant evidence that ML
performed better than LR (Boakye et al., 2025).

Kalhori et al. reported that artificial intelligence techniques
have the potential to predict obesity and reduce its complications.
The authors reported in their study that supervised learning
methodologies such as random forest and linear regression models
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are generally used to predict obesity in the literature. In these
studies, demographic data is usually used for obesity prediction.
Kalhori et al. reported in their published review that theANNmodel
achieved superior performance in terms of AUC and the k-means
approach achieved superior performance in terms of accuracy
within the scope of obesity prediction (Kalhori et al., 2025).

A review of the broader literature indicates that various ML
models—ranging from traditional decision trees (Dugan et al.,
2015), ensemble models (Lin et al., 2023; Shahabi et al., 2024), to
advanced boosting methods (Du et al., 2024; Lian et al., 2025), have
been effectively employed for obesity prediction using diverse data
types including anthropometrics, EHRs, and biochemical markers.
Lin et al. utilized SHAP to explain factors like waist circumference
(WC) and systolic blood pressure (SBP), while Lin et al. (2023)
highlighted individual-level explanations on biochemical data,
pointing to the need for personalized insights. Gupta et al. (2022)
applied deep learning on large-scale pediatric data, yet recognized
its limited interpretability. In contrast, our study offers a more
holistic evaluation framework combining behavioral and lifestyle
predictors with interpretableML outputs.This aligns with a growing
consensus in the literature advocating for explainable models to
bridge the clinical adoption gap. By synthesizing insights from both
global and local explanation perspectives, and reporting multiple
interpretability metrics, our approach complements and extends
previous findings in a methodologically rigorous and practically
meaningful direction.

The important variables determined by SHAP and LIME
methods largely overlap with the risk factors frequently emphasized
in the obesity literature. In particular, variables such as “weight”,
“height”, “age”, “physical activity frequency (FAF)”, “screen time
(TUE)” and “caloric intake behavior (CAEC)”, which stand out
according to SHAP analysis, can be evaluated within the scope of
physiological risk factors. Anthropometric measurements such as
weight, height and age are the main physiological determinants
in predicting obesity by directly affecting body composition. In
addition, low physical activity frequency and high screen time
negatively affect energy balance and increase the risk of obesity.
These findings are consistent with lifestyle-based physiological
factors, especially emphasized in studies such as Al-Hazzaa et al.
(2012), and Thamrin et al. (2021). On the other hand, variables
such as “SMOKE”, “SCC” (calorie tracking), “family_history_with_
overweight”, “number of meals (NCP)” and “type of transportation
(MTRANS)”, which are found important by LIME, can be evaluated
in a sociocultural context. Smoking and calorie tracking habits are
related to the individual’s level of health awareness; this situation is
shaped by factors such as social environment, education level and
health literacy (Khater et al., 2024; Thamrin et al., 2021).

In addition, the presence of overweight individuals in the family
is a sociocultural factor in terms of both genetic predisposition and
the transmission of similar lifestyles. Transportation preference
(walking, private vehicle, etc.) is an environmental variable
affecting the individual’s physical activity level and is a reflection
of urbanization and lifestyle patterns (Gupta et al., 2022). In
general, the variables used in the study are meaningful explanatory
factors at both physiological and sociocultural levels and are
compatible with contemporary approaches that address obesity
in a multidimensional manner in these aspects. The results
obtained are consistent with the risk factors reported by the

World Health Organization (WHO) and similar authorities
and support the applicability of predictive models in the field
(Lim et al., 2020; Afolabi et al., 2023).

In conclusion, this work provides a thorough methodology for
estimating obesity levels through the utilization of integrated ML
models combined with XAI techniques. The study demonstrates
the CatBoost model’s greater efficacy in assessing obesity levels,
achieving 93.67% of the previously documented results in the
literature. This conclusion indicates that algorithms are effective
in analyzing the intricate relationships between CatBoost, lifestyle
factors, and obesity outcomes. The comparative research of these
approaches indicates that it demonstrates greater faithfulness
in LIME, while the SHAP exhibits enhanced consistency. This
synergistic performance indicates that employing both strategies
concurrently can yield more thorough and dependable answers.
The identification of fundamental predictive attributes via XAI
approaches underscores the essential significance of both physical
characteristics and lifestyle habits in the assessment of obesity.
This discovery aligns with current medical knowledge and offers
quantitative reinforcement for established obesity prevention
techniques. Minimal standard deviation values across many
assessment measures indicate the trustworthiness and stability
of both calculated models and descriptions, suggesting their
potential use in clinical settings. This research demonstrates that
the integration of powerful ML techniques with XAI methodologies
can produce robust and interpretable tools for obesity estimation.
The findings advance the technical development of predictive health
analytics and enhance the practical comprehension of obesity risk
variables, hence facilitating possiblymore effective and personalized
intervention techniques.

While this study provides valuable insights into obesity
prediction using ML and XAI, certain limitations must be
acknowledged. The cross-sectional structure of the data precludes
the monitoring of temporal changes in obesity levels. The sample
size of approximately 500 individuals, though sufficient for initial
model development, may restrict the generalizability of findings to
broader populations. Larger and more diverse datasets would help
validate the robustness of the identified predictors. Additionally, the
inclusion of only 17 features, while informative, may not capture
the full complexity of obesity determinants. Future research could
benefit from incorporating additional variables such as genetic
predispositions, metabolic markers, and environmental factors to
enhance predictive accuracy and clinical relevance.
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