AUTHOR=Görmez Yasin , Yagin Fatma Hilal , Yagin Burak , Aygun Yalin , Boke Hulusi , Badicu Georgian , De Sousa Fernandes Matheus Santos , Alkhateeb Abedalrhman , Al-Rawi Mahmood Basil A. , Aghaei Mohammadreza TITLE=Prediction of obesity levels based on physical activity and eating habits with a machine learning model integrated with explainable artificial intelligence JOURNAL=Frontiers in Physiology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2025.1549306 DOI=10.3389/fphys.2025.1549306 ISSN=1664-042X ABSTRACT=ObjectivesThis study aims to build a machine learning (ML) prediction model integrated with explainable artificial intelligence (XAI) to categorize obesity levels from physical activity and dietary patterns. The inclusion of XAI methodologies facilitates a comprehensive understanding of the risk factors influencing the model predictions and thus increases transparency in the identification of obesity risk factors.MethodsSix ML models were used: Bernoulli Naive Bayes, CatBoost, Decision Tree, Extra Trees Classifier, Histogram-based Gradient Boosting and Support Vector Machine. For each model, hyperparameters were tuned by random search methodology and model effectiveness was evaluated by repeated holdout testing. SHAP (SHapley Additive Annotations) and LIME (Local Interpretable Model Independent Annotations) interpretability methods were used to generate local and global feature importance measures.ResultsThe CatBoost model exhibited the highest overall performance and achieved superior results in accuracy, precision, F1 score and AUC metrics. Nonetheless, other models such as Decision Tree and Histogram-based Gradient Boosting also yielded strong and competitive results. The results also highlighted age, weight, height and specific food patterns as key predictors of obesity. In terms of interpretability, LIME showed superior in fidelity, whereas SHAP showed improved sparsity and consistency across models, facilitating a comprehensive understanding of trait importance.ConclusionThis research demonstrates that ML algorithms, when integrated with XAI technologies, can accurately predict obesity levels and explain important contributing risk factors. The use of SHAP and LIME increases model transparency, facilitating the identification of specific lifestyle patterns linked to obesity risk. These findings help to formulate more precise intervention techniques guided by a reliable and understandable predictive framework.