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Introduction: Premature Ventricular Contractions (PVCs) can be warning signs
for serious cardiac conditions, and early detection is essential for preventing
complications. The use of deep learning models in electrocardiogram (ECG)
analysis has aided more accurate and efficient PVC identification. These models
automatically extract and analyze complex signal features, providing valuable
clinical decision-making support. Here, we conducted a study focused on the
practical applications of is technology.

Methods:We first used the MIT-BIH arrhythmia database and a sparse low-rank
algorithm to denoise ECG signals. We then transformed the one-dimensional
time-series signals into two-dimensional images using Markov Transition
Fields (MTFs), considering state transition probabilities and spatial location
information to comprehensively capture signal features. Finally, we used the
BiFormer classificationmodel, which employs a Bi-level Routing Attention (BRA)
mechanism to construct region-level affinity graphs, to retain only the regions
highly relevant to our query. This approach filtered out redundant information,
and optimized both computational efficiency and memory usage.

Results:Our algorithm achieved a detection accuracy of 99.45%, outperforming
other commonly-used PVC detection algorithms.

Discussion: By integrating MTF and BiFormer, we effectively detected PVCs,
facilitating an increased convergence between medicine and deep learning
technology. We hope our model can help contribute to more accurate
computational support for PVC diagnosis and treatment.

KEYWORDS

premature ventricular contraction, deep learning, electrocardiogram,Markov transition
field, BiFormer

1 Introduction

Arrhythmia is one of the key manifestations of cardiovascular diseases, with premature
ventricular contractions (PVCs) being particularly prevalent worldwide (Wang, 2021;
Wang et al., 2021). Studies have reported that the detection rate of PVCs among
patients undergoing Holter monitoring can reach up to 75% (Panizo et al., 2018).
They arise from ventricular ectopic beats, which alter electrical impulse conduction
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pathways, resulting in wide and distorted QRS complexes
(Abdalla et al., 2019). Frequent and prolonged PVCs can lead to
a series of severe cardiovascular complications, such as myocardial
infarction, heart failure, and even sudden cardiac arrest (Xu et al.,
2024). Moreover, existing research has indicated that PVCs are
closely associated with cardiomyopathy (Myadam et al., 2022).
Persistent ventricular premature depolarization can lead to left
ventricular structural remodeling and impaired contractile function,
ultimately progressing to PVC-induced cardiomyopathy (PVICM)
(Shen et al., 2023). Furthermore, studies have shown that when
the PVC burden exceeds 0.12%, the patient’s risk of mortality may
increase by as much as 31% (Dukes et al., 2015). However, PVCs
can be quite subtle, and many patients overlook or misinterpret
their symptoms, which can lead to potentially serious consequences.
Thus, timely and accurate detection of PVCs is crucial for diagnosing
and preventing potential cardiac risks.

Electrocardiography (ECG) is cheap and non-invasive, and has
become one of the most common methods for detecting cardiac
disease (Jangra et al., 2021; Bachtiger et al., 2021). However,
ECG data are often subject to various noise interferences, and
preprocessing signals to enhance quality is highly important. The
Sparse Low-Rank Filter (SLRF) (Karthikeyani et al., 2024) is an
effective signal denoising tool. Its sparsity helps identify and remove
irregular and isolated noise points, and then simplifies the original
signal to a representation with only a few non-zero elements, which
reduces the computational complexity of data processing. The low-
rank aspect focuses on the global structure of the signal, revealing
the data’s main features and reducing redundancy. Thus, together,
SLRF’s sparsity and low-rank properties enhance signals and lead to
improved denoising performance.

ECG data are one-dimensional time series, and are associated
with certain limitations in classification and detection tasks
(He et al., 2019; Li et al., 2022). Specifically, one-dimensional data
can only capture continuous changes and cannot effectively reflect
local features, leading to informational loss. Thus, we chose to
encode these time series data into a higher-dimensional image
format. This transformation preserved temporal information and
leveraged the successful architectures of deep learning in computer
vision to identify complex structures within the time series. Several
studies have converted ECG signal time series into images to
reflect complex features. Deng et al. (2024) utilized Continuous
Wavelet Transform (CWT) for time-frequency representation to
effectively detect atrial fibrillation. CWT can simultaneously analyze
signals in both the time and frequency domains, providing multi-
resolution analysis and capturing signal variations across different
frequency ranges, thereby more accurately extracting key features
from the electrocardiogram signal. Ammour et al. (2023) employed
Short-Time Fourier Transform (STFT) for feature extraction.
By segmenting the ECG signal into smaller windows and then
applying STFT to each segment, the signal is transformed from
the time domain to the frequency domain, generating a time-
frequency spectrogram. Spectrum features are extracted from the
time-frequency spectrogram, enabling effective description of the
properties of ECG signals. Markov Transition Field (MTF) (Wang
and Oates, 2015), a complex and flexible feature extraction
method, was used to construct signal spatial structures, where
each signal point represented both the voltage at a specific time
and the transition probabilities with other signal points. These

changes provided additional information about the signal’s dynamic
behavior, captured changes in local waveforms, and enhanced
the expression of complex features. MTF retains the temporal
correlation of the original signal across different time intervals by
considering the dependency between each quantile and time step.
MTF also effectively models each signal’s temporal dependency,
allowing it to handle a variety of time series data and making
it suitable for stationary and non-stationary signals. Additionally,
by calculating transition probabilities, MTF effectively suppresses
irrelevant signal fluctuations and highlights significant changes
within it. Compared to existing methods, MTF can precisely
capture subtle pathological changes, enhancing the ability to process
complex signals, reducing human bias and diagnostic errors,
and improving the accuracy of disease diagnosis and treatment
outcomes. This meets the clinical demand for efficient and precise
diagnosis.

In clinical practice, with the continuous advancement of
physiological signal acquisition technologies, the monitoring scope
and duration of physiological signals such as ECGs have significantly
expanded, leading to a substantial increase in data volume. These
signals are typically characterized by high dimensionality, strong
temporal dependencies, and non-stationarity, resulting in a marked
increase in data complexity. Efficiently processing such large-scale
and complex data to extract diagnostically valuable information has
become a critical challenge in the field of intelligent analysis of
physiological signals. In recent years, deep learning methods have
demonstrated excellent performance in automatedECGanalysis due
to their powerful data representation and learning capabilities, and
have gradually emerged as a research focus. In particular, Vision
Transformer (ViT) have significant signal detection advantages,
both because they have channel-wiseMulti-Layer Perceptron (MLP)
blocks that can be used for per-location embedding, and because
they harness attention mechanisms to model relationships across
different positions (Vaswani et al., 2017). Currently, many related
works have effectively implemented PVC detection based on the
Transformer architecture. Nakasone et al. (2024) proposed a hybrid
method combining ResNet50 and Transformer models, achieving
promising results in PVC detection. The convolutional layers of
ResNet50 effectively extract spatial features from ECG signals, while
the Transformer leverages its self-attention mechanism to further
enhance the capture of temporal information. This multi-level
feature fusion allows the model to classify PVC signals with greater
accuracy. Meng et al. (2022) combined the LightConv Attention
(LCA) structure with CNN and attention mechanisms to achieve
PVC detection. By embedding CNNwith attentionmechanisms, the
model strengthens the weighting of critical heartbeat morphology
features in ECG signals, enabling effective capture of PVC-related
features. One of the key attributes of Transformers are their
global receptive fields, which can effectively capture long-range
dependencies. However, this capability requires pairing each input
position with all other positions prior to calculation, resulting in a
computational complexity that grows quadratically with the scale of
the input data. Consequently, the high computational complexity
of Transformers has garnered considerable research attention.
Specifically, an increasing number of researchers have sought to
alleviate memory pressure by incorporating sparse attention into
ViT (Liu et al., 2021; Wang et al., 2023; Tu et al., 2022). However,
traditional sparse attention models rely on fixed sparse patterns,
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and cannot dynamically adjust attention allocation based on input
data, which limits models’ expressive power. To address these
issues, we introduced BiFormer, a state-of-the-art Transformer
model which harnesses a dynamic attention approach to enhance
model flexibility and computational efficiency by adapting to
different inputs (Zhu et al., 2023). The BiFormer model uses a
BRA mechanism as its fundamental building block. It first trims
the constructed region-level affinity graph, retaining only the top k
most relevant regions in each area, which efficiently filters the most
pertinent key-value pairs at a coarse-grained regional level. Fine-
grained token-to-token attention is then applied to the remaining
candidate region set. However, these tokens are distributed
across different regions, which presents significant computational
challenges. Thus, to improve computational efficiency, we collected
the dispersed tokens and performed dense matrix multiplication.
Moreover, BiFormer aligns well with the structural characteristics
and clinical diagnostic requirements of ECG signals. ECG signals
not only exhibit distinct local waveform structures and periodic
fluctuations, but also demonstrate long-range dependencies across
cycles. BiFormer effectively extracts local key features at the regional
level through a hierarchical attention mechanism, while utilizing
token-level dynamic attention to precisely capture global rhythm
information, which perfectly matches the local-global nature of
ECG signals. On the other hand, in addressing the high non-
stationarity of ECG signals, BiFormer’s dynamic sparse mechanism
adapts the attention connections based on the input, allowing
the model to more effectively focus on critical diagnostic bands,
thereby enhancing its discriminative power and generalization
performance. Therefore, BiFormer exhibits significant advantages
in terms of modeling capacity, adaptability, and computational
efficiency, making it particularly well-suited for ECG classification
tasks and motivating its application in our study.

Here, we first applied SLRF to denoise the ECG data and
enhance its quality. We next used MTF to transform the one-
dimensional time series data into two-dimensional images, enabling
a more comprehensive capture of the ECG’s spatiotemporal
features. We then used the BiFormer model’s BRA mechanism
to optimize information processing for key regions. Experimental
results indicate that our proposed method outperforms previous
approaches in effective PVC detection.

2 Materials and methods

Early PVC detection is crucial for preventing adverse
cardiovascular outcomes, especially in high-risk populations. Early
detection can help point out structural cardiac abnormalities,
allowing for timely interventions and treatments that reduce the
risk of more severe complications. Thus, we propose a novel PVC
detection framework, illustrated in Figure 1, which consists of
three components. Module (a) involves preprocessing data using
SLRF to enhance ECG signal quality. We begin by collecting input
signals from the MIT-BIH arrhythmia database (Moody and Mark,
2001). SLRF preprocesses the input signals by representing the
input matrix as a combined sparse low-rank matrix and Gaussian
noise matrix. This approach minimizes the squared difference
between the denoised signal and the original signal. The nuclear
norm captures the low-rank characteristics of the ECG signals,

which preserves their overall structure and trends. The sparse
regularization term also facilitates effective extraction of signal
features, reducing noise interference. Module (b) involves feature
extraction from ECG signals using MTF. We convert the one-
dimensional time series signals into two-dimensional images to
capture spatiotemporal features. First, we discretize the time series
and map it to quantile intervals. Next, we construct a Markov
transition matrix using a first-order Markov chain, and then expand
it to MTF by incorporating spatial location information from the
time series data. This process ultimately generates two-dimensional
feature maps for model training, allowing for more comprehensive
signal capture. Module (c) uses the BiFormer model to classify ECG
signals. This model incorporates BRA. To reduce computational
complexity, we divide the input two-dimensional feature maps
into multiple non-overlapping regions, each with several feature
vectors. We subsequently generate queries, keys, and values via
linear projection, and then construct an affinity graph based on
inter-regional relationships to determine each region’s relevance to
the others. To filter out redundant information, the BiFormer model
performs refined attention calculations on selected regions, with a
focus on the most informative features. The detailed structure of
the BiFormer block is shown on the right side of module (c). At the
beginning of each BiFormer block, a 3 × 3 depthwise convolution is
used to implicitly encode relative positional information, enabling
the model to understand the relationships between differing
locations. The model then sequentially harnesses the BRA module
and the MLP module to achieve cross-location modeling and
enhance each location’s feature representation capability, striking
a balance between performance and computational complexity.
The local context enhancement further optimizes the extracted
features, improving the model’s ability to capture both local and
global patterns. The BiFormer model employs a four-stage pyramid
structure, where the spatial resolution of the input gradually
decreases, while the number of feature channels increases with
network depth. In the first stage, overlapping patch embedding is
used to better capture local information. In the second through
fourth stages, the network’s width (basic channel count, C) and
depth are adjusted, and a patch merging module progressively
reduces the spatial resolution of the input while increasing channel
count. This design aims to reduce computational complexity while
preserving key information. The optimized features are then fed
into the classification layer for precise ECG signal classification.
This entire process ensures the is capable of recognizing complex
signals and achieves a balance between computational efficiency
and model performance.

2.1 Dataset

To conduct a comparative study with existing classification
models, we selected the widely used MIT-BIH arrhythmia database
for ECG signal processing. This dataset includes 30 min of dual-
channel ECG recordings from 48 patients, each recorded at
a sampling rate of 360 Hz during a 30 minute run of Holter
monitoring, providing approximately 110,000 annotated heartbeat
instances. In this study, we performed data selection by excluding
records 102, 104, 107, and 217, as they contain paced beats, which
differ significantly in morphology and characteristics from normal
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FIGURE 1
Experimental flowchart. (a) Pre-processing (SLRF); (b) Feature extraction (MTF); (c) Classification model (BiFormer).

heartbeats, making them unsuitable for the focus of our analysis.
Each ECG sample includes two leads, one of which is MLII, while
the second lead is one of the following: V1, V2, V4, or V5. For
the purpose of this study, only the MLII single lead was utilized.
To enable effective detection of PVCs, the MIT-BIH arrhythmia
database was categorized into three classes: normal beats (N), PVCs
(V), and other types. The classification scheme follows the AAMI
standard and PhysioNet guidelines, as detailed in Table 1.

We used a weighted loss function to handle the class imbalance
problem. Specifically, we adjusted the weight parameter of the
CrossEntropyLoss function using inverse frequency weighting,
where the weights are inversely proportional to the frequency of
each class. The weight calculation formula is as follows: weighti =
Ntotal
Ni

, whereNtotal = 100,733 is the total number of samples across all
classes, andNi is the number of samples in class i. Using thismethod,
the calculated weights are approximately, weightN ≈1.35, weightV
≈14.59, weightother ≈5.22. Finally, the weighted loss function
adjustment is implemented as follows: “weights = torch.tensor
([1.35, 14.59 5.22]).float ().to (device); nn.CrossEntropyLoss (weight
= weights); ”

To prevent model overfitting, we implemented a ten-fold cross-
validation strategy (Awale and Reymond, 2018). Specifically, the
dataset was randomly partitioned into ten subsets using stratified
sampling to ensure that the class distribution within each subset
was consistent with that of the entire dataset. In each fold of
the 10-fold cross-validation, nine subsets were used for training
and the remaining one for validation. The dataset comprises a
total of 100,733 samples, resulting in approximately 10,073 samples
in each test fold. Based on the dataset distribution, the N type
accounts for approximately 74%, the V type accounts for about
6.8%, and the other types account for about 19.2%. Therefore,
there are approximately 7,454 samples of the N type, 685 samples
of the V type, and 1,934 samples of the other types in the
dataset. The cross-validation procedure was repeated ten times,
with each subset serving as the validation set once, ensuring robust
model evaluation. Importantly, the training and validation sets
were constructed from ECG recordings of different individuals to
prevent any overlap of patient data between training and testing,
thereby minimizing the risk of information leakage and overfitting.
In each iteration, the model was trained on the training set and
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TABLE 1 Categories of the MIT-BIH arrhythmia database.

AAMI EC57 heart beat class MIT-BIH heartbeat types Number Our classification

N

Normal beat (N) 74,546 N type

Left bundle branch block (L) 8,075 Other types

Right bundle branch block (R) 7,259 Other types

Atrial escape beat (e) 16 Other types

Nodal (junctional) escape beat (j) 229 Other types

S

Atrial premature beat (A) 2,546 Other types

Aberrated atrial premature beat (a) 150 Other types

Nodal (junctional) premature beat (J) 83 Other types

Supraventricular premature beat (S) 2 Other types

V
Premature ventricular contraction (V) 6,903 V type

Ventricular escape beat (E) 106 Other types

F Fusion of ventricular and normal beat (F) 803 Other types

Q

Paced beat (P) 0 Other types

Fusion of paced and normal beat (f) 0 Other types

Unclassified beat (U) 15 Other types

TABLE 2 Model performance metrics.

Params FLOPs Throughput images/second Training time (s)/Epoch

13.14 M 2.23 G 92.52 23.67

evaluated on the corresponding validation set. Upon completion
of all iterations, the evaluation metrics from each fold were
aggregated and averaged to obtain the final performance assessment
of the model.

Experiments were conducted using a single GeForce RTX 4090
(24 GB) GPU within the framework of PyTorch 2.5.1, CUDA 12.4,
and a CPU (16 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @
2.10 GHz). The hyperparameters used were: epoch = 100, batch size
= 64, dropout = 0.2, depth = [2, 2, 8, 2], embed_dim = [64, 128, 256,
512], and mlp_ratios = [3, 3, 3, 3]. The specific model performance
metrics are shown in Table 2.

2.2 Pre-processing

Various factors, including baseline drift, electrode displacement,
respiratorymovements, andmuscle tremors, can interfere with ECG
data collection, distorting the ECGwaveformand adversely affecting
subsequent analyses (Satija et al., 2017; Kumar et al., 2021). Thus,
denoising ECG signals is important prior tomodel classification and
detection.

Here, we used SLRF (Karthikeyani et al., 2024) to denoise
ECG signals. By combining sparse representation and low-rank
decomposition, SLRF enhances ECG signal quality. The method’s
sparse representation ensures that critical features within the ECG
signals are preserved, while the low-rank decomposition captures
varying trends within the ECG data. Together, these approaches
provide a comprehensive method for denoising ECG signals.

For an input matrix X ∈ Rp×q, where R denotes the set of real
numbers, the entry-wise squared norm ∥ X ∥2e and the entry-wise L1
norm ∥ Y∥1 are defined as shown in Equation 1:

∥ X ∥2e : =∑
i,j
 |Xi,j|

2and∥ X ∥1: =∑
i,j
 |Xi,j| (1)

where the nuclear norm is denoted as ∥ X ∥∗ , and is represented by
the singular values matrix X, as shown in Equation 2:

∥ X ∥∗: =
h

∑
i=1
 σi(X) (2)

where σi(X) denotes the singular values of matrix X ∈ Rp×q, where
h = min (p,q). The nuclear norm L1 relaxes both non-convex
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positioning and sparsity constraints, enabling greater flexibility in
managing complex constraints during the optimization process.
When the nuclear norm is applied to a singular value matrix,
it is equivalent to the L1-norm. This equivalence provides a
powerful tool for low-rank matrix reconstruction and sparse
representation, and enhances computational efficiency and stability
when processing high-dimensional data.

A noisy matrix X ∈ Rp×q can be expressed as X = Y+W,
where Y ∈ Rp×q represents a sparse, low-rank matrix, and W ∈ Rp×q

represents a Gaussian noise matrix. To effectively estimate Y, the
resulting optimization problem should be solved to promote both
sparsity and low-rank characteristics, as detailed in Equation 3:

argminY∈Rp×q {0.5∥ X−Y∥2e + λ∘∥ Y∥∗ + λ1∥ Y∥1} (3)

where λi = αi σ ⩾ 0(i = 0,1) represents the regularization factors and
σ denotes the noise standard deviation. λᵢ is computed based on
the noise standard deviation σ and the corresponding weighting
coefficient αᵢ for the element-wise L1 norm ∥ Y∥1 and the nuclear
norm ∥ Y∥∗ as well as the corresponding weighting coefficient αᵢ,
following the formulation: λi = αiσ ⩾ 0.The noise standard deviation
σ is automatically estimated from the input based on the actual
noise level, while αᵢ is a trainable model parameter that is adaptively
updated during the training process. The parameters αi(i = 0,1) are
fine-tuned to maximize the signal-to-noise ratio within the sparse
low-rank method.

2.3 ECG feature extraction

The Markov Transition Field (MTF) (Wang and Oates, 2015)
is a method that transforms one-dimensional vibration signals
into two-dimensional images using Markov transition probabilities.
These two-dimensional images represent the complex structure
and dependencies within the time series in a spatial manner,
allowing for a more intuitive visualization of the signal’s periodicity,
trends, correlations, and other features. This approach enables
effective capture of ECG characteristics. It allows for more precise
extraction of spatiotemporal features from local patterns and
efficiently captures global patterns and long-range dependencies,
thus enhancing the effectiveness of model training.

To effectively adapt time-series data to the Markov model,
continuous data must be discretized. Each dimension of the time-
series data X = {x1,x2,xi,⋯xn} is divided into Q quantile bins.
By identifying the quantiles, each value  xi is mapped to the
corresponding quantile qi, and a Q×Q adjacency-weighted matrix
(theMarkov transitionmatrix) is constructed.The quantiles are then
converted into the Markov transition matrix W using a first-order
Markov chain along the time axis, as expressed in Equation 4:

W =

[[[[[[[

[

w11 ⋯ w1Q

w21 ⋯ w2Q

⋮ ⋱ ⋮

wQ1 ⋯ wQQ

]]]]]]]

]

(4)

where wij represents the probability that quantile qi follows quantile
qj, wij∣P(xt∈qi∣xt−1∈qj)

.

The Markov transition matrix assumes that state transitions
depend only on the current state, ignoring the conditional
relationship between the time series and the time step dependency
(Abdel-Galil et al., 2004). In contrast, the MTF both considers
the transition probabilities between states and incorporates spatial
positional information. By arranging the transition probabilities
in chronological order, MTF extends the concept of the Markov
transition matrix, and constructs a more comprehensive Markov
transition fieldM, as expressed in Equation 5:

M =

[[[[[[[

[

m ij|x1,x1 … m ij|x1,xn

m ij|x2,x1 … m ij|x2,xn

⋮ ⋱ ⋮

m ij|xn,x1 … m ij|xn,xn

]]]]]]]

]

(5)

where mij denotes the transition probability from quantile qi to
quantile qj,m ij|xi∈qi,xj∈qj .

2.4 ECG classification model

BiFormer (Zhu et al., 2023) achieves an improved
balance between computational efficiency and performance by
incorporating sparsity and adopting the BRA mechanism. The
traditional ViT, due to its self-attention mechanism, experiences
a significant increase in computational complexity, especially
with large-scale inputs. As the image size and model parameters
increase, the computational cost grows accordingly. This makes ViT
computationally expensive and less efficient when handling high-
resolution images or large-scale datasets. Particularly in the context
of complex tasks, the computational burden becomes a bottleneck.
In contrast, BiFormer significantly reduces computational
complexity by introducing sparsity and the BRA mechanism.
Specifically, BiFormer employs a query-adaptive sparse attention
mechanism that selects themost relevant key-value pairs at a coarse-
grained, regional level, avoiding the need to process key-value pairs
at every position. This significantly reduces the computational load.
By doing so, BiFormer improves computational efficiency while
maintaining model performance. Especially when dealing with
complex tasks, BiFormer makes more efficient use of computational
resources and focuses on the most critical components, leading
to improved performance. Overall, BiFormer achieves a better
balance between computational efficiency and accuracy by reducing
computations for irrelevant parts, resulting in optimized trade-offs
between computational load and performance.

Through sparse attention and region-level processing, BRA
reduces computational complexity and optimizes memory access.
The expression for the total computation is shown in Equation 6:

FLOPs = FLOPsproj + FLOPsrouting + FLOPsattn

= 3HWC2 + 2(S2)2C+ 2HWkHW
S2

C

= 3HWC2 +C(2S4 + k(HW)
2

S2
+ k(HW)

2

S2
)

≥ 3HWC2 + 3C(2S4 · k(HW)
2

S2
· k(HW)

2

S2
)

1
3

= 3HWC2 + 3Ck
2
3 (2HW)

4
3

(6)
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where H represents the height of the input feature map, W
represents the width of the input feature map, C is the token
embedding dimension, and k is the number of involved regions.
For this formula, the FLOPs are composed of three parts: FLOPsproj
(projection of Query, Key, and Value), FLOPsrouting (routing
operation), and FLOPsattn (token-to-token attention).

For FLOPsproj,in the multi-head self-attention mechanism
(MHSA), the Query, Key, and Value are derived through linear
transformations from the input feature map (typically a tensor in
the embedding space). The computational cost of these projection
operations involves matrix multiplication, specifically:

The input feature map is a tensor of size H × W × C, where H
andW represent the height andwidth of the image, respectively, and
C denotes the embedding dimension. When computing MHSA, we
need to map the input feature map to the spaces of Query, Key, and
Value. The computational cost for each projection operation is H ×
W × C × C, as each input channel is mapped to a new embedding
space.Since there are three projection operations—Query, Key, and
Value—the total computational cost is given by Equation 7:

FLOPsproj = 3HWC2 (7)

For FLOPsrouting ,the routing operation is a distinctive feature
of BiFormer, which leverages a regional similarity map to perform
dynamic routing. In this process, the similarity between each pair of
regions is computed, and the top-kmost relevant regions are selected
based on these similarity scores. Specifically:

Assuming the image is divided into S2 regions, the
computational complexity of calculating the similarity map between
all regions is (S2) × (S2). Each region has a spatial size of H ×
W, and for each region, the computational cost is proportional to
the embedding dimension C. The similarity map between regions
involves all regions, and thus requires the use of C-dimensional
features for computation. Specifically, twomatrixmultiplications are
needed: one to compute the pairwise similarity between regions, and
another to select the most relevant regions. Accordingly, the FLOPs
required for the routing computation are summarized in Equation 8:

FLOPsrouting = 2(S2)
2C (8)

For FLOPsattn., after the routing operation, each region selects k
tokens, which are subsequently fed into the attention mechanism.
Given that each region contains HW

S2
spatial positions, self-attention

computations are performed at each position within the region.
Here, the attention computation involvesH ×W × k tokens (whereH
andW denote the height and width of the image, respectively), and
the computational cost is proportional to the embedding dimension
C of each token.

Additionally, since the size of each region is S2, and each token
will compute similarity with k tokens, the overall computational
complexity is summarized in Equation 9:

FLOPsattn = 2HWkHW
S2

C (9)

The factor of two arises because each attention operation
requires computing the dot product between the query and key.

To reduce redundant computations, the workload is decreased
through region partitioning, as expressed in Equation 10:

S = (k
2
(HW)2)

1
6 (10)

where S represents the region partition factor. By adjusting the
region partition factor based in the above formula, BRA achieves
a computational complexity of O((HW)

4
3 ), which is lower than

that of the original vanilla attention. For better understanding,
a representative example of vanilla attention is the multi-head
self-attention mechanism commonly used in the Transformer
architecture (Vaswani et al., 2017), as shown in Equation 11:

Attention(Q,K,V) = softmax(QK
T

√C
)V,

MHSA(X) = Concat(head0,head1, ...,headh)Wo,

headi = Attention(XW
q
i ,XW

k
i ,XW

v
i )

(11)

where Q, K, and V represent the query, key, and value matrices,
respectively; softmax is used to assign weights to all keys for each
query; a scalar factor√C is introduced to avoidweight concentration
and gradient vanishing; headi is the output of the ith attention head;
Wq

i ,W
k
i ,W

v
i are the corresponding input projection weights, and an

additional linear transformation with weight matrix Wo is used to
combine the outputs of all attention heads, where the computational
complexity is O((HW)2), and BRA offers a more advantageous
complexity in comparison.

To implement region partitioning and alleviate memory
pressure, we first divided a two-dimensional input feature map X
into S × S non-overlapping regions, such that each region contained
HW
S2

feature vectors. We then used a linear projection to derive the
query, key, and value tensors Q, K, and V, as shown in Equation 12:

Q = XrWq,K = XrWk,V = XrWv (12)

where Wq,Wk, and Wv are the projection weights for the query,
key, and value, respectively. r refers to the “reshaped” version of the
input matrix X.

Region-to-region routing with directed graphs determined the
attention relationships between regions. By averaging the features
within each region, we obtained the region-level query and key
matrices Qr and Kr.Then, by multiplying Qr with the transposed Kr,
we calculated the adjacencymatrix of the region-level affinity graph,
as shown in Equation 13:

Ar = Qr(Kr)T (13)

where Ar represents the degree of association between regions.
The entries in the adjacency matrix Ar measure the semantic

similarity between two regions. Next, the affinity graph is pruned,
retaining only the top-k connections for each node, resulting in the
routing index matrix, as shown in Equation 14:

Ir = topkIndex (Ar) (14)

where Ir represents the indices of the top k strongest connections
between each region and the other regions.

Using the region-to-region routing index matrix Ir, we can
perform fine-grained token-wise attention operations. For each
query token in region i, it will attend to the key-value pairs of the k
routing regions indexed by Ir (i,1), Ir (i,2), ., Ir (i,k). Since each query
accesses all the key-value pairs of the routing regions, in order to
improve memory access efficiency, we can pre-collect the key-value
pair tensor, as shown in Equation 15:

Kg = gather (K, Ir),Vg = gather (V, Ir) (15)
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where Kg and Vg are the key and value tensors.
To make the model more efficient when handling

high-resolution or large-scale data, we applied fine-grained
token-to-token attention to the collected key-value pairs,
as shown in Equation 16:

O = Attention (Q,Kg,Vg) + LCE (V) (16)

where LCE refers to the local context enhancement term.
After performing the attention operation, the output features

were fed into the classification layer, which extracted and used key
features from the ECG signal to achieve accurate data classification.

3 Results

3.1 Eigenvalue analysis

Here, we visualized the original signals and their corresponding
MTF representations for different categories of ECG signals,
as shown in Figure 2. The left panel displays the raw ECG signals,
while the right panel presents the corresponding MTF images.
The direction of signal transitions reflects the trend of changes
in the ECG signal. In the normal ECG category (N), electrical
cardiac activity follows a regular sequence, and the transition flow
is orderly and continuous, indicating normal cardiac function. In
contrast, in the two abnormal ECG categories, the transition flow
is disordered and/or chaotic, with loops, reverse flows, delays,
or jumps, all reflecting abnormal cardiac electrical activity. This
result suggests that MTF images can capture significant differences
between ECG signal types, providing strong visual evidence for
abnormal ECG detection and laying the foundation for subsequent
classification tasks.

3.2 Performance evaluation

We compared relevant studies based on the MIT-BIH
arrhythmia database and evaluated the performance of BiFormer
against seven recently proposed algorithms. In this study, we
adopted micro-average as the primary performance evaluation
metric. The class distribution in the MIT-BIH arrhythmia database
is imbalanced, with normal beats significantly outnumbering
abnormal types such as PVC. Micro-average calculates the
prediction results across all classes uniformly, which better reflects
the model’s overall performance on the entire dataset and provides a
more comprehensive assessment of the detection system’s overall
classification ability. Accuracy, specificity, recall, and F1 score
are commonly used evaluation metrics for classification models.
Accuracy represents the proportion of correctly predicted samples
to the total number of samples, as shown in Formula 17:

Accuracy = TP+TN
TP+TN+ FP+ FN

(17)

Specificity measures the proportion of actual negative samples
that are correctly predicted as negative, as shown in Formula 18:

Specificity = TN
TN+ FP

(18)

Recall measures the proportion of actual positive samples that
are correctly predicted as positive, as shown in Formula 19:

Micro_R =
∑n

i=1
TPi

∑a
i=1

TP+∑a
i=1

FNi
(19)

The F1 score is the harmonic mean of precision and
recall, providing a balanced consideration of both metrics,
as shown in Formula 20:

Micro_F1 =
2× ∑ni=1TPi
∑ni=1TPi+∑

n
i=1FP
×Micro_R

∑ni=1TPi
∑ni=1TPi+∑

n
i=1FP
+Micro_R

(20)

The experimental results are shown in Table 3. BiFormer
achieved the best performance across multiple metrics, with an
accuracy of 99.45%, specificity of 99.81%, recall of 99.89%, and
an F1-score of 98.86%. Compared to existing methods, BiFormer
showed a 0.33% improvement in accuracy. While other algorithms
performed well in ECG classification, our model exceled in
capturing both global and local information, significantly improving
the effectiveness of signal classification. This finding highlights
BiFormer’s remarkable adaptability and potential.

Bayesian analysis (Lin et al., 2010) is a probabilistic evaluation
method that is used to quantitatively compare performance
differences between algorithms. It first assumes that the
performance differences between any two algorithms follow a
normal distribution, and then selects a prior distribution to express
initial beliefs about these differences. Then, using actual data, the
probability of observing the current data for a range of difference
values is calculated. The posterior distribution is obtained via
Bayes’ theorem, which intuitively quantifies the performance
differences between the two algorithms. We used Bayesian analysis
to evaluate the performance differences between BiFormer and
other algorithms (Figure 3). These results further demonstrated
that our novel method had exceptional performance in multiple
comparative experiments, outperforming the latest algorithms in
the vast majority of cases.

Confusion matrices (Valero-Carreras et al., 2023) can be used
to evaluate classification model performance, as they illustrate
the comparison between predicted and actual results for different
categories, and reveal a given model’s performance across these
categories. As shown in Figure 4, our proposed model effectively
differentiated between “N type” and “V type” categories, with all
samples accurately predicted. Additionally, the model demonstrated
exceptional accuracy in identifying the “Other types” category, with
99.03% of samples correctly classified.These results indicate that the
proposed method shows stability and superior performance in ECG
classification.

3.3 Feature visualization

The t-distributed Stochastic Neighbor Embedding (t-SNE)
(Wang et al., 2018) is a commonly-used dimensionality reduction
technique that transforms the similarities of high-dimensional data
into probability distributions, mapping the data into a lower-
dimensional space for feature visualization. The t-SNE visualization
of ECG data before and after classification is shown in Figure 5,
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FIGURE 2
The original ECG signal plots and corresponding MTF images for different categories. The left side shows the raw ECG signals, and the right side
displays the corresponding MTF representations: (A) N type; (B) V type; (C) Other types.

where 0 represents the N type, 1 represents the V type, and 2
represents Other types. As can be seen in Figure 5A, the three types
of ECG signals exhibited scattered and disordered distributions,
indicating that their similarities were not prominent in the high-
dimensional space. In contrast, as Figure 5B shows, there was clearly
a separation between the three types of signals in the lower-
dimensional space.

Clinically, normal ECG, PVC ECG, and other types of ECG
represent different types of electrocardiographic signals, and the
differences between them are naturally reflected in the electrical
activity patterns of the signals. Normal ECG reflects the regular
electrical activity of the heart, with stable waveform morphology.
The characteristics of normal ECG signals lead to relatively
consistent features across samples. In contrast, PVC and other
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TABLE 3 Performance comparison table between our model and existing models.

Methodology Accuracy Specificity Recall F1-score

MS-DSwin-AL (Karthikeyani et al., 2024) 95.72 94.81 93.64 89.53

RBFNN (Kishore et al., 2022) 97.85 98.15 96.61 96.84

CNN + LSTM (Madan et al., 2022) 97.98 97.40 97.84 98.39

XAI (Raza et al., 2022) 98.25 97.87 98.44 97.42

CWGAN-GP (Ma et al., 2022) 98.68 98.72 97.39 97.06

MPA-CNN (Houssein et al., 2021) 98.95 96.84 98.13 98.37

HARDC (Islam et al., 2023) 99.12 98.61 98.73 98.51

Proposed work 99.45 99.81 99.89 98.86

FIGURE 3
Bayesian analysis comparison between the proposed method and the
seven latest current methods.

types of ECG differ from normal ECG. t-SNE, by comparing
and distinguishing these signal features, is capable of identifying
the different characteristics of these signals and grouping them
into relatively independent clusters. On the algorithmic level, t-
SNE is an unsupervised learning method, particularly adept at
reducing the dimensionality of data while preserving its local
structure. By calculating the similarity between data points, it
groups similar signals together in a low-dimensional space, while
separating signals from different categories. The core idea of t-
SNE is to maintain the local structure of the data, preserving
the relative distances between data points as much as possible.
When signals exhibit similarity in certain features, t-SNE maps
these signals to adjacent positions in the low-dimensional space.
Consequently, the similarity of normal ECG signals (the regularity

FIGURE 4
MTF-BiFormer confusion matrix. The X and Y-axes: 0 represents N
type, one represents V type, and two represents Other types.

of their waveforms) causes them to cluster together in the low-
dimensional space, while PVC and other types of ECG signals,
having distinct characteristics, are separately clustered by t-SNE.
These findings suggest that our algorithm effectively captured the
feature differences between different categories of ECG signals.
They also confirm that the features of classified ECG signals are
distinguishable, supporting the effectiveness of our proposed PVC
detection method.

3.4 Ablation study

We conducted an ablation study to evaluate the
performance of different variants on the ECG classification
task. As shown in Table 4, the results demonstrate the superior
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FIGURE 5
Feature visualization map. (A) Raw data of different categories; (B) Features of different categories as output from the fully connected layers
of the model.

TABLE 4 Ablation study of different variants on the ECG
classification task.

Method Accuracy Specificity Recall F1

Raw ECG images 86.39% 81.95% 91.26% 88.55%

Wavelet
scalograms

95.19% 98.64% 97.85% 96.92%

Spectrogram 96.71% 98.25% 95.38% 97.54%

MTF + Swin
transformer

98.18% 98.05% 97.94% 98.26%

Proposed work 99.45% 99.81% 99.89% 98.86%

performance of the combination of MTF and BiFormer. MTF,
by revealing the state transitions, temporal dependencies, and
dynamic changes of the signal, effectively models the dependencies
within the time series. The spectrogram reflects the periodicity,
variability, and high-frequency components of the ECG signal,
and its performance is second only to MTF. In contrast, the
wavelet transform captures the signal’s variation across different
frequency scales but contains less information. While the raw
ECG signal image includes comprehensive data, much of the
key information is actually embedded within the complex
patterns and noise of the signal, making feature extraction
directly from the raw signal more challenging and impacting
classification performance. Furthermore, when retaining the MTF
method, we replaced BiFormer with the Swin transformer for
comparison, and the proposed method still achieved superior
performance.

4 Discussion

4.1 Comparison with other feature
extraction

Feature extraction is a critical component of signal processing
which aims to extract useful information from signals. Over the past
several years, an increasing number of researchers have chosen to
convert one-dimensional ECG signals into two-dimensional images
prior to classification, allowing for a more comprehensive capture
of signal features. ECG signals primarily reflect cardiac activity
via a variety of components, including P waves, QRS complexes,
and T waves, all of which are represented by temporal variations.
Therefore, capturing the temporal features of these signals is crucial
for effective ECG feature extraction. Yang et al. (2021), effectively
extracted deep features related to lead correlation and independence
in ECG signals from the time domain. They proposed a dual-
channel hybrid convolutional neural network for feature extraction
called THC-Net, which incorporates two structures: the Canonical
Correlation Analysis (CCA)-Principal Component Analysis (PCA)
convolutional network and the Independent Component Analysis
(ICA)-PCA convolutional network. The former maximizes the
correlations between leads through linear combinations in order
to capture the relationships between different leads, while the
latter decomposes the each lead’s signals into a set of independent
components to capture independent lead features. The combination
of these two structures allows for a more comprehensive ECG
signal capture. There have also been been numerous experiments
which have combined time and frequency domains for ECG
signal feature extraction. Wang et al. (2022), combined time and
frequency domains for ECG feature extraction by first using R-wave
localization to segment each heartbeat cycle. They then applied Fast
Fourier Transform (FFT) to extract frequency domain information
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for each heartbeat cycle, and by concatenating the extracted
time-domain and frequency-domain information, captured and
analyzed the signal. Although decomposing the signal into different
frequency components allows for feature extraction from multiple
angles, frequency domain analysis typically requires a longer signal
window, which may result in information loss related to the
original time domain, as well as higher computational complexity.
During PVCs, ECG signal wavelengths change rapidly, but time-
domain methods can capture these rapid changes, improving PVC
identification accuracy.

MTF is a popular image-encoding method that treats time
sequences as Markov processes. Based on the time domains,
the Markov processes are divided into multiple quantile bins to
construct a Markov transition matrix, capturing the transition
probabilities and dynamic correlations between different signal
bands and enabling a more comprehensive extraction of ECG signal
features in the time domain. By capturing the transitional patterns
between different states throughout the time series, MTF also
indirectly reflects signal frequency changes, where high-frequency
signals typically lead to more frequent state transitions, while low-
frequency signals result in fewer transitions. Additionally, MTF
considers the spatial variations of ECG signals, thus reflecting the
state correlations between time points and describing the transition
patterns of these states across different locations. By combining both
time and spatial information, MTF can capture local details and
global signal trends, providing more accurate information for ECG
classification.

MTF, by modeling the temporal transition patterns of
ECG signals and the dynamic relationships between states, is
capable of capturing long-range dependencies and frequency
variations in the signals, providing strong support for time-
domain feature extraction. However, MTF primarily focuses
on capturing global patterns and temporal dependencies of the
signal, which, while effective for handling long-term dependencies,
has limited ability to capture local details and abrupt changes
within the signal. The introduction of BiFormer addresses this
limitation. By combining MTF and BiFormer, the accuracy
and robustness of ECG signal classification can be effectively
enhanced.

4.2 Comparison with other classification
models

Over the past several years, an increasing number of researchers
have turned to classification models for ECG signal detection
(Table 5). For example, Jahmunah et al. (2022) were able to
successfully identify myocardial infarctions using the DenseNet
model. This model employs a dense connection structure, where
each layer is connected to all previous layers in the network
rather than just the directly preceding layer, which improves
classification efficiency and performance. Additionally, by applying
enhanced class activation mapping (Grad-CAM) techniques, the
model visualizes the ECG leads and waveform segments making
classification decisions. However, the dense connection structure
of DenseNet also leads to longer training times. Peng et al.
(2022) combined three classification models to achieve effective
arrhythmia classification. Their method used a one-dimensional

convolutional neural network (CNN) to extract spatial features,
and employed a bidirectional long short-term memory (Bi-
LSTM) network to capture temporal features. It also harnessed a
sequence-to-sequence (Seq2Seq) framework to handle input and
output sequences of varying lengths. The introduced attention
mechanism allowed the decoder to focus on the input parts that
were most relevant to the output, which improved classification
accuracy and model performance while also effectively addressing
the complexity of spatiotemporal features and class imbalance
in ECG data. However, the complexity of this model leads to
relatively high computational costs. Hao et al. (2023), achieved
good results in signal classification using an improved G2-
ResNeXt model. To better capture the low-frequency characteristics
of ECG signals, this model replaces the smaller convolution
kernels in the original ResNeXt with larger ones, allowing for
more comprehensive signal capture and the reduction of noise
interference. It also uses hierarchical convolutions to progressively
extract local and global features, which enhances classification
capabilities. However, although G2-ResNeXt effectively extracts
local spatial features, it may have insufficient robustness to
noise. Qin et al. (2024) improved ECG signal classification
performance using a Self-Organizing Neural Network (SelfONN).
Thismodel allows node operators to dynamically adapt and optimize
depending on the specific connection weights that are generated
during the training process, which improves generalizability when
handling multi-label classification tasks. However, because the
SelfONN network has a relatively fixed structure, it may be
vulnerable to information loss or model overfitting when processing
highly variable and complex data. Ge et al. (2024) employed
a Graph Convolutional Network (GCN) in their classification
model, and also used an ECG Knowledge Graph (ECG-KG)
framework. By performing convolution operations on the graph
structure of the knowledge graph, the model aggregates the feature
information of neighboring nodes layer-by-layer, which effectively
captures the complex relationships between different ECGwaveform
features. However, the model’s performance largely depends on
the construction of the input graph structure. Although existing
ECG signal classification methods have achieved certain results
in their respective fields, they generally face some common
challenges and limitations. Many methods, such as DenseNet and
Bi-LSTM, involve complex network architectures, which lead to high
computational costs and prolonged training times when processing
large-scale ECG data. Additionally, while these methods can
effectively extract spatiotemporal features, their ability to capture
long-range dependencies is relatively weak. This is particularly
problematic when dealing with complex cardiac diseases, where
capturing sustained signal changes and effectively identifying early
symptoms remains a significant challenge. Furthermore, ECG-KG,
a framework based on graph convolutional networks, is capable of
capturing complex relationships between waveforms; however, it
is heavily dependent on graph structures, and its ability to handle
high-dimensional data still faces considerable challenges.

The Transformer architecture, by introducing the self-attention
mechanism, has demonstrated significant advantages in addressing
the aforementioned challenges. In vanilla attention, the MHSA is
employed to compute the relationships between various elements in
the input sequence.This process involves pairing each position in the
input sequence with all other positions to generate corresponding

Frontiers in Physiology 12 frontiersin.org

https://doi.org/10.3389/fphys.2025.1549380
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1549380

TABLE 5 Comparison of advantages and disadvantages of different models.Performance.

Method Advantage Disadvantage

DenseNet (Jahmunah et al., 2022) Enhance feature reuse to improve the model’s
representation capability and learning efficiency

Long training time

CNN + Bi-LSTM + Seq2Seq (Peng et al., 2022) Comprehensively extract spatial and temporal features
of ECG signals to enhance classification accuracy and
robustness

Low computational efficiency

G2-ResNeXt (Hao et al., 2023) Effectively extract local features Insufficient robustness to noise

SelfONN (Qin et al., 2024) Strong generalization ability High risk of overfitting

GCN (Ge et al., 2024) It effectively captures local topological information in
graph-structured data, particularly excelling at
modeling the relationships between nodes and their
neighbors

Strong dependency on graph structure

attention weights, thereby overcoming the issue of long-range
dependencies. Furthermore, compared to more complex models,
the Transformer improves training efficiency through parallel
computation, reducing computational costs and training time.
However, the computational complexity of this method grows
quadratically with the increase in input size, leading to significant
scalability issues. To address this, our proposed BiFormer adopts
a content-aware approach, computing only the key parts of the
input sequence that are relevant to the current task. In each layer,
BiFormer adaptively selects the paths that require deeper processing
based on the input features, thereby reducing computational
memory and enhancing the model’s performance. This provides
a more comprehensive and innovative solution for ECG signal
classification tasks.

4.3 Limitations and future research lines

In the field of signal analysis and detection, deep learning
models typically rely on large amounts of labeled data to improve
generalizability. However, ECG data collection is complex and
time-consuming, as it requires ensuring the stability of ECG
devices and active patient cooperation. Furthermore, due to factors
such as age, gender, lifestyle, and health conditions, different
patients’ ECG signals can exhibit significant variation. These
individual differences can make it challenging for models to
accurately recognize ECG features across diverse groups of patients,
which affects their reliability and effectiveness when clinically
applied.

In future research, we aim to establish a diverse ECG dataset
and develop advanced data augmentation techniques to ensure that
our model can effectively detect a wide range of ECG features. This
will help us address the substantial individual differences that are
present across different patient groups. We also plan to customize
model training based on specific patient characteristics, and to
explore the potential of personalized medicine in ECG analysis. By
applying artificial intelligence to advance cardiologic research, we
hope to contribute to further developments in medical technology
and machine learning.

5 Conclusion

PVCs are an early warning sign of many serious heart
conditions. Early and accurate detection of PVCs can help identify
potential cardiac abnormalities, enabling timely intervention to
prevent disease progression. Here, we combined MTF with a
BiFormer classification model to achieve effective and rapid PVC
detection. This approach aims to provide fast and efficient PVC
detection, offering significant value for clinical applications.

We selected a portion of the MIT-BIH arrhythmia database as
experimental samples. First, we applied SLRF to preprocess ECG
signals, removing noise while preserving key waveform details.
This method combines sparsity and low-rank techniques, making
the filter more robust to handle various noise sources. Next, we
used MTF for feature extraction. This method takes the transition
probabilities between states into account and integrates spatial
location information, thus effectively capturing spatiotemporal
features. Our combination strategy improved the model’s training
performance and significantly enhanced predictive accuracy,
making the model more efficient, particularly for complex datasets.
Finally, we used the BiFormer model for ECG signal classification.
This model leverages dynamic adjustment of BRA mechanisms
and adaptive sparse attention to accurately filter information.
Additionally, with its region-based partitioning strategy, BiFormer
maintains exceptional performance when handling high-resolution
data. Our approach effectively balanced computational efficiency
andmodel performance and achieved an overall accuracy of 99.45%.
By applying the MTF, one-dimensional temporal ECG signals are
transformed into two-dimensional images that preserve temporal
dependency structures, effectively enhancing the representation of
dynamic evolutions and key pathological features. Based on this,
we adopt BiFormer as the backbone network, which leverages the
BRA mechanism to conduct hierarchical feature modeling at both
the regional and token levels. This design substantially improves the
model’s sensitivity to both local waveform details and global rhythm
characteristics, while also optimizing computational efficiency. The
structured input provided by MTF is highly compatible with the
sparse attention architecture of BiFormer, achieving deep synergy
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between feature representation and model structure. As a result, the
proposed method enables accurate detection of PVCs in complex
ECG signals, offering a promising approach for intelligent clinical
diagnosis of PVCs.
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