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Gastrointestinal function and
microbiota in endurance athletes

Daichi Sumi1* and Yoshio Suzuki2*
1Institute of Sport Science, ASICS Corporation, Kobe, Japan, 2Graduate School of Health and Sports
Science, Juntendo University, Inzai, Chiba, Japan

The special issue “Physiological Aspects of Marathon Running” in “Frontiers in
Physiology” aims to evoke attentions to this field. In this minireview, the two
guest editors of the special issue introduce their interest in the gastrointestinal
(GI) functions with endurance running and gut microbiota onmarathon running.
Following the introduction, the first part summarized research examining
exercise-induced GI damage and methods to mitigate the damage. The latter
part summarized the influence of exercise on gut microbiota, and the gut
microbiota on endurance performance. From the brief overview above, this
minireview synthesizes current knowledge and identifies critical topics for future
studies for optimizing GI function and the gut microbiota in endurance athletes.
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1 Introduction

There has been extensive research on exercise training, recovery, and performance
in endurance athletes focusing on skeletal muscle, respiratory and circulatory function,
vascular function, and energy metabolism. However, recent research has emphasized the
role of the gastrointestinal (GI) tract, with a particular focus on “GI damage” and “gut
microbiota.” Keeffe et al. reported that marathon runners experienced bowel movements
(35%) and diarrhea (19%) after running, occasionally preventing them from running
(Keeffe et al., 1984). Runners often have more abnormalities in the lower digestive tract
than in the upper digestive tract (Peters et al., 1999). Presently, it is believed that 30%–70%
of athletes experience GI problems (de Oliveira and Burini, 2009; Coleman, 2019), although
one study suggests that the prevalence is not that high (ter Steege et al., 2008). Therefore,
for endurance athletes, the digestive tract is a vital organ for good training and athletic
performance.

The GI tract is responsible for the digestion and absorption of ingested nutrients
and acts as a protective barrier against bacterial translocation. Nevertheless, strenuous
exercise (e.g., prolonged exercise) decreases GI function (Chantler et al., 2021). Prolonged
exercise increases both GI (small intestinal) damage and the permeability of the intestinal
barrier, which allows the translocation of bacteria and its unfavorable metabolites
(i.e., endotoxin) into the systemic circulation, induces systemic inflammatory and anti-
inflammatory cytokine secretion, increases body temperature, aggravates subjective GI
symptom (such as gastric distention and discomfort) (Chantler et al., 2021). Furthermore,
increased levels of intestinal fatty acid-binding protein (I-FABP) in the blood, an indirect
indicator of small intestinal damage, decrease the rate of digestion and absorption of
ingested nutrients (van Wijck et al., 2013). Considering that muscle protein synthesis
and muscle glycogen resynthesis are maximized in the early phase of postexercise period
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(Koopman et al., 2007; Beelen et al., 2010; Burke et al., 2017),
the increase in exercise-induced GI damage can delay the ingested
nutrients to themuscle, whichmight negatively impact post-exercise
recovery. Therefore, reducing GI damage following endurance
exercise is important in terms of improving endurance exercise
performance and promoting post-exercise recovery.

Several hundred species comprising 100 trillion bacteria are
estimated to live in the human gut. Endotoxins (Simons and
Kennedy, 2004) and an imbalance in the composition of the
gut microbiota (dysbiosis) (Bonomini-Gnutzmann et al., 2022;
Patel et al., 2024) have been implicated in lower GI symptoms
in endurance athletes. One study reported that the difference
in microbiota composition between rugby players and controls
led to the recognition of the impact of exercise on microbiota
(Clarke et al., 2014). Since then, several studies have been
conducted and a systematic review has been published on the
effects of physical activity (Aya et al., 2021) and endurance exercise
(Bonomini-Gnutzmann et al., 2022) on gutmicrobiota.Nonetheless,
discrepancies exist in those studies. For instance, Faecalibacterium
has been reported to be less abundant in marathon runners than
in sedentary controls (Kulecka et al., 2020); however, it has also
been reported to be more abundant in female endurance runners
than in age-matched controls (Morishima et al., 2021). Therefore,
to clarify this discrepancy, this review organizes the studies on gut
microbiota in terms of changes induced by a single exercise or race
and those induced by repeated training, with a comparison between
endurance athletes and nonathletes, and focuses on the types
of microbiota composition. Finally, directions for future studies
are suggested.

The purpose of this minireview is to introduce the changes in
GI function with endurance exercise and role of gut microbiota
in marathon running. This is one of the topics that we, the
two guest editors of the special issue “Physiological Aspects
of Marathon Running” in “Frontiers in Physiology”, would
like to explore in the issue. The literature reviewed in this
minireview was published or searched using PubMed by the 24th of
December 2024.

2 Gastrointestinal function with
endurance exercise

2.1 Endurance exercise and GI damage

Endurance exercise, particularly prolonged and/or high-
intensity endurance exercise, induces significant GI damage. During
exercise, blood flow is preferentially distributed to the skeletal
muscle, which temporarily reduces GI blood flow (van Wijck et al.,
2011). This hypoperfusion in the GI tract increases tissue hypoxia
and oxidative stress, resulting in intestinal cell damage and
alterations in endothelial tight junctions. In the past few years,
knowledge has accumulated on the factors that elevate GI damage
associated with endurance exercise. Regarding exercise intensity,
higher exercise intensity increases muscle blood flow, leading to
lower GI blood flow as well as higher GI damage (Edwards et al.,
2021). Conversely, differences in exercise duration may exert a
smaller effect on GI symptoms and GI damage (Edwards et al.,
2021; Gaskell et al., 2023). Focusing on the differences in exercise

modalities, cycling or running endurance exercise for 45 min at
relatively identical intensity (70% of V̇O2 max) resulted in greater
increases in blood I-FABP levels for cycling exercise than for
running exercise (Edwards et al., 2021). However, RPE and HR
during exercise in that study was significantly higher in the cycling
trial. In contrast, GI symptoms and GI damage after exercise in
the heat were similar between cycling exercise (55% of maximal
aerobic power) and running exercise (55% of V̇O2 max) when the
RPE, HR, and rectal temperature during exercise were matched
between the two trials (Costa et al., 2022). Further research is
necessary to explore the effects of different exercise modalities on
exercise-induced GI damage.

The effect of thermoregulation during exercise, involving
dehydration and heat stress, has been well documented as a
factor increasing exercise-induced GI damage. Costa et al. (2019)
demonstrated that hypohydration (3.1% of BW loss) during a 2-h
run significantly increased blood I-FABP concentrations associated
with exercise compared with euhydration (0.6% of BW loss).
They speculated that increased dehydration significantly reduced
GI blood flow followed by increased GI damage. Heat stress is
also a major factor that elevates GI damage (Snipe et al., 2018a;
2018b; Osborne et al., 2019b; Wallett et al., 2021; Sumi et al.,
2024). Exercise in the heat increases skin blood flow and sweat
volume to promote heat dissipation from the skin compared with
exercise in a thermoneutral environment, which induces a greater
reduction in GI blood flow and elevated GI damage. Therefore,
elevated core temperature and dehydration (or hypohydration) are
probably the most influential factors that increase GI damage.
Even under mild heat stress conditions (<30°C), prolonged exercise
such as a full marathon would cause significant GI damage
due to dehydration and elevated core temperature. In fact, a
large number of runners complain of GI symptoms during full
marathon races (Kelly et al., 2023).

In addition to heat stress, a hypoxic environment elevates
exercise-induced GI damage. Endurance running in hypobaric
hypoxia or normobaric hypoxia (fraction of inspired oxygen:
13.5%–13.8%) elevates GI damage and systemic inflammatory
responses compared with the same exercise (i.e., same running
velocity or same pedaling work load) in normoxia (Hill et al.,
2020; McKenna et al., 2022). Exercise in hypoxia reduces oxygen
saturation in the working muscle due to lower blood oxygen
saturation, which results in higher muscle blood flow than exercise
in normoxia (Casey and Joyner, 2012; Joyner et al., 2014). Therefore,
GI blood flow may be considerably reduced and GI damage may
be elevated after exercise in hypoxia. Nevertheless, the blood
I-FABP response after endurance running was similar between
hypoxia and normoxia when exercise intensity was relatively
matched (i.e., same % of V̇O2 max) between hypoxia and normoxia
(Nomura et al., 2024).

Various factors that elevate exercise-induced GI damage
have been demonstrated. Perhaps a greater reduction in GI
blood flow, especially due to increased body water loss and
redistribution of blood flow to the peripheral tissues (i.e., skin
and working muscle), increases exercise-induced GI damage.
Conversely, considering that elevated GI damage negatively
affects performance and promotes recovery after exercise, it is
necessary to develop strategies for reducing exercise-induced
GI damage.
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2.2 Effective strategy reducing
exercise-induced GI damage

GI damage following endurance exercise induces greater
inflammatory response, GI symptoms and lower absorbed and
digestive capacity of macronutrients. These responses would have a
negative impact on performance and recovery. For example, lower
absorbed and digestive capacity of ingested macronutrient may
negatively affect for recovery of nutritional aspect, considering that
muscle protein synthesis and muscle glycogen resynthesis rate are
maximally stimulated during the early phase of post-exercise period
(Koopman et al., 2007; Beelen et al., 2010; Burke et al., 2017).

Exercise-induced GI damage can be alleviated by using various
procedures, particularly macronutrient supplementation that has
been widely reported. March et al. (2017), March et al. (2019)
showed that 2 weeks of bovine colostrum intake improved cellular
protection function via an increase in HSP70 levels, which
contributed toward reducing exercise-induced increases in blood
I-FABP levels. In contrast, a shorter (7 days) supplemental period
(Morrison et al., 2014) or severe heat stress (e.g., >40°C) during
exercise (McKenna et al., 2017) was not likely to mitigate exercise-
induced GI damage following bovine colostrum supplementation.
Studies have also reported the effects of a single intake of glutamine
before exercise (Pugh et al., 2017; Osborne et al., 2019a) and 4 weeks
of probiotic intake (Pugh et al., 2019; 2020; Mooren et al., 2020),
although the results were inconsistent. Regarding macronutrients,
ingestion of a drink containing carbohydrates alone or a mixture
of carbohydrates and other nutrients (protein and pectin alginate)
before and during exercise reduced exercise-induced GI damage
(Snipe et al., 2017; Flood et al., 2020). It has been considered that
the ingestion of nutrients containing sufficient calories alleviates
GI damage by increasing GI blood flow. In particular, the two
abovementioned studies investigated the response to exercise in the
heat. Considering that heat stress strongly affects exercise-induced
GI damage, glucose ingestion may be a valuable strategy to mitigate
exercise-induced GI damage in the heat. However, glucose intake in
the gel form may not exert a positive effect (Sessions et al., 2016).

The effects of ingesting water at different temperatures on
exercise-induced GI damage in the heat have also been examined
(Snipe and Costa, 2018). Skin blood flow during exercise increases
in the heat due to heat dissipation, and subsequently GI blood
flow reduces. Therefore, ingestion of lower temperature water may
reduce the increase in core temperature during exercise, which may
contribute to a reduction in GI damage due to the maintenance
of GI blood flow (decrease in skin blood flow). Snipe and Costa
(2018) demonstrated that COOL (7°C) and COLD (0°C) water
ingestion did not significantly reduce the increase in blood I-FABP
levels, whereas the increase in rectal temperature (Δ) was lower in
the COOL (1.7°C ± 0.4°C) and COLD (1.6°C ± 0.4°C) conditions
than in the TEMP (2.0°C ± 0.5°C) condition. They speculated that
water ingestion at a temperature of 0°C–7°C was insufficient to
reduce heat strain and therefore did not reduce exercise-induced
GI damage in the heat. Another study also examined the effects
of ice-slurry ingestion before and during exercise but found no
reduction in exercise-induced increases in blood I-FABP levels
in the heat (Alhadad et al., 2023).

Conversely, Zadow et al. (2020) reported the effects of wearing
a compression garment (socks) during endurance exercise on

exercise-induced GI damage. Wearing a compression garment
on the lower legs increases venous return, which may cause
maintenance of blood flow in the central region (e.g., the GI tract).
They showed that wearing compression socks with 25 mm Hg
during a marathon race decreased the exercise-induced increases
in blood I-FABP compared with that in the non-wearing group.
However, no significant difference was observed in the marathon
race time between the two groups (Zadow et al., 2020).

Most previous studies that investigated exercise-induced GI
damage (elevations in blood I-FABP levels) have focused on GI
permeability, systemic inflammatory response, and GI symptoms
with endurance exercise. In contrast, exercise-induced elevations
of blood I-FABP levels are associated with delayed digestion and
absorption rates followingmacronutrient ingestion (van Wijck et al.,
2013). Nonetheless, a few studies have explored the relationship
between exercise-induced GI damage and the rate of digestion
and absorption of ingested nutrients, but the evidence is lacking.
Therefore, further studies are required to determine the nutritional
aspects of recovery (e.g., muscle glycogen resynthesis and muscle
protein synthesis) following exercise with a developing strategy to
mitigate exercise-induced GI damage.

3 Roles of gut microbiota on
endurance running

3.1 Gut microbiota of endurance athletes

Here, we discuss the literature on the gut microbiota of
endurance athletes in terms of changes induced by a single exercise
or race and those induced by repeated training, with a comparison
of endurance athletes and focusing on the types of microbiota
composition.

Regarding the changes in gut microbiota induced by a single
bout of exercise and a single-stage race, Tabone et al. investigated
the effect of short duration of high-intensity exercise (Tabone et al.,
2021). In their study, 40 male endurance cross-country athletes
performed an incremental treadmill run with a slope of 1% at a
speed of 10 km/h, with increments of 0.3 km/h every 30 s until
exhaustion followed by a 1-km run on an athletics track at the
maximum speed. Their feces were collected before and within
4 h without diet intake postexercise. Results showed that exercise
increased the abundance of Romboutsia, Ruminococcaceae UCG-
005, Escherichia coli TOP498, and Blautia and decreased the
abundance of Ruminiclostridium nine and Clostridium phoceensis
(Tabone et al., 2021). Another study reported that a half-marathon
race increased the abundance of Ruminococcus bicirculans and
Collinsella aerofaciens and decreased that of six species, including
Bacteroides coprophilus, in the feces of amateur athletes (Zhao et al.,
2018). A full marathon race was found to increase the abundance
of Veillonella (Scheiman et al., 2019). Furthermore, a world-
class male ultramarathon runner completed the Western States
Endurance Race, a 163-km mountain footrace with ∼5,486 m
of climbing and ∼7,010 m of descending, in approximately 16 h.
His gut microbiota revealed that the ultramarathon increased
the abundance of Haemophilus, Streptococcus, and Veillonella and
decreased that ofAlloprevotella and Faecalibacterium (Grosicki et al.,
2019). Sato and Suzuki (2022) reported the effect of a longer
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duration, ∼44 h, of a 96-km ultramarathon (up 8,062 m, down
6,983 km). The feces of nine male runners revealed a significant
decrease in the abundance of four butyrate-producing species,
including Faecalibacterium prausnitzii, and an increase in the
abundance of ten species, including Collinsella aerofaciens, whereas
no significant change was observed in that of Veillonella (Sato and
Suzuki, 2022). Therefore, irrespective of whether a single exercise or
race, the duration can exert changes in the gut microbiota.

Because endurance athletes habitually engage in endurance
exercise, the changes caused by repeated aerobic training have
been investigated. For instance, Allen et al. examined the impact
of 6 weeks of supervised, endurance-based exercise training (3
days/week) on the gut microbiota of lean and obese sedentary
subjects (Allen et al., 2018).They found an increase in the abundance
of Faecalibacterium and Lachnospira and a decrease in that of
Bacteroides in the gut microbiota of lean subjects. Furthermore,
they observed increases in the fecal concentrations of SCFAs
(acetate, propionate, and butyrate) (Allen et al., 2018). Another
study investigated the effect of 3 weeks of high-volume training in
highly trained middle-distance runners and reported a significant
increase in the abundance of Ruminococcus callidus and decreases
in the abundance of Streptococcus parasanguinis and Haemophilus
parainfluenzae (Craven et al., 2022). Therefore, there is still a
limitation of studies on the changes in gut microbiota due to
repeated exercise interventions, with inconsistent results.

As habitual endurance exercise influences the gut microbiota,
the difference in gut microbiota has been investigated by comparing
endurance athletes with nonathletes. For instance, Kulecka et al.
compared marathon runners, cross-country skiers, and sedentary
healthy controls and observed significant differences in the
abundances of 16 taxa in marathon runners and 5 taxa in cross-
country skiers compared with that in controls (Kulecka et al.,
2020). Both marathon runners and cross-country skiers showed
significantly higher abundance of Eggerthellacea_uncultured and
Prevotella_9 and lower abundance of Bacteroides than the controls.
Furthermore, marathon runners showed higher abundance of
Haemophilus and Veillonella and lower abundance of Blautia
and Faecalibacterium than the controls. Significant differences
in abundance were also detected in the family Coriobacteriaceae
and two genera belonging to the family Lachnospiraceae between
marathon runners and cross-country skiers (Kulecka et al., 2020).
Veillonella has also been reported to be more prevalent among
marathon runners than among nonrunners (Scheiman et al., 2019).
In addition, Morishima et al. reported that female Japanese elite
endurance runners had higher abundance of Faecalibacterium
and Lachnospira and lower abundance of Haemophilus than
healthy volunteers, with 13 other taxa exhibiting significant
differences in abundance (Morishima et al., 2021). In another
study, male Japanese college long-distance runners showed
higher abundance of Bacteroides, Prevotella, and Lachnospira than
nonathletes, with six other genera showing significant differences
in abundance (Morita et al., 2023). Therefore, the gut microbiota
of endurance athletes differs between marathon runners and cross-
country skiers, and even if we limit the discussion to endurance
runners, we can still notice the discrepancies depending on
the report.

Another important aspect is that the human gut microbiota can
be classified into several categories, viz., enterotypes. Partitioning

around medoids clustering of the human gut microbiota reveals
three distinct enterotypes, B-, P-, and R-types, whose major
contributors are Bacteroides, Prevotella, and Ruminococcus,
respectively (Arumugam et al., 2011). The gut microbiota of Asian
people can be classified into two major types, the Prevotella-rich
P-type and the Bifidobacterium- and Bacteroides-rich BB-types
(Nakayama et al., 2015). Nevertheless, there has been no clarification
on what causes the enterotype, including its possible involvement
in the living environment, lifestyle including dietary habits, and
genotype. Enterotypes can affect the change induced by exercise;
however, only a few studies have examined this aspect. Only the
study by Sato and Suzuki (2022) reported that their participants’
enterotypes were classified as B-type (n = 6) and P-type (n =
3); however, the changes in the abundance of Faecalibacterium
prausnitzii and Collinsella aerofaciens occurred unanimously
irrespective of the enterotype (Sato and Suzuki, 2022). Enterotype
may be involved in the discrepancies observed in several studies.
Therefore, it is necessary to increase the focus on the role of
enterotype in the gut microbiota of endurance athletes.

3.2 Gut microbiota and endurance
performance

Intestinal bacteria ferment dietary fiber into SCFAs, which exert
beneficial effects on colon health (Jenkins et al., 1995; Mortensen
and Clausen, 1996) and constitute 40%–50% of the available energy
of carbohydrates (Cummings and Macfarlane, 1997). Therefore, it is
believed that SCFAs produced in the gut subsequently function as
important energy substrates for both liver and muscle cells, thereby
improving overall endurance (Mach and Fuster-Botella, 2017).
Recently, there have been two important studies that demonstrate
this phenomenon.

The first impact was the study by Scheiman et al.who
hypothesized that Veillonella would be beneficial for marathon
running because its abundance increases after a full marathon
race, showing higher abundance in marathon runners than in
nonrunners (Scheiman et al., 2019). They inoculated mice with
Veillonella atypica isolated from a runner and found that the mice
ran longer on the treadmill until exhaustion than the control mice
inoculated with Lactobacillus bulgaricus. As Veillonella converts
lactic acid to SCFAs, primarily propionate, they injected propionate
into the colorectum of mice and confirmed the prolongation
of the time required to complete the treadmill run. Based on
these observations, they suggested that Veillonella in the colon
converts lactic acid produced in the blood during exercise into
SCFAs, primarily propionate, and that SCFAs improve endurance
performance.

Then came the second impact with the study by Morita et al.
who observed that Japanese male long-distance runners had a high
abundance of Bacteroides, especially Bacteroides uniformis, and this
abundance correlated with the 3000-m race times (Morita et al.,
2023). They then conducted a randomized controlled trial to
show that 9 weeks of α-cyclodextrin supplementation increased
the abundance of Bacteroides uniformis and shortened 10-
km cycling times in Japanese adult males. Moreover, when
administered to mice, it increased the swimming time, inhibited the
exercise-induced decreases in cecal SCFA levels (acetate, butyrate,
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TABLE 1 Topics for future study to understand the role of the gastrointestinal tract and gut microbiota and to develop strategies to improve endurance
performance.

The following measurements should be evaluate simultaneously with changes in exercise-induced GI damage

• Appearance rate of ingested macronutrients (e.g., glucose and amino acids) into the blood circulation

• Muscle glycogen recovery and muscle protein resynthesis

• Energy intake and appetite

Gut microbiota

• Short-chain fatty acids: an energy source and/or a signal messenger to modify physiological function?

• Role of bacteria: metabolic pathway and metabolite or species-specific substance?

• Enterotype: Does it influence the change induced by exercise? This topic should be studied while controlling for the possible confounding factors such as dietary habits,
ethnicity, and living environment

propionate, and valerate), and increased the expression of carnitine
palmitoyltransferase 1 and phosphoenolpyruvate carboxykinase 1,
which are involved in hepatic beta-oxidation and gluconeogenesis,
respectively. These findings suggest that Bacteroides uniformis
produces propionate and acetate in the intestinal tract that
stimulates hepatic gluconeogenesis, thereby improving endurance.

The two abovementioned studies (Scheiman et al., 2019;Morita et al.,
2023) revealed different bacteria from the feces of endurance
runners, viz., Veillonella atypica and Bacterides uniformis,
respectively; however, both studies demonstrated that the
production of SCFAs, primarily propionate, in the intestinal tract
improved endurance performance. These findings suggest that the
metabolic function/pathway of the two species contributes to their
effects on endurance performance. Nevertheless, it remains unclear
whether propionate acts as an energy fuel or as a first messenger
to exert physiological response. If it acts as an energy fuel, it is
necessary to clarify the reason why it is advantageous over acetate,
which is more abundant in the gut, and if it acts as a signal, it is
important to clarify the direct effector and the signaling pathway.

Conversely, from the perspective that SCFAs produced by gut
microbiota are beneficial to health, there have also been attempts
to use SCFAs as ergogenic supplements. When healthy people
consumed sodium propionate, their resting energy expenditure
showed greater increases than when they consumed sodium
chloride (Chambers et al., 2018). Moreover, when healthy men
ingested sodium acetate (4 mmol/kg) and rode a cycle ergometer
for 120 min, the preexercise acetate concentration in the blood
was 13 times higher than when the same amount of NaHCO3
was administered, and there were significant changes in lipid
and carbohydrate oxidation, whereas no significant difference in
energy expenditure during the cycling task at ∼50% VO2peak
was reported at any time point (Smith et al., 2013). However,
the mean energy expenditure measured every 15 min from 15 to
120 min was greater with acetate supplementation than that in the
control at all measurement points (Smith et al., 2013). Therefore, if
the area under the curve had been compared, the energy expenditure
during exercise could have been significantly greater with acetate
supplementation. Although there are several other studies using
animals and cells, only a few have demonstrated the effects on

exercise capacity in humans, and there exists a need to explore the
direct effects of SCFAs on exercise capacity (Ong et al., 2023).

Probiotics have also been reported to improve athletic
performance. Single strains include species belonging to
Bifidobacterium and Lactobacillus, and multistrain combinations
may includeEnterococcus faecium,Bacillus subtilis, and Streptococcus
thermophilus in addition to strains belonging to Bifidobacterium
and Lactobacillus (Santibañez-Gutierrez et al., 2022). A meta-
analysis found that probiotic supplementation may improve
performance in studies of populations that have undergone
training with a predominance of aerobic metabolism (Santibañez-
Gutierrez et al., 2022).Moreover, a recent systematic review revealed
13 studies that investigated the impact of probiotic supplementation
on the performance of athletes, of which 7 were related to
endurance athletes (Di Dio et al., 2023). The present review does
not mention individual studies summarized in the abovementioned
reviews because both reviews have excellent evidence tables that
should be consulted.

Nonetheless, most studies on probiotics used specific subspecies
of some species and claimed that the special compounds in that
strain exert special effects. This may be because specific subspecies
are commercial products. In the 2022 meta-analysis, the effects
of probiotics were not separated by strain, but rather a meta-
analysis of all targeted studies was used as the effect of probiotics.
However, although there is some evidence reporting a lack of
effect, there is no single study reporting negative results for
probiotics (Santibañez-Gutierrez et al., 2022). This situation may
reflect the fact that themotivation for reporting the effects of specific
strains is to demonstrate that they are effective, i.e., there exists a
publication bias.

Despite the possible publication bias in studies on probiotics, it
is certainly possible that certain species exert physiological effects
through the action of specific products rather than metabolites.
This phenomenon is illustrated by the fact that certain pathogenic
bacteria can cause specific diseases through their specific toxins.
Nevertheless, although the pathogenic mechanisms of pathogenic
strains have generally been elucidated,mostmechanisms underlying
the beneficial effects of probiotics have not been elucidated. For
instance, a heat-killed preparation of a certain Lactococcus strain
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exerted the same effect on the hematopoietic system (Suzuki et al.,
2022b; 2022c; Takaragawa et al., 2022) as that observed with the
live preparation (Kimoto-Nira et al., 2014), which strongly suggests
the involvement of a substance other than metabolites; however,
the underlying mechanism has not been investigated. Nevertheless,
research on Faecalibacterium prausnitzii, which is being touted
as a next-generation probiotic, has fairly progressed (He et al.,
2021). An increase in the abundance of F. prausnitzii was found
to affect the peripheral lymphocyte subset (Jinnouchi et al., 2021)
and cytokines (Suzuki et al., 2022a) of healthy individuals. As a
mechanism that can explain these effects on the immune system,
it has been demonstrated that seven peptides derived from a single
microbial anti-inflammatory molecule known as “MAM” activate
the immune system (Quévrain et al., 2016). Therefore, if a specific
strain is demonstrated to improve endurance performance, it is also
necessary to elucidate the effects specific to that strain, other than
common metabolites, at the molecular level.

Considering our discussion of the possible contribution of gut
microbiota to endurance performance, the difficulty of describing
a clear strategy at this time has become apparent. Nonetheless,
the topics for further research have also become clear. Although
there are studies emphasizing the importance of propionate
(Chambers et al., 2018; Scheiman et al., 2019; Morita et al., 2023),
the most abundant among SCFAs is acetate, with studies illustrating
the effects of acetate-producing Bifidobacterium (Lin et al., 2020)
and acetate itself (Smith et al., 2013). Therefore, it is important
to clarify 1) which SCFA is effective (or whether all of them are
similar) and 2) whether the mechanism of action is an energy
source or promotes metabolic regulation. Furthermore, if an effect
on a specific genus, species or subspecies is demonstrated, the
mechanism should be elucidated at the molecular level. Because
there are several hundred species comprising 100 trillion bacteria
living in the gut and the ecosystem can be classified into several
enterotypes, it is also essential to clarify the impact of enterotypes
on the action of metabolites or bacterial substances.

As shown in Table 1, we will suggest significant future studies in
this research field.These studies would provide valuable information
on endurance performance and recovery in endurance athletes.

4 Conclusion

This review emphasizes the importance of maintaining GI
function and gut microbiota in endurance athletes. Although
strategies to reduce exercise-induced GI damage have been
identified, their effectiveness varies with exercise conditions and
environmental factors. Recent studies have shown that specific

bacterial species, particularly those producing SCFAs, may improve
endurance performance. However, several critical questions
remain unanswered, including which SCFAs are most effective for
performance improvement and whether they function primarily as
energy sources or a signal to metabolic adaptations. Future research
should focus on clarifying the molecular mechanisms through
which specific bacterial species affect athletic performance and
understanding how different enterotypes affect these relationships.
As our understanding of these area advances, it would enable the
development of more effective strategies for optimizing GI function
and utilizing gut microbiota to improve endurance performance.
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