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Hemoglobin-based oxygen
carriers, oxidative stress and
myocardial infarction

Timothy N. Estep*

Chart Biotech Consulting, LLC, Erie, CO, United States

Introduction: Development of hemoglobin-based oxygen carriers (HBOCs) for
use as temporary blood replacement solutions and treatment of hemorrhagic
shock has been hindered because of evidence HBOC infusion increases the risk
of myocardial infarction (MI).

Methods: To gain insight into potential toxicity mechanisms, MI incidence from
later stage clinical testing of five HBOCs was compared to pharmacokinetic and
biochemical parameters to identify correlations suggestive of cause-and-effect
hypotheses.

Results: There are positive correlations between MI incidence and HBOC dose,
size, intravascular half-life and area under the plasma concentration versus time
curve (AUC). Furthermore, MI incidence is positively correlated with initial rates
of HBOC autoxidation, oxidation by nitric oxide, and AUCs estimated for these
HBOC oxidation products.

Conclusions: These observations imply that increased MI risk after HBOC
infusion is due to intravascular reactions which exacerbate oxidative stress.

KEYWORDS
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Introduction

Hemoglobin-based oxygen carriers (HBOCs) have been under development for several
decades to improve trauma resuscitation outcomes and provide alternative oxygen transport
solutions when blood is not available (Liu et al., 2022). While the efficacy of such solutions
has been demonstrated in preclinical studies and human patients, regulatory approval has
yet to be obtained in most countries due to concerns about serious adverse events (Estep,
2019). Such concerns were crystallized by a meta-analysis demonstrating increased risk of
mortality and myocardial infarction (MI) after HBOC infusion (Natanson et al., 2008).

To develop hypotheses as to potential mechanism(s) of MI risk enhancement, the
preclinical literature on HBOC toxicity and clinical data collected during later stage testing
were reviewed. Both in vitro and in vivo experiments suggest that HBOCs may increase
toxicity by exacerbating oxidative stress in a synergistic fashion with other insults (Alayash,
2019), particularly with respect to the endothelium (Biro, 2012). There is also an extensive
clinical literature implicating oxidative stress as a risk factor for MI (Wang and Kang, 2020).

No single clinical trial performed with HBOCs was adequately powered to assess
differences in serious adverse events on the order of a few percent. Thus, aggregation
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of data is required to identify significant correlations
(Natanson et al., 2008). In the present analysis, the ratio of MI
incidence in treated versus control patients was calculated from
published clinical data for four crosslinked and/or polymerized
HBOCs (CP HBOCs), HemAssist™, Hemolink™, Hemopure®and
Polyheme™, and one polyethylene derivatized hemoglobin HBOC
(PEGHBOC),Hemospan® (also denoted asMP-4) (Przybelski et al.,
1999; Sloan et al., 1999; Garrioch et al., 1999; Lamy et al., 2000;
Schubert et al., 2002; Kerner et al., 2003; Bloomfield et al., 2004;
Schubert et al., 2003; Cheng, 2001; Hill et al., 2002; Cheng et al.,
2002; Greenburg and Kim, 2004; Jahr et al., 2008; Kasper et al.,
1996; Kasper et al., 1998; Standl et al., 1998; LaMuraglia et al.,
2000; Levy et al., 2002; Sprung et al., 2002; Hemelrijck et al., 2014;
Gould et al., 1998; Northfield Laboratories, 2017; Moore et al.,
2009; Olofsson et al., 2006; Olofsson et al., 2008; Olofsson et al.,
2011; Van der Linden et al., 2011), and compared to a variety of
parameters (Meng et al., 2018) to characterize the pharmacokinetics
and toxicodynamics with respect toMI. All of the evaluated HBOCs
use mammalian tetrameric hemoglobin as the oxygen transporting
component, four human and one (Hemopure) bovine (Table 1). Due
to their similarities with respect to the structure of the hemoglobin
starting material, size of chemical modification reagents, rates of
reaction with nitric oxide (NO), and oxygen binding characteristics,
the CP HBOCs were analyzed as a subgroup. Hemospan is
neither crosslinked nor polymerized. In addition, to better define
correlations with specific reaction products, a mathematical model
of the evolution of total, reduced, autoxidized and nitic oxide
oxidized HBOC species was developed to identify the most
important reactions in the etiology of MI risk enhancement.

Methods

Calculation of MI incidence ratio

After an extensive literature search,MI data were tabulated from
all of the randomized, controlled Phase II and III clinical trials
(RCTs) of HBOCs used in the treatment of surgical blood loss or
trauma resuscitation wherein the total patients in each of the treated
and control groups exceeded 200. The five HBOCs meeting these
criteria are noted in the Introduction. While adjudicated MI data
were reported in one clinical trial (Moore et al., 2009), only the MI
incidences as assessed by the physicians directly treating patients
were used in this analysis for consistency of comparison. The MI
ratio for each HBOC was calculated by dividing the MI incidence
rate in treated patients by the incidence rate in controls (Table 1).
This procedure was used to adjust for the facts that differing
numbers of patients were enrolled in treated and control groups
and the variation of MI incidence between different control patient
populations was significant.

Calculation of average HBOC dose and size

Average HBOC doses ([Hb]0, g/kg) were calculated as number
weighted averages of the average doses utilized in RCTs with a
particular HBOC. When doses were not reported as g/kg, they were
estimated by division of the average total dose by average patient

weight. If average patient weights were not reported, they were
estimated using continent/country specific averages (NorthAmerica
80.7 kg, Europe 70.8 kg South Africa 73.0 kg) (Walpole et al.,
2012; WorldData.info., 2023). The average dose of Polyheme in
a trial using repetitive stepwise hemodilution was corrected for
the estimated product loss due to blood removal after the first
HBOCdosewas administered.Average doses in g/kgwere converted
to heme concentration (mM/L) by multiplying by the conversion
factor 1.47, which assumes a plasma volume of 42 mL/kg. Average
molecular size (radius of gyration, Rg) was based on published
values (Vandegriff et al., 1997; Vandegriff et al., 2003) or estimated
by assuming Rg is equivalent to a linear right circular cylinder
composed of the number of hemoglobin tetramers equivalent to the
averagemolecular weight listed in Table 1.Thismethod was selected
amongst several evaluated because it accurately reproduced the
measured Rg for Hemolink (5.0 nm calculated versus 4.9measured).

Calculation of estimated AUC

Assuming that HBOC plasma clearance is adequately described
as a single exponential decay (Olofsson et al., 2006; Olofsson et al.,
2008; Estep, 2019; Carmichael et al., 2000; Swan et al., 1995;
O’Hare et al., 2001; Hughes et al., 1996), integration leads to the
expression:

AUC = 1.443[Hb]0T1/2 (1)

where T1/2 is the circulatory half-life. The functional dependence of
T1/2 on [Hb]0 was estimated for each HBOC (Table 2; Figure 1) as
the best linear fit to published T1/2 versus dose data (Standl et al.,
1998; Olofsson et al., 2006; Olofsson et al., 2008; Carmichael et al.,
2000; Przybelski et al., 1996; Swan et al., 1995; O’Hare et al., 2001;
Hughes et al., 1995; Hughes et al., 1996). The resulting equation
was substituted into (Equation 1) to yield an estimated AUC as a
quadratic function of [Hb]0 of the form:

AUC = 1.443[Hb0](A[Hb]0+B)

where A and B are coefficients derived from the best linear fit
to the T1/2 versus dose plots. Due to the lack of T1/2 versus dose
data for Polyheme, the corresponding dependence for Hemopure
was utilized, since Hemopure is the most similar HBOC of those
evaluated to Polyheme with respect to overall structure.

Sources and calculations of other HBOC
biophysical and biochemical parameters

HBOC biophysical and biochemical parameters were taken
from the compendium of Meng and coworkers (Meng et al., 2018;
Table 3). Initial HBOC autoxidation reaction rates were estimated
by multiplying the autoxidation rate constant (ka) by [Hb]0. The
initial rate of hemoglobin reaction with nitric oxide (NO) was
calculated by multiplying [Hb]0 with the corresponding reaction
rate constant (kN) assuming an initial NO concentration of 1 nM, a
value within the range of plasma NO concentrations derived from
multiple studies (Hall and Garthwaite, 2009). Quasi steady-state
NO concentrations were calculated using an average NO synthesis
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TABLE 1 Properties of HBOCs analyzed.

HBOC HemAssist Hemolink Hemopure Hemospan PolyHeme

Hb Species Human Human Bovine Human Human

Modification Crosslinked Crosslinked/Polymerized Crosslinked/Polymerized PEG
Derivatized

Crosslinked/Polymerized

MW Range (kDa)a 64–128 64–500 130–500 95 130–250

P50 (mmHg)a 31.1 34.4 34.3 8.2 31.3

Avg Radius of Gyration (nm)b 3.1 4.9 7.5 (est.) 9.3 8.9 (est.)

MI Incidencec

Treated 6/402 20/206 6/592 8/464 21/451

Fractional incidence 0.0149 0.0971 0.0201 0.0172 0.0466

99% CI 0.0027
0.393

0.0518
0.1606

0.0018
0.0268

0.0049
0.0401

0.0249
0.0781

Controls 5/398 15/213 2/531 1/428 3/459

Fractional incidence 0.0126 0.0704 0.0038 0.0023 0.0065

99% CI 0.0014
0.0360

0.0328
0.1272

−0.0017
0.0187

−0.0029
0.0193

−0.0010
0.0250

MI Incidence Ratiod 1.19 1.38 2.69 7.38 7.12

aData from (Meng et al., 2018).
bData from (Vandegriff et al., 1997; Vandegriff et al., 2003) or estimated as described in Methods.
cNumber of patients with MI/total number of patients.
dQuotient of MI, incidence in treated patients divided by MI, incidence in controls.

TABLE 2 Properties of equations of best linear fit of half-life versus dose data for HBOCs.a.

HBOC Equation of best fit
T1/2 (h), [Hb]0 (g/kg)

R2 p value n T1/2 at Avg
Dose (h)

HemAssist T1/2 = 8.4 [Hb]0 + 2.50 0.9632 0.006 7 8.2

Hemolink T1/2 = 23.3 [Hb]0 + 2.31 0.8619 0.001 9 23.1

Hemopure T1/2 = 22.8 [Hb]0 + 3.54 0.7287 0.029 7 37.0

Hemospan T1/2 = 16.2 [Hb]0 + 14.3 0.5333 0.125 7 18

Polyhemeb 53.2

aLinear best fits determined using Excel data analysis package. P values are two tailed.
bDue to the lack of dose versus half-life data for Polyheme, the best fit equation for Hemopure was utilized for this calculation.

rate of 1.7 mmoles/day (Hall and Garthwaite, 2009). Assuming that
half is secreted into an average of 3 L of plasma, this equates to
approximately 0.01 mM/L/h of NO secretion. Due to the rapidity of
the hemoglobin reaction with NO, it was assumed that any secreted
NO reacts immediately with plasmaHBOC.These assumptions lead
to the result that the steady state concentration of NO after the
administration of each HBOC, ([NO]ss) is given by:

[NO]ss = 0.01/[Hb]0/kN

Rate constants for overall HBOC removal at the average
administered dose (kT) were calculated as 0.693/T1/2, where T1/2

was calculated as described above. The results of these calculations
are shown in Table 3.

Comparison of MI ratio to pharmaceutical,
biophysical, and biochemical parameters

The MI ratio for all five HBOCs or the CP HBOCs was
graphically compared to various independent variables and
evaluated for best fit to linear and quadratic functions utilizing
the EXCEL data analysis package (Table 4).
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FIGURE 1
Example of best linear fit of HBOC plasma half-life versus dose using
data for Hemolink. Data taken from (Carmichael et al., 2000). Linear
best fit was determined using the Excel data analysis package.

Calculation of expected component AUC
values

A mathematical model of the variation in time of the
concentrations of reduced, autoxidized, and NO oxidized HBOCs
was constructed assuming that autoxidation and overall HBOC
removal could be described by first order rate constants and
the reaction with NO was equal to the NO secretion rate. The
contribution of methemoglobin reduction reactions was assumed
to be negligible and the kinetics of overall HBOC removal from
circulation was assumed to be the same for reduced and oxidized
hemoglobin (Snyder et al., 1987; Vandegriff et al., 2006)). For
simplicity, the starting metHBOC concentration was assumed to be
zero. These assumptions yield the following rate equations:

d[Hb]r/dt = ‐[Hb]r(kT + ka)–R

d[Hb]a/dt = ka[Hb]r ‐kT[Hb]a

d[Hb]N/dt = R ‐kT[Hb]N

where [Hb]r, [Hb]a, and [Hb]N are the concentrations of reduced,
autoxidized and NO oxidized HBOC, respectively; ka and kT are
the first order rate constants for HBOC autoxidation and overall
HBOC removal from plasma, respectively; and R is the rate of
NO secretion into plasma.

The solutions to these equations are (Ritger and Rose, 1968):

[Hb]r = ([Hb]0 +R/K)e
‐Kt–R/K (2)

[Hb]a = ([Hb]0 +R/K)(e
‐kTt–e‐Kt) + (Rka/KkT)(e‐kTt–1) (3)

[Hb]N = (R/kT)(1–e
‐kTt) (4)

where K = ka + kT. In integrating these equations to give the AUC
for each HBOC, it is noted that Equation 2 will equal zero at a finite
time, t0, given by:

t0 = ( ln(K[Hb]0/R+ 1))/K

Therefore, to calculate the AUC for [Hb]r, Equation 2 was integrated
from t = 0 to t = t0 to yield:

AUC [Hb]r = (([Hb]0 +R/K)(1–e
‐Kt0)–Rt0)/K

Time t0 is also the time at which the generation of autoxidized or NO
oxidizedHBOCwill stop, since there is nomore reduced hemoglobin
substrate for these reactions. The concentrations of these species at t0,
denoted as [Hb(t0)]a and [Hb(t0)]N, respectively, are then assumed to
decrease with a first order exponential decay with a kT rate constant.
The AUCs for [Hb]a and [Hb]N are therefore given by the integral
of Equations (3) and (4) from t = 0 to t = t0 plus the integral of the
exponential decay of these HBOC species from t = t0 to infinity:

AUC Hba = (Hb0 +R/K)  ((e‐Kt0 – 1)/K – (e‐kTt0 – 1)/kT)

+ (Rka/KkT)  ((1 ‐ e‐kTt0)/kT – t0)

+Hb(t0)a/kT

AUC [Hb]N = R(e
‐kTt0/kT + t0–1/kT)/kT + [Hb(t0)]N/kT

Note that for R = 0 these equations simplify to:

AUC [Hb]r = [Hb]0/K

AUC [Hb]a = [Hb]0(1/kT–1/K)and

AUC [Hb]N = 0

Comparison of model predictions to AUCs
determined from clinical data

To compare model predictions with actual clinical data, total
HBOC and metHBOC AUC values were obtained using the data
measuring tool in Adobe Acrobat applied to data from a dose
escalation study of Hemospan (Olofsson et al., 2006). Model
predicted values for these paraments were then calculated utilizing
various autoxidation rate constants andNO secretion rates (Table 5).
These calculations assumed an initial plasma heme concentration
of 0.418 mM/L which was calculated to result from the infusion
of the 0.27 g/kg HBOC, a dose used for two of the patient
cohorts (n = 4 each) in this trial. These cohorts were chosen for
comparison in part because the initial plasma HBOC concentration
was closest to that of the 0.35 mM/L average estimated for all of
the later stage Hemospan clinical trial data and because the use
of two cohorts gives the largest number of total data points. Total
AUC predictions were also compared with data published from a
HemAssist clinical trial (O’Hare et al., 2001) in the same manner.

Comparison of calculated AUCs with MI
ratios

Estimated AUCs of reduced, autoxidized, NO oxidized, total,
and total oxidized HBOC species were calculated for all five
HBOCs at the average doses evaluated in clinical testing, using
three combinations of autoxidation rate constants and NO secretion
rates (Table 6). These AUC values were then compared to the
corresponding HBOC MI ratios (Table 7).
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TABLE 3 Average HBOC doses, reaction rate constants and initial reaction rates.

HBOC HemAssist Hemolink Hemopure Hemospan PolyHeme

[Hb]0 (g/kg)a 0.68 0.89 1.47 0.23 2.18

[Heme]0 (mM heme/L)b 1.00 1.31 2.17 0.34 3.21

Calculated half-life for dose [Hb]0 (h)c 8.2 23.1 37.0 18.0 53.2

AUC (mM heme x h/L)d 11.8 43.6 116.2 8.8 246.4

ka (h-1)e 0.081 0.130 0.220 0.070 0.260

kT (h-1)f 0.084 0.030 0.019 0.039 0.013

kN (mM-1h-1)g x10−8 1.49 1.34 1.58 1.60 1.49

khemelossfast
e 7.30 7.30 3.47 14.80 11.70

[NO]ss (mM/L)h x1010 1.50 1.28 0.66 4.21 0.47

Initial reaction rates

[Heme]0kautox (mM/L/h) 0.081 0.170 0.477 0.024 0.835

[Heme]0 [NO]0kNO (mM/L/h)i 149 176 343 54 478

[Heme]0 [NO]kNO (mM/L/h)j Steady State ∼0.01 ∼0.01 ∼0.01 ∼0.01 ∼0.01

[Heme]0khalf-life 0.084 0.039 0.041 0.013 0.042

aWeighted average doses from clinical trial data.
bInitial average HBOC heme concentration in plasma obtained by multiplying the dose in g/kg by 1.47.
cCalculated from half-life versus dose plots.
dCalculated area under the HBOC concentration versus time function as described in Methods using the initial [Heme]0.
eFrom (Meng et al., 2018).
fCalculated as 0.693/half-life.
gFrom (Meng et al., 2018) converted to mM−1h−1.
hSteady state NO concentration assuming a total endothelial NO secretion rate into plasma of 0.0236 mM/L/h.
iInitial rate of reaction assuming a [NO]0 of 1 × 10−6 mM/L.
jAssuming NO reaction rate with HBOC equals the NO secretion rate into plasma.

Statistical analysis

Incidence rate means and standard deviations for treated and
control patients were calculated along with the 99% confidence
intervals using a modified Wald method (Motulsky, 2010). Statistical
data with respect to best fits of MI versus various parameters were
taken from the EXCEL data analysis package. All p values are two-
tailed obtainedbydoubling the values reported in theEXCELanalysis.

Results

Comparison of MI incidence ratio with
HBOC dose, size, plasma half-life and AUC

HBOC properties (Table 1), pharmacokinetic data (Tables 2),
and estimated in vivo reaction rates for oxidative reactions and
overall HBOC removal from plasma (Table 3) were summarized,
and comparisons made between MI incidence ratios and various
independent variables by regression analysis (Table 4; Figure 2).

There is a significant (R2 = 0.9994, p < 0.05) positive correlation
between MI ratio and dose for the four CP HBOCs, with the best
fit being a quadratic function. There is also a positive correlation
(R2 = 0.9649) between MI and HBOC size. These two correlations
confirm the results from a preliminary analysis performed with
a smaller, less refined data set (Estep, 2019). Since HBOC size
correlates positively with intravascular half-life over the molecular
weight range encompassed by the evaluated HBOCs (Berbers et al.,
1991; Bleeker et al., 1992; Keipert et al., 1992; Hsia et al., 1992;
Conover et al., 1997; Wicks et al., 2003; Estep, 2015; Taguchi et al.,
2017), MI incidence was compared with this parameter as well
(Table 4; Figure 2C) using estimated HBOC half-lives derived from
the best linear fits to published dose versus half-life data. Here again
a positive correlation was observed, although this did not reach
statistical significance (R2 = 0.9961, p = 0.12). Collectively, these data
suggest that the total exposure of blood and endothelium to HBOCs
as reflected in the area under the HBOC plasma concentration
versus time curve (AUC) is important, since dose and intravascular
persistence are the primary determinants of AUC. No AUC data
were reported for HBOCs in Phase II or III clinical trials, but this
parameter can be estimated as described in Methods as a quadratic
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TABLE 4 Comparison of MI ratios to various independent variables by regression analysis.a

Independent
Variable

Fit Equation type R2 Two tailed p value y intercept

[Hb]0 (mM heme/L)b
Linear 0.9216 0.080 −2.06

Quadratic 0.9994 0.049 2.86

Rg CP HBOCs (nm)c Linear
Quadratic

0.7354
0.9476

0.285
0.458

−2.47
7.68

Rg All HBOCs (nm)c Linear
Quadratic

0.8105
0.9649

0.074
0.070

−3.02
6.97

Half-life (h)d
Linear 0.8138 0.196 −0.84

Quadratic 0.9961 0.125 2.15

AUC (mM/L)he
Linear 0.9613 0.039 0.38

Quadratic 0.9999 0.024 1.11

ka (h-1)f
Linear 0.7304 0.291 −1.89

Quadratic 0.9325 0.520 6.77

kN (mM-1h-1)g
Linear 0.0586 0.484 −6.51

Quadratic 0.2399 0.256 −308

kT (h-1)h
Linear 0.3844 0.760 5.02

Quadratic 0.8752 0.706 12.3

P50 (mmHg)i
Linear 0.1597 0.799 23.2

Quadratic 0.9421 0.481 −7,656

[Hb]0ka (mM/L/h)
Linear 0.9243 0.077 0.052

Quadratic 0.9993 0.053 1.39

[Hb]0 [NO]kN (mM/L/h)j
Linear 0.8836 0.120 −1.7459

Quadratic 0.9973 0.103 4.1345

[Hb]0kT (mM/L/h)
Linear 0.1711 0.827 5.8089

Quadratic 0.8108 0.870 −132

aAll comparisons are between the MI ratio and the listed independent variable. All fits utilized the four CP HBOC data points with the exception of the All HBOCs Rg in which all five HBOC
data points were utilized. Fits determined using an EXCEL data analysis package.
bAverage initial HBOC dose.
cAverage HBOC size as determined by published or estimated radius of gyration.
dHalf-life estimated for the average HBOC dose from the best linear fits to dose versus half-life data.
eAUC values estimated as described in Methods assuming an exponential rate of HBOC removal from plasma and a quadratic dose dependence derived from the best linear fit to HBOC dose
versus half-life plots.
fAutoxidation rate constant from (Meng et al., 2018).
gNO oxidation rate constant from (Meng et al., 2018).
hHBOC removal rate constant calculated by dividing 0.693 with the estimated half-life.
iOxygen partial pressure at which HBOCs are half saturated from (Meng et al., 2018).
jReaction rate with NO assumes an initial NO concentration of 1 × 10−6 mM/L.

function of dose (Table 3). When MI incidence is compared with
these AUC values (Table 4; Figure 2D), the correlation for the
CP HBOCs (R2 = 0.9999, p = < 0.03) is stronger than with
either dose, size or half-life alone. Note also that, by virtue of
how the MI ratio is defined, the y intercept should approach 1.0

as dose or AUC approach zero. The y-intercept (1.11) with the
AUC versus MI ratio function agrees closely with this expectation.
In these comparisons PEG HBOC exhibits a notably higher
incidence of MI than CP HBOCs at comparable values of dose
or AUC.

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1551932
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Estep 10.3389/fphys.2025.1551932

TABLE 5 Comparison of total and methemoglobin AUCs estimated from
Hemospan clinical trial data and calculated using the mathematical
model with different assumed values for NO secretion into plasma and
autoxidation rate constants.

Data source AUCs (mM/L)ha

Total Hb metHb

Hemospan clinical trial 13.0 (8.5,17.5) 3.9 (3.0,4.7)

Mathematical modelb

R = 0.01, ka = 0.07 10.9 8.6

R = 0.00, ka = 0.07 10.9 7.1

R = 0.01, ka = 0.00 10.9 6.7

R = 0.001, ka = 0.007 10.9 3.2

R = 0.01, ka = 0.021 10.9 7.5

R = 0.001, ka = 0.021 10.9 4.9

R = 0.0001, ka = 0.021 10.9 4.1

R = 0.0, ka = 0.021 10.9 3.9

aData from (Olofsson et al., 2008) from two cohorts given an identical HBOC dose
estimated to result in an initial plasma concentration of 0.418 mM/L (n = 4 patients per
cohort); values are the average of those derived from integration of the appropriate
concentration versus time data with the individual cohort values given in parentheses.
bCalculated from pharmacokinetic model as described in Methods assuming a starting dose
of 0.418 mM/L; R is the rate of NO secretion into plasma (mM/L/h); ka is the autoxidation
rate constant (h−1); the in vitro measured ka values for Hemospan are 0.07 h−1 (Meng et al.,
2018) and 0.021 (Vandegriff et al., 2006).

Comparison of MI incidence ratio with
HBOC biochemical and biophysical
properties

To explore potential toxicity mechanisms, MI ratios were
compared to several HBOC properties, as well as calculated
initial average reaction rates in plasma (Table 4). No significant
correlations were observed between the MI ratio and HBOC
oxygen half saturation values (P50), or the rate constants for
autoxidation, reaction with nitric oxide (NO), or overall HBOC
removal from circulation, or the initial rate of overall HBOC
removal from circulation. Positive correlations between MI and
initial autoxidation and NO oxidation rates were high, although
they did not reach statistical significance (Table 4; Figures 2E,F).
It is also recognized that the initial oxidation rate by NO would
only persist for a short period of time because the millimolar
concentration of HBOC would rapidly consume NO, driving this
concentration down to sub picomolar levels ([NO]ss, Table 3). At
this point the reaction rate of HBOC with NO would be expected
to equal the rate of NO secretion into plasma. However, due to
the fact that the NO reaction rate constant is approximately nine
orders of magnitude greater than the autoxidation or hemoglobin
removal rate constants, the reaction rate of HBOC oxidation
with NO is still comparable to the rates of autoxidation and
HBOC plasma clearance, especially at lower HBOC concentrations
(Table 3).

Calculation of AUCs for various HBOC
species

By analogy with the concept of AUC for the total HBOC
concentration, one can also contemplate assessing the relationship
between theMI ratio and theAUCsof the products of the twoprimary
HBOC oxidation reactions, autoxidation and oxidation by reaction
with NO. Both reactions generate oxidized hemoglobin (metHBOC),
with the former reaction also generating superoxide and the latter
resulting in the consumption of NO. While it is recognized that
metHBOC formed by these two processes cannot be distinguished
experimentally, one can conceptually model the contributions to
HBOC oxidation by these two reactions with the sum resulting in the
experimentally accessible total metHBOC concentration. Therefore,
a mathematical model was constructed to predict the expected
evolution of these reaction products with time. Key assumptions were
that the primary mechanisms for reduced HBOC disappearance are
autoxidation, NO oxidation, and overall HBOC removal, with the
last of these acting equally on both reduced and oxidized HBOCs
(Snyder et al., 1987; Vandegriff et al., 2006). It was further assumed
thatnooxidizedHBOC(metHBOC) is converted to the reduced form,
thatdosesofHBOCwereadministeredasabolus, and that the reaction
rateofHBOCwithNOis equal to the rateofNOsecretion intoplasma.
Equations for the concentration of these HBOCs were integrated to
provide estimates of their respective AUCs. Several different assumed
values for the autoxidation rate constants andNO secretion rates were
explored (Tables 5, 6).

Comparison of model predictions with
clinical data

To assess the veracity of the mathematical model, predicted
AUC values were compared to those calculated from published
pharmacokinetic data for Hemospan (Olofsson et al., 2008), as this
is the only data set of which the author is aware in which plasma
concentrations of both total and metHBOC were reported in detail.
Model calculations assumed an initial plasma heme concentration
of 0.418 mM/L, corresponding to the dose administered to two
cohorts in this dose-response study (Table 5).The integrated clinical
data yield AUCs of 8.48 and 17.5 mM•h/L for the two cohorts, a
difference which probably reflects the inherent biological variability
in these small (n = 4) sample sizes. The predicted total AUC of
10.9 mM•h/L from the mathematical model is between the two
values measured from these cohorts, and similar to their average
(13.0 mM•h/L), suggesting reasonable agreement. However, the
degree of total oxidation predicted by the mathematical model
(8.6 mM•h/L) utilizing the data of Meng et al. (Meng et al., 2018)
is significantly greater than that observed in the clinical data
(3.0 and 4.7 mM•h/L). One possibility is that the difference is
a result of lower in vivo oxidation rates compared with those
measured in vitro. To explore this possibility, expected values for
total oxidized HBOC were calculated assuming that either the
autoxidation rate constant or the NO secretion rate were zero.
Although the total predicted oxidized HBOC AUC was reduced,
in neither case was it reduced to the value measured in vivo
(Table 5). Only when both the autoxidation rate constant and the
NO secretion rate were simultaneously reduced by a factor of
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TABLE 6 AUC values predicted by a mathematical model of HBOC oxidation and removal from plasma for differing autoxidation rate constants and NO
secretion rates.

HBOC

AUC (mM/L)ha HemAssist Hemolink Hemopure Hemospan Polyheme

R = 0.01, ka = Mengb

[Hb]rc 5.01 6.98 8.38 1.81 11.2

[Hb]ad 4.91 30.3 97.1 3.26 223

[Hb]Ne 2.07 6.44 8.74 3.64 12.6

[Hb]met
f 6.98 36.7 106 6.90 236

[Hb]Totalg 12.0 43.7 114 8.72 247

R = 0.001, ka = 0.1Meng

[Hb]r 10.3 28.3 50.3 6.06 79.1

[Hb]a 1.00 12.3 58.2 1.09 158

[Hb]N 0.59 3.14 5.78 1.57 9.54

[Hb]met 1.58 15.4 64.0 2.66 167

[Hb]Total 11.9 43.7 114 8.72 247

R = 0.000, ka = 0.3Meng

[Hb]r 9.23 19.0 25.5 5.67 35.3

[Hb]a 2.67 24.7 88.7 3.05 212

[Hb]N 0 0 0 0 0

[Hb]met 2.67 24.7 88.7 3.05 212

[Hb]Total 11.9 43.7 114 8.72 247

aAUC values calculated for average clinical doses of each HBOC as denoted in Table 2; R is the NO secretion rate (mM/L/h), ka is the autoxidation rate constant (h−1).
bka values reported by (Meng et al., 2018).
cAUC for reduced HBOC.
dAutoxidized HBOC AUC.
eAUC of HBOC oxidized by NO.
fSum of AUC [Hb]a and AUC [Hb]N.
gTotal AUC is the sum of AUCs for [Hb]r, [Hb]a, and [Hb]N.

ten did the predicted total metHBOC AUC (3.2 mM•h/L) agree
within experimental error with clinical observations. However,
other combinations of reductions in autoxidation rates and NO
secretion rates are also possible, and the developers of Hemospan
reported an autoxidation rate constant approximately 0.3 that of
Meng and coworkers (Vandegriff et al., 2006). When this rate
constant was combined with the assumption of negligible NO
secretion into plasma, good agreement was obtained with the
observed total methemoglobin AUC for Hemospan (3.9 mM•h/L
for both calculated and measured average values).

The only other clinical data set containing a sufficient number
of observations to perform an AUC integration with confidence
was a report of the total plasma hemoglobin concentration of
HemAssist (O’Hare et al., 2001).The total AUC value predicted from
the model (22 mM•h/L) is similar to, but somewhat higher than,

that estimated from the clinical data (16 mM•h/L). The absence of
sufficient plasma metHBOC values from this and other reported
clinical data preclude further comparisons.

Comparison of MI values with predicted
AUCs

In light of the results of comparison of the model predictions
with Hemospan clinical data, estimated AUC values for the
different HBOC components were calculated using three different
assumptions for the autoxidation rate constants and NO secretion
rates (Tables 6 and 7). The total AUC values predicted by this model
are virtually identical to those predicted by the simpler method
based on a quadratic function of dose as described in Methods
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TABLE 7 Comparison of MI ratios to model predicted AUC values by linear regression analysis.a.

Independent
Variable AUC (mM/L)h

Fit
Equation type

R2 Two tailed p value y intercept

Model for R = 0.01, ka = Mengb

[Hb]rc
Linear 0.8698 0.135 −4.77

Quadratic 0.9994 0.051 7.24

[Hb]ad
Linear 0.9705 0.030 0.62

Quadratic 0.9998 0.025 1.12

[Hb]N
e

Linear 0.7794 0.234 −1.04

Quadratic 0.9999 0.021 2.26

[Hb]met
f

Linear 0.9664 0.034 0.52

Quadratic 0.9998 0.030 1.11

[Hb]Totalg
Linear 0.9649 0.036 0.38

Quadratic 0.9997 0.032 1.09

Model for R = 0.001, ka = 0.1Meng

[Hb]r

Linear 0.8739 0.130 −0.57

Quadratic 0.9992 0.055 1.67

[Hb]a

Linear 0.9878 0.012 0.89

Quadratic 0.9999 0.015 1.15

[Hb]N

Linear 0.8673 0.137 −0.11

Quadratic 0.9997 0.036 1.37

[Hb]met

Linear 0.9850 0.015 0.83

Quadratic 0.9999 0.022 1.13

[Hb]Total

Linear 0.9649 0.036 0.38

Quadratic 0.9997 0.032 1.09

Model for R = 0.000, ka = 0.3Meng

[Hb]r

Linear 0.8032 0.208 −1.94

Quadratic 0.9993 0.052 3.47

[Hb]a

Linear 0.9744 0.026 0.71

Quadratic 0.9999 0.023 1.14

[Hb]N

Linear - - -

Quadratic - - -

[Hb]met

Linear 0.9744 0.026 0.71

Quadratic 0.9999 0.023 1.14

(Continued on the following page)
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TABLE 7 (Continued) Comparison of MI ratios to model predicted AUC values by linear regression analysis.a.

Independent
Variable AUC (mM/L)h

Fit
Equation type

R2 Two tailed p value y intercept

[Hb]Total

Linear 0.9649 0.036 0.38

Quadratic 0.9997 0.032 1.09

aAll comparisons are between the MI ratio and the listed independent variable. Fits determined using the EXCEL data analysis package.
bR is the assumed NO secretion rate into plasma (mM/L/h); autoxidation rate constants (ka) are those reported by (Meng et al., 2018) or fractions thereof.
cAUC of reduced HBOC.
dAUC of autoxidized HBOC.
eAUC of NO oxidized HBOC.
fAUC of total oxidized HBOC calculated as the sum of AUCs of HbA and HbN.
gTotal AUC calculated as the sum of the individual component AUCs.

FIGURE 2
Comparison of MI ratios to average HBOC dose (A), size (B), circulatory half-life (C), estimated AUC (D), initial rate of autoxidation (E), and initial rate of
oxidation by NO (F), for crosslinked and polymerized (CP) HBOCs (squares) and Hemospan, a PEG modified HBOC (PEG, circle). The equations
of best fit (Table 4) are for the CP HBOCs (n = 4) except for the comparison with average molecular size (n = 5). Data are derived from clinical trials
enrolling a total of 206–592 patients in each treated or control group for each HBOC.
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FIGURE 3
Comparison of AUC values predicted from a mathematical model of HBOC pharmacokinetics for crosslinked and polymerized (CP) HBOCs (squares)
and Hemospan, a PEG modified HBOC (PEG, circle). Calculations assumed autoxidation rate constants 0.3 that reported by (Meng et al., 2018) and a
zero NO secretion rate. Specific AUCs are for total (A), reduced (B), autoxidized (C), and total oxidized (D) HBOCs. The adjusted coefficients of
determination, p values, and y intercepts for equations of best fit for the CP HBOCs are given in Table 7. Data are derived from clinical trials enrolling a
total of 206–592 patients in each treated or control group for each HBOC.

(compare AUC values in Tables 3, 6). The total AUC also does not
changewhen the assumedNO secretion rate and/or the autoxidation
rate constants are multiplied by the same factor (Table 6), but
the AUC values for differing HBOC components (i.e., reduced,
autoxidized, and NO oxidized) do.

Good correlations between the MI ratios and estimated AUCs
are obtained for reduced, autoxidized, NO oxidized, total oxidized
and total HBOC for both scenarios in which a finite NO secretion
rate is assumed, and for each of the AUCs save that for total NO
oxidized hemoglobin in the scenario in which NO secretion is
assumed to be zero (Table 7, Figure 3). However, taking into account
y-intercept values as well as the correlation coefficients and p-values,
best agreement is observed with quadratic fits between the MI ratios
and autoxidized, total methemoglobin, and total HBOC AUCs.

Discussion

A narrative has been promoted in the HBOC literature that
toxicity is primarily a consequence of the extravasation of lower
molecular weight hemoglobins and their consumption of NO in

the interstitial space, thereby causing vasoconstriction (Gould et al.,
1998). While there is significant experimental support for this
process as a primary mechanism for HBOC induced hypertension
(Olson et al., 2004), this narrative ignores the potential adverse
consequences of intravascular interactions. It also implies that
HBOCs of larger size should be less toxic; however, the opposite
is observed with respect to MI. Furthermore, infusion of HBOCs
into rats, dogs, cats, or pigs resulted in no decrease in coronary
blood flow (Sharma et al., 1994; Kingma et al., 2002; Ulatowski et al.,
1996; Mongan et al., 2009), even in the face of substantial
overall increases in systemic vascular resistance (Sharma et al.,
1994), nor were coronary artery dimensions decreased in human
cardiac patients after HBOC infusion (Collins et al., 1993;
Serruys et al., 2008; Meliga et al., 2008). This implies that other
mechanisms are important in increasing MI risk and that these are
intravascular in nature.

The fact MI incidence exhibits a quadratic dependence with
respect to HBOC dose motivated exploration of why this should be
the case. This ultimately led to the realization this is at least in part a
consequence of the fact that HBOC AUCs also exhibit a quadratic
dose dependence, since increasing dose increases the circulatory
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half-life as well as the initial value of plasma HBOC concentration.
Indeed, the correlation of MI ratio with AUC is stronger than that
with either dose or size, suggesting that AUC is the better basis for
the interpretation of biological effects.

HBOCs exacerbate oxidative stress in a variety of cellular,
tissue and whole animal models with an important first
step being an autoxidative process in which bound oxygen
dissociates as superoxide, leaving the hemoglobin in the oxidized
(methemoglobin) form (Alayash, 2019). Both superoxide and
methemoglobin may participate in oxidative stress reactions, some
of which are known to cause endothelial dysfunction (D’Agnillo,
2013) and increased vaso-occlusion, with accelerated heme loss
from methemoglobin identified as a major contributing factor
(Belcher et al., 2014). The oxidation of HBOCs in plasma to
methemoglobin has been directly observed in clinical trials
(Sprung et al., 2002; Olofsson et al., 2006; Olofsson et al.,
2008; O’Hare et al., 2001). While humans may have some
capacity to reduce plasma methemoglobin (Vandegriff et al.,
2006; McGown et al., 1990), this capacity is limited and may be
overwhelmed in patients with pre-existing endothelial dysfunction
at higher HBOC doses (Biro, 2012; D’Agnillo, 2013). Oxidative
stress is also variable among patients, with an extensive literature
correlating such stress with increased MI risk (Wang and
Kang, 2020; Liguori et al., 2018). In light of this, it is not surprising
the incidence of MI is highly correlated with the initial rate of CP
HBOC autoxidation as well as the estimated autoxidation AUC.
Indeed, the correlation between HBOC infusion, oxidative events
and enhanced MI incidence may be the most rigorous proof to date
of the hypothesis that oxidative stress increases MI risk.

Methemoglobin is also formed when hemoglobin reacts with
NO, with conversion of the latter to nitrate (D’Agnillo, 2013).
Comparing the amount of metHBOC generated by autoxidation
versus NO oxidation as reflected in their estimated relative AUC
values suggests the former is more important at higher HBOC
doses, but the latter can make a significant contribution at
lower doses (Table 6). What cannot be directly compared in this
analysis is the relative contribution of oxidative stress resulting
from metHBOC formation and the consequences of profound
NO depletion. For example, NO consumption is known to
activate platelets (Radomski et al., 1987) and could contribute to
endothelial dysfunction (Biro, 2012; D’Agnillo, 2013). Ideally, both
the autoxidation and NO reaction rate constants should be reduced
to minimize HBOC toxicity.

In comparing MI risk enhancement between CP HBOCs and
Hemospan at comparable doses, the latter increases risk to a greater
extent.Thismay be a consequence of increased tetramer dissociation
in PEG HBOCs (Caccia et al., 2009) which can in turn accelerate
autoxidation (Zhang et al., 1991). However, the in vitro measured
autoxidation rate constant for Hemospan is actually slightly lower
than that of the CP HBOCs (Meng et al., 2018). A more likely
possibility is that PEG modification of hemoglobin leads to an
increased rate of heme loss, which can in turn exacerbate vaso-
occlusion (Belcher et al., 2014). Meng et al. reported that the
fast phase of heme loss from Hemospan was greater than that
of CP HBOCs and approximately 1.4 -fold greater than that of
unmodified human hemoglobin (Meng et al., 2018). Vandegriff
and coworkers reported that the fast phase of heme loss from
Hemospan was fivefold greater than that of unmodified hemoglobin

(Vandegriff et al., 2006). Free heme has been increasingly implicated
as contributing to endothelial dysfunction and MI risk (Guo et al.,
2022). Thus, although PEG modification has proven useful in
improving the therapeutic index of other proteins, it may not be
helpful in improving the desired characteristics of HBOCs.

Some may be disconcerted by the fact that multiple
combinations of autoxidation rate constants and NO secretion rates
result in AUC values that demonstrate a strong correlation to the
MI ratios (Tables 5–7). However, this reflects the mathematical
reality that multiplication of any set of independent variables by the
same constant will not affect the correlation coefficient due to the
fact that the independent variables appear in both the numerator
and denominator to the same power. Thus, correlations do not in
themselves necessarily reflect the relative absolute contributions of
different variables to the observed dependent variable. This can be
better defined by comparison of the absolute values of AUC to actual
clinical data as was done with respect to Hemospan. Unfortunately,
this is the only HBOC clinical data set which has a sufficient number
of plasma metHBOC data points in order to do so. For this reason,
correlations of various AUC values with MI ratios were assessed
for a range of autoxidation and NO secretion rates, encompassing
the specific values that give good agreement with clinical data for
Hemospan. The fact that there were strong correlations between
AUC values and MI incidence in all of these scenarios implies that
these correlations are robust in this sense.

The analysis presented in this publication is limited by several
factors. None of the clinical trials from which data were derived
were specifically designed to explore possible mechanisms by which
HBOCsmay increaseMI risk, in part because this was not identified
in preclinical studies or individual clinical trials as a product related
adverse event prior to 2008. It was only when data are aggregated
that this became apparent (Natanson et al., 2008). In addition, the
diagnosis of MI is not necessarily straightforward in the presence
of HBOCs because hemoglobin can interfere with MI diagnostic
troponin assays (Estep, 2019), although several HBOC developers
have considered such interference (Ma et al., 1997; Olofsson et al.,
2011). The exact criteria used for MI diagnosis are also not always
well described, and may therefore differ, which could contribute
to between study variability. On the other hand, it is reasonable
to assume that the same criteria are used in assessing treated and
control patients within a study, and common authorship across
a number of the studies should increase consistency. Finally, the
analyses presented in this publication required the estimation,
interpretation or extrapolation of a variety of parameters. The need
for data aggregation also results in only four or five data points
for each comparative analysis. As a consequence, the observations
presented in this publication should be considered as hypothesis
generating rather than definitive.

Collectively, the analyses presented in this communication,
when viewed in light of an extensive literature on HBOC
safety, suggests that efforts to minimize hemoglobin oxidative
reactions should result in less toxic formulations (Bian and
Chang, 2015). In addition, further exploration of the manner
in which HBOCs impact patient oxidation/reduction status
and endothelial dysfunction could usefully improve patient
selection criteria. Such efforts may ultimately enable the
identification of patient subpopulations at low risk for HBOC
side effects.
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