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Effects of cholinergic antagonists
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duodenum of newly hatched
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The aim of this study was to evaluate the effect of the cholinergic receptor
antagonists on ghrelin (GHRL) expression and release from parts of the
gastrointestinal system in an unique animal model—newly hatched chickens.
Ghrelin was released from explants of the crop, proventriculus, and duodenum
tissues in vitro. The expression of GHRL, along with that of ghrelin O-
acyltransferase (GOAT) and growth hormone secretagogue receptor (GHSR-
1a), was also observed in the crop, proventriculus, and duodenum. This is
the first report on ghrelin expression, synthesis, and release in the avian
crop. The release and expression of ghrelin, together with ghrelin-related
parameters (expression of GOAT and GHSR-1a), were influenced by incubation
with cholinergic antagonists, particularly in gastrointestinal explants from chicks
within 2 h of hatching. For instance, there was increased release of ghrelin from
crop or proventriculus explants from newly hatched chicks in the presence
of hexamethonium. In addition, the expressions of ghrelin, GOAT, and GHSR-
1a were increased in the presence of hexamethonium in crop explants from
newly hatched chicks. In contrast, the release of ghrelin from duodenal explants
was decreased in the presence of either atropine or hexamethonium in both
newly hatched and 1-day-old chicks. There were relationships between ghrelin
release and expression and alsowith GOAT andGHSR-1a expression, particularly
in crop explants from newly hatched chicks. For instance, there were strong
relationships (adjusted R2 > 0.84) between the expression of ghrelin, GOAT, and
GHSR in tissue incubated with cholinergic antagonists. This is a novel report
demonstrating ghrelin release and synthesis from three regions of the avian
gastrointestinal tract. It also demonstrates the cholinergic control of ghrelin
release and synthesis.
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1 Introduction

Ghrelin (GHRL) is an important hormone that controls
the secretion of growth hormones, feeding, and gastrointestinal
functioning (Kojima et al., 1999). The major source of ghrelin
is the stomach (humans, Ariyasu et al., 2001), but it is also
present in the small intestine and colon (Date et al., 2000).
Ghrelin has been identified in both the avian proventriculus and
duodenum (Kaiya et al., 2002; Wada et al., 2003; Neglia et al.,
2005). Cholinergic control of ghrelin release is established in
mammals (rats, Hosoda and Kangawa, 2008; humans, Broglio et al.,
2004; Maier et al., 2004), but it remains unknown whether such
a system exists in birds. Moreover, there are unique structures
in the gastrointestinal tract in birds that are not found in
mammals; these are the proventriculus (equivalent to the glandular
stomach) and the crop (an out-pocketing of the esophagus).
It was hypothesized that ghrelin would be synthesized and
released from both the duodenum and proventriculus and that
this process would be under cholinergic control. In view of the
presumptive absence of the synthesis of gastrointestinal hormones
in the mammalian esophagus, it was considered unlikely that
the crop would synthesize ghrelin. For completeness, cholinergic
antagonists were included in the study examining ghrelin release
and the expressions of GHRL, ghrelin O-acyltransferase (GOAT),
and growth hormone secretagogue receptor (GHSR-1a). There is
no published evidence for the release or expression of GHRL
from the crop nor for the expression of GOAT. However,
ghrelin influences the contractions of crop smooth muscle in
chickens (Kitazawa et al., 2007). Moreover, its receptor, GHSR-
1a, has been identified in the muscle layer of the chicken crop,
together with both the smooth muscle and enteric neurons in
the proventriculus (Kitazawa et al., 2007). Interestingly, the mode
of action of ghrelin differs between the chicken proventriculus
and crop, with ghrelin acting on both smooth muscle and enteric
neurons in the proventriculus but only on the smooth muscle
in the crop (Kitazawa et al., 2007).

Acetylcholine plays multiple roles in the gastrointestinal
tract. For instance, the muscarinic antagonist atropine delayed
mouth-to-ileum transition time in humans (Borody et al.,
1985). The cholinergic agonist carbachol induces contractions
in the ileum (Caputi et al., 2017). In addition, the muscarinic
cholinergic antagonist atropine blocks the increase in gastric
acid production in conscious dogs challenged with either met-
enkephalin or morphine (Konturek et al., 1980). Moreover, there
is also evidence of in vitro acetylcholine release from cholinergic
nerve endings in gastrointestinal tissue (ileal tissue, Paton, 1957).
Acetylcholine also affects the secretion of pancreatic hormones,
stimulating somatostatin release from human δ-islet cells via M1
muscarinic receptors (Molina et al., 2014). It remains unclear
whether acetylcholine also stimulates ghrelin from gastrointestinal
endocrine cells.

There is substantial evidence for cholinergic control of
multiple gastrointestinal parameters, but it remains unclear
whether ghrelin release is also under cholinergic control. There
is evidence, albeit limited, for cholinergic stimulation of ghrelin
release; fasting concentrations of ghrelin are decreased by the
muscarinic antagonist, atropine (humans: Maier et al., 2004).
Moreover, plasma concentrations of ghrelin are decreased in

choline acetyltransferase-knockout neonatal mice (Lecomte et al.,
2018). Moreover, acetylcholine evoked a small increase in
ghrelin release from rat stomach tissue in vitro (Shrestha et al.,
2009). There is, however, no information on cholinergic effects
on ghrelin release or synthesis in the crop, proventriculus,
and duodenum.

The present study examines the following: 1. ghrelin release
and the expressions of GHRL, GOAT, and GHSR-1a in the crop,
proventriculus, and the glandular equivalent of the mammalian
stomach, along with the duodenum of newly hatched chicks; and
2. in vitro effects of cholinergic receptor antagonists on the ghrelin
release and the expressions of GHRL, GOAT, and GHSR-1a in
the crop, proventriculus, and duodenum of newly hatched chicks.
The present study also compared the ghrelin parameters in newly
hatched chicks and 1-day-old chicks. The rationale for using chicks
of these ages was that the gastrointestinal tract would be more
fully developed and putative confounding effects of physiological
stress from hatching would be less likely in day 1 chicks than
in day 0 chicks. Moreover, it is recognized that the ability of
chicken ghrelin to stimulate contraction of the proventriculus is the
maximum in newly hatched chicks (Kitazawa et al., 2013). Another
rationale for using 0- and 1-day-old chicks without access to feed
was to negate any confounding effects of ingesta on gastrointestinal
functioning.

2 Materials and methods

2.1 Eggs and their incubation

Hatching eggs [mean egg weight = 60.3 ± 1.11 g] of the Ross
308 broiler chicken parental line (Aviagen) were obtained from a
commercial farm in Poland. The eggs were incubated in a Brinsea-
type OVA-Easy Advance Incubator under standard conditions, i.e.,
a temperature of 37.8°C ± 0.1°C and a relative humidity (RH) of 50%
± 2%. Immediately after hatching (day 0) or 24 h later (day 1), chicks
were transported to the laboratory and were euthanized within 2 h
by cervical dislocation. Day 1 chicks had access to water. Feed was
not provided to prevent confounding effects of ingesta influencing
gastrointestinal parameters.

2.2 Animals

The experimental and animal procedures used in this study
were performed in accordance with Directive 2010/63/EU of the
European Parliament and the Council on the protection of animals
used for scientific purposes. The animal study was reviewed and
approved by the Institutional Animal Care and Use Committee at
the Agricultural University in Krakow.

Experiment 1 was carried out on 20 newly hatched chicks
(mixed sex) divided into four treatment groups (day 0); tissues were
incubated in vitro without supplementation (0), with 100 nM of
atropine (A), with hexamethonium (H), or with a combination of
atropine and hexamethonium (A + H). Experiment 2 was carried
out on 20 chicks (mixed sex) after 24 h of hatching that were divided
into four treatment groups (day 1). The tissues were treated in the
same manner as described in experiment 1.

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1553474
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Scanes et al. 10.3389/fphys.2025.1553474

2.3 Tissue culture

Fragments of crop, duodenum, and proventriculus (each
fragment 50–70 mg) were dissected and placed on a 24-well
plate. Tissues were incubated in 1 mL of Eagle’s medium
supplemented with 0.05% bovine serum albumin and 2 µL of the
antibiotic–antimycotic solution (AAS) (n = 5) for 6 h at 38°C (5%
CO2) in the presence or absence of atropine, hexamethonium,
and atropine with hexamethonium (100 nM). Doses of atropine
and hexamethonium were determined during the pilot study:
in vitro dose (1, 10, 100, and 1000 nM) responses and time
(4, 5, and 6 h) responses of different tissues were taken from
newly hatched chickens. The dose of 100 nM (100 mmol/L) and
6 h of culture time were chosen for the crop, duodenum, and
proventriculus when the highest level of secretionwas observed.The
calculation was 1 nmol per 50 mg of tissue, which corresponds to
28.93 ng/mLmedium/50 mg of tissue for atropine, and 36.21 ng/mL
medium/50 mg of tissue for hexamethonium. Following incubation,
the tissues were placed in StayRNA (A&A Biotechnology, Gdynia,
Poland) until RNA isolation.The culturemediawere stored at −80oC
for ghrelin determination.

2.4 Concentrations of hormones

Concentrations of total ghrelin (both acylated and deacylated
forms) in the culture media were estimated using the
radioimmunoassay kit, following the manufacturer’s protocol
(DRG, Germany, RIA-3967). The assay parameters were evaluated
in two ways:

1. standardization of ED 80, ED 50, and ED 20 with plasma
chicken, sheep, and rat (each volume of 100, 300, and 500 µL);
and 2. Evaluation of antibody binding of chicken standards at the
concentrations of 50, 100, and 500 pg/mL. The final concentration
of ghrelin was recalculated using the standardized parameters.There
was close parallelism between the standard curve of mammalian
ghrelin and dilutions of chicken plasma and low intra- and inter-
assay coefficients of variance. The cross-reactivity was observed
despite the marked differences between chicken ghrelin and that of
mammals, other birds, and reptiles (see Supplementary Table S1).
According to the manufacturer (DRG, Germany, RIA-3967), both
acylated and deacylated ghrelin are equipotent in the assay, while
the fragment ghrelin peptide (1–10) was non-detectable. This does
not preclude that the epitope(s) detected in the assay include part of
the N-terminal sequence (see Supplementary Table S1).

2.5 Gene expression analysis (RNA
isolation, reverse transcription reaction,
and qPCR reaction)

RNA was isolated with the TRI-Reagent according to the
method described by Chomczynski and Sacchi (1987). The quality
and concentration of the isolated RNA were determined by
spectrophotometric analysis at wavelengths of 260 and 280 nm.
Reverse transcription reactions were performed in accordance
with the manufacturer’s recommendation. The reaction mixture
contained 4.2 µL of sterile water, 2 µL of 10× RT buffer, 0.8 µL

of 25× dNTP MIX (100 nM), 2 µL of 10× RT primer (random
primer), 1 µL of MultiScribeTM reverse transcriptase, and 2 µg
of total RNA in 10 µL of water. Reverse transcription reactions
were performed using a thermocycler (Personal Thermal Cycler,
Eppendorf, Germany) in the cycle 25°C–10 min, 37°C–120 min,
and 85°C–5 min. The obtained cDNA, stored at −20°C, constituted
a template for the qPCR reaction . The qPCR reactions were
performed in a 96-well thermal cycler (StepOnePlus, Applied
Biosystems, Foster City, CA, United States).The 18S rRNA gene was
used as a reference gene.The following programwas used: 15 min at
95°C, followed by 40 cycles of 15 s at 95°C, 20 s at 62°C, and 20 s
at 72°C; the reaction was performed in a 10-µL reaction mixture
containing 2 µL of 5×Hot FIREPol EvaGreen qPCR mix, 0.12 µL of
primers (10 pmol/μL), and 1 µL of cDNA (a 10-fold diluted sample
from the RT reaction). A duplicate was performed for each sample.
The relative number of genes analyzedwas calculated by normalizing
to the 18S rRNA reference gene (see Table 1). The expression was
calculated using the 2−ΔΔCt method. The StepOne program was
used for quantification.

2.6 Reagents used in the research

The following reagents were used: Eagle’s medium (Biomed,
Lublin, Poland), BSA and AAS (Merck KGaA, Darmstadt,
Germany), StayRNA (A&A Biotechnology, Gdynia, Poland),
TRI-Reagent (MRC Inc., Cincinnati, OH, United States),
high-capacity cDNA reverse transcription kit (Thermo Fisher
Scientific, Waltham, MA, United States), primers (IBB PAN,
Warsaw, Poland), and 5× HOT FIREPol EvaGreen qPCR Mix
Plus (ROX) (Solis BioDyne, Tartu, Estonia). Other reagents
were purchased from Chempur (Piekary Slaskie, Poland),
Warchem (Marki, Poland), and Sigma-Aldrich (St. Louis, MO,
United States).

2.7 Statistical analysis

Data were analyzed using two-way analysis of variance
(two-way ANOVA), i.e., plus or minus atropine (a muscarinic
cholinergic antagonist) and/or hexamethonium (a nicotinic
cholinergic antagonist). Means were separated using Tukey’s
test. Relationships between parameters were analyzed by linear
regression.

3 Results

3.1 Differences by organ and day

The ghrelin release level was lower in the proventriculus
than that in the crop and duodenum on day 0 but
higher on day 1 (Table 2). The expressions of GHRL, GOAT, and
GHSR-1a were similar in the crop, proventriculus, and duodenum
on day 0. However, the expression of GHRL was much higher in
the crop on day 1. The expression of GOAT was much lower in the
proventriculus on day 1, while the expression of GHSR was lower in
the proventriculus and duodenum on day 1.
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TABLE 1 Primers for ghrelin, GOAT, GHSR, and 18S rRNA used in the real-time PCR and amplified fragment size (bp).

Primer F/R Gene sequence Fragment size (bp)

Ghrelin F
R

5′-GAAACTGCTCCCCTGGCTGGCTCTAG-3′

5′-GAAGACAGACAGGCGATGTGTGG-3′
106

GOAT F
R

5′-GCTCTTCAGACTGGCGTACTACTCG-3′

5′-GAAGACAGACAGGCGATGTGTGG-3′
145

GHSR F
R

5′-TCTTTTTCCTGCCCGTATTCTGC-3′

5′-AGTCTGCTTGTTGTTCTTGTCCCTG-3′
125

18S rRNA F
R

5′-CTTTGGTCGCTCGCTCCTC-3′

5′-CTGACCGGGTTGGTTTTGAT-3′
115

TABLE 2 Ghrelin release and expression of ghrelin, GOAT, and GHSR by organ and age. Data are shown as the mean ± SEM.

Ghrelin release
mean ± SEM, pg
mg−1, n = 5

Expression mean RQ relative to 18S rRNA ±SEM (n = 3)

Ghrelin GOAT GHSR

Day 0

Crop 180.8 ± 2.1a 1.04 ± 0.029 1.26 ± 0.080a 1.01 ± 0.067

Proventriculus 41.4 ± 1.1b 1.20 ± 0.091 1.03 ± 0.070a 1.15 ± 0.047

Duodenum 141.8 ± 1.5c 1.05 ± 0.105 3.54 ± 0.372b 1.22 ± 0.121

Day 1

Crop 155.6 ± 2.1 108.5 ± 0.538b 33.8 ± 1.94b 108.5 ± 0.54b

Proventriculus 239.4 ± (5) 2.9 0.287 ± 0.023a 0.797 ± 0.033a 0.583 ± 0.028a

Duodenum 132.8 ± (5) 1.6 0.670 ± 0.082a 35.5 ± 0.372b 1.49 ± 0.043a

a,b,c Different superscript letters indicate difference between organs P < 0.05.

3.2 Effects of cholinergic antagonists

Figures 1, 2 summarize the effects of cholinergic antagonists
(atropine and hexamethonium) on the release of ghrelin, together
with the expressions of GHRL, GOAT, and GHSR in explants of the
chick crop, proventriculus, and duodenum incubated in vitro for 6 h.

In newly hatched chicks (day-0 chicks), the release of ghrelin
was increased (P < 0.001) by 2.76-fold from crop explants
and by 89.4% from proventriculus explants in the presence of
the nicotinic cholinergic antagonist, hexamethonium (Figure 1;
Supplementary Table S2). In contrast, the release of ghrelin from
the duodenum was decreased (P < 0.001) in the presence of
hexamethonium by 65.4% (Figure 1; Supplementary Table S2). In
addition, in the presence of atropine, the release of ghrelin was
increased (P < 0.001) in proventriculus explants (by 47.8%)
but decreased (P < 0.001) in duodenal explants (by 54.1%)
(Figure 1; Supplementary Table S2). There were interactions (P
< 0.0002) between the effects of atropine and hexamethonium
(Supplementary Table S2). The in vitro release of ghrelin from
crop and proventriculus explants was decreased in the presence of
hexamethonium alone (Figure 1; Supplementary Table S2).

The expression of GHRL in explants incubated in vitro with
hexamethonium was increased in crop tissue (by 25.5-fold) but
decreased in proventriculus (by 94.7%) and duodenal tissue (by
45.4%) (Figure 1; Supplementary Table S3). GHRL expression was
also decreased in the presence of atropine in the crop (by 78.9%),
proventriculus (by 84.1%), and duodenum tissues (by 98.0%)
(Figure 1; Supplementary Table S3). There were interactions (P <
0.0001) between the effects of atropine and hexamethonium (Table 3
and Figure 1; Supplementary Table S3). In crop explants incubated
with both atropine and hexamethonium, GHRL expression was
markedly increased, being 582.3-fold greater than that with atropine
alone and 4.83-fold greater than that with hexamethonium alone
(Figure 1; Supplementary Table S3). In contrast, the expression of
GHRL from either proventriculus or duodenal explants in the
presence of both atropine and hexamethonium was not different
(P > 0.05) from that in the presence of hexamethonium alone
(Figure 1; Supplementary Table S3).

Cholinergic antagonists affected the expression of GOAT.
GOAT expression was markedly increased (P < 0.0001) in either
crop (13.9-fold) or duodenal tissue (17.1-fold) incubated with
hexamethonium (Figure 1; Supplementary Table S4). In contrast,
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FIGURE 1
In vitro effects of atropine (A) and/or hexamethonium (H) on ghrelin release (pg mg-1 6 h-1) and expression of ghrelin-related genes (GHRL, GOAT, and
GHSR-1a shown relative to control as 1.0) from explants of the crop, proventriculus, and duodenum from newly hatched (day-0) chicks. a, b, c,d Different
superscript letters indicate difference at P < 0.05.

the expression of GOAT was decreased (P < 0.001) in either
proventriculus or duodenal tissue incubatedwith atropine (Figure 1;
Supplementary Table S4). There were interactions (P < 0.0001)
between the effects of atropine and hexamethonium (Figure 1;
Supplementary Table S4). For instance, the expression of ghrelin in
the presence of atropine and hexamethonium was greater than that
in the presence of either atropine (185.4-fold) or hexamethonium
(6.0-fold) alone in crop tissues (Figure 1; Supplementary Table S4).
Similarly, the depressive effects of either atropine or hexamethonium
on GOAT expression in proventriculus explants were ameliorated
in the presence of atropine and hexamethonium (Figure 1;

Supplementary Table S4). Furthermore, the stimulatory effect of
hexamethonium on GOAT expression in the duodenum was
decreased (P < 0.0001; by 95.4%) in the presence of atropine
(Figure 1; Supplementary Table S4).

The expression of GHSR-1a was influenced by cholinergic
antagonists. Expression in crop tissue was increased 5.33-fold
(P < 0.0001) in the presence of hexamethonium (Figure 1;
Supplementary Table S2). Expression in proventriculus tissue
was increased by 33.0% (P < 0.01) in the presence of
atropine but decreased by 41.7% (P < 0.001) in the presence
of hexamethonium (Figure 1; Supplementary Table S4). The
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FIGURE 2
In vitro effects of atropine (A) and/or hexamethonium (H) on ghrelin release (pg mg−1 6 h−1) and expression of ghrelin-related genes (GHRL, GOAT, and
GHSR-1a shown relative to control as 1.0 of day 0) from explants of the crop, proventriculus, and duodenum from hatched (day-1) chicks. a, b, c

Different superscript letters indicate difference at P < 0.05.

expression of GHSR-1a in duodenal explants was decreased (P
< 0.0001) by 99.1% when incubated in the presence of atropine
(Figure 1; Supplementary Table S4). There were interactions (P
< 0.0001) between the effects of atropine and hexamethonium
(Figure 1; Supplementary Table S4). Atropine increased (P <
0.01) hexamethonium stimulation of GHSR-1a expression in
crop explants but decreased (P < 0.0001) GHSR expression
in proventriculus explants (Figure 1; Supplementary Table S4).
Moreover, in duodenal explants, in the presence of both

hexamethonium and atropine, the inhibitory effects of atropine
were lost (Figure 1; Supplementary Table S4).

For day-1 chicks, there was increased release of ghrelin
from crop explants incubated with atropine (by 3.58-fold)
(P < 0.0001) (Figure 2; Supplementary Table S2). In contrast,
hexamethonium decreased ghrelin release (P < 0.001) (Figure 2;
Supplementary Table S2). However, ghrelin release from either
proventriculus or duodenal explantswas decreased (P < 0.001) in the
presence of atropine (proventriculus: 52.5% and duodenum: 25.6%)
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TABLE 3 Relationships/regressions [adjusted R2 (P <)] between ghrelin-related parameters.

Ghrelin release Ghrelin expression GOAT expression GHSR expression

Crop

Day 0

Ghrelin release 1.00 0.268 (P < 0.05) 0.282 (P < 0.05) −0.009

Ghrelin expression 1.00 0.995 (P < 0.001) 0.861 (P < 0.001)

GOAT expression 1.00 0.841

GHSR expression 1.00

Day 1

Ghrelin release 1.00 0.716 (P < 0.001) 0.188 −0.022

Ghrelin expression 1.00 0.238 −0.098

GOAT expression 1.00 0.387 (P < 0.05)

GHSR expression 1.00

Proventriculus

Day 0

Ghrelin release 1.00 0.209 0.638 (P < 0.001) −0.082

Ghrelin expression 1.00 0.641 (P < 0.001) 0.638 (P < 0.001)

GOAT expression 1.00 0.331 (P < 0.05)

GHSR expression 1.00

Day 1

Ghrelin release 1.00 −0.078 0.478 (P < 0.01) 0.173

Ghrelin expression 1.00 0.161 −0.096

GOAT expression 1.00 0.032

GHSR expression 1.00

Duodenum

Day 0

Ghrelin release 1.00 −0.029 0.080 −0.037

Ghrelin expression 1.00 −0.098 0.645 (P < 0.001)

GOAT expression 1.00 0.040

GHSR expression 1.00

Day 1

Ghrelin release 1.00 0.217 −0.085 0.271 (P < 0.05)

Ghrelin expression 1.00 0.202 0.119

GOAT expression 1.00 0.239

GHSR expression 1.00

Bold indicates P < 0.05.
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or hexamethonium (proventriculus: 88.8% and duodenum: 65.5%)
(Figure 2; Supplementary Table S2). There were interactions (P <
0.01) between the effects of atropine and hexamethonium (Figure 2;
Supplementary Table S2). Hexamethonium decreased (P < 0.01)
atropine-stimulated ghrelin release from crop explants (Figure 2;
Supplementary Table S2). Although atropine or hexamethonium
alone decreased the release of ghrelin, there was increased (P
< 0.0001) (by 3.88-fold) ghrelin release in the presence of both
cholinergic antagonists compared to the control (zero additions) in
duodenal explants (Figure 2; Supplementary Table S2).

GHRL expression was decreased in crop tissue incubated with
either atropine (by 69.5% %) or hexamethonium (by 59.7% %)
(Figure 2; Supplementary Table S3). In the presence of atropine,
there was suppression (P < 0.001) of ghrelin expression from
proventriculus (by 99.0%) or duodenal explants (by 90.9%)
(Figure 2; Supplementary Table S3). There were interactions (P
< 0.001) between the effects of atropine and hexamethonium.
Atropine and hexamethonium together stimulated (P < 0.01)
ghrelin expression in crop explants. This was in contrast to the
inhibitory effects observed when each antagonist was used alone
(Figure 2; Supplementary Table S3).

The expression of GOAT in crop explants was increased (P
< 0.001) in the presence of atropine (by 86.7%) but inhibited
by hexamethonium (by 45.3%) (Figure 2; Supplementary Table S4).
The situation was reversed in proventriculus explants, where
atropine inhibited GOAT expression by 67.8% (P < 0.01), while
hexamethonium stimulated it by 3.50-fold (P < 0.0001) (Figure 2;
Supplementary Table S4). Both cholinergic antagonists reduced (P
< 0.0001) GOAT expression in the duodenum, 79.9% for atropine
and 99.9% for hexamethonium (Figure 2; Supplementary Table S4).

GHSR-1a in crop explants was increased (P < 0.001)
by incubation with atropine (by 156.5%) and decreased (P
< 0.001) by incubation with hexamethonium (by 94.9%)
(Figure 2; Supplementary Table S5). Atropine decreased (P
< 0.01) the expression of GHSR-1a (by 70.8%), while
incubation with hexamethonium increased (P < 0.001) GHSR-
1a expression in proventriculus explants (by 3.29-fold) (Figure 2;
Supplementary Table 5).There was decreased (P < 0.001) expression
of GHSR-1a in duodenal explants incubated with hexamethonium
(Figure 2; Supplementary Table S5). There were interactions
between the effects of atropine and hexamethonium. For instance,
the expression of GHSR-1a was increased in the presence of both
atropine and hexamethonium in both crop and proventriculus
explants (Figure 2; Supplementary Table S5).

3.3 Relationships between ghrelin release
and GHRL expression, along with the
expressions of GOAT and GHSR in tissues
incubated in the presence or absence of
atropine and/or hexamethonium

In crop explants from day-0 chicks incubated with or
without atropine and/or hexamethonium, there were very strong
relationships (adjusted R2 > 0.84) between the expression of ghrelin
and that of GOAT (P = 2.97 E−13; slope 0.721 ± 0.014) and that of
GHSR-1a (P = 8.23E−6; slope 0.057 ± 0.007), as well as between
the expressions of GOAT and GHSR-1a (P = 1.65 E−5; slope

0.077 ± 0.010) (Table 3). There were also relationships (P < 0.05)
between ghrelin release and GHRL expression (P = 0.049; slope
−0.462 ± 0.206) and between ghrelin release and GOAT expression
(P = 0.044; slope −0.340 ± 0.148).

There were a series of relationships (P < 0.05) between ghrelin-
related parameters in proventriculus explants in day-0 chicks
(Table 3). Relationships (P < 0.05) were observed between ghrelin
release and GOAT expression (P = 0.001; slope −0.020 ± 0.004),
between ghrelin expression and GOAT expression (P < 0.001; slope
0.655 ± 0.144), between ghrelin expression andGHSR-1a expression
(P < 0.001; slope 0.731 ± 0.162), and between the expressions
of GOAT and GHSR (P = 0.029; slope 0.699 ± 0.275) (Table 3).
In contrast, there was only one relationship between ghrelin-
related parameters in proventriculus explants from day 1-chicks, i.e.,
between ghrelin release and GOAT expression (P = 0.0076; slope
−0.0088 ± 0.0026) (Table 3).

There were only two relationships between ghrelin-related
parameters in duodenal explants from day-0 and -1 chicks, i.e.,
between the expressions of GHRL and GHSR-1a (day 0: P < 0.001;
slope 1.20 ± 0.26) and between ghrelin release and GHSR-1a
expression (day 1: P = 0.047; slope 0.00147 ± 0.0007) (Table 3).

4 Discussion

In the present study, ghrelin was released in vitro from crop
explants, along with the explants of proventriculus and duodenal
tissue from newly hatched chicks (Table 2). In addition, GHRL and
GOAT were expressed in these tissues (Table 2). Although these
observations are novel, there is evidence of ghrelin’s role in the
gastrointestinal tract, with ghrelin influencing the motility of the
gastrointestinal tract in chickens (reviewed by Kitazawa and Kaiya,
2019). For instance, ghrelin stimulates contractions of chicken crop
strips in vitro (Kitazawa et al., 2007). The present observations of
GHSR-1a expression in the crop and proventriculus (Table 2) are
consistent with the report of GHSR-1a in the muscle of chicken
crop and both the smooth muscle and enteric neurons in the
proventriculus (Kitazawa et al., 2007). The presence of ghrelin
release, along with the expressions of GHRL, GOAT, and GHSR-
1a in the proventriculus of chicks, is analogous to their presence
in the mammalian stomach (Kojima et al., 1999; Date et al., 2000;
Ariyasu et al., 2001). However, there is no parallel to the presence
of a crop in chickens in mammals as mammals do not have a crop.
The occurrence of ghrelin release, along with the expressions of
GHRL, GOAT, and GHSR-1a in the chick duodenum, is similar to
that observed in mammals (Date et al., 2000; Ariyasu et al., 2001).

Both muscarinic and nicotinic antagonists affect ghrelin release
and the expressions of GHRL, GOAT, and GHSR-1a (Figures 1,
2) in explants of the chick crop, proventriculus, and duodenum
tissues. Similarly, acetylcholine stimulates somatostatin release from
human δ-islet cells via M1 muscarinic receptors (Molina et al.,
2014). Moreover, there is substantial evidence that acetylcholine or
cholinergic agonists increase insulin release from pancreatic β-islet
cells, probably via M3 muscarinic receptors (rats, Boschero et al.,
1995; mice, Duttaroy et al., 2004; Zawalich et al., 2004; Gautam et al.,
2006; human,Molina et al., 2014). It was noted that α-pancreatic islet
cells release acetylcholine with the muscarinic antagonist, atropine,
blocking acetylcholine release (Rodriguez-Diaz et al., 2011). Hence,
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the source of acetylcholine stimulating insulin may be either
neuronal or the α-islet cells. In contrast, no changes in glucagon
release were observed in human pancreatic islet cells in the presence
of either acetylcholine or cholinergic agonists (Molina et al., 2014).

There were strong relationships (P < 0.01) between the
expressions ofGHRL andGOAT (adjusted R2 for crop: 0.996 and for
proventriculus: 0.641), expressions of ghrelin and GHSR (adjusted
R2 for the crop: 0.861 and for the proventriculus: 0.638), and
expressions ofGOAT andGHSR-1a (adjusted R2 for crop: 0.841 and
for the proventriculus: 0.331) in tissue from day-0 chicks within 2 h
of hatching (Table 3). Relationshipswere eitherweak or non-existent
with duodenal tissue or tissue from 1-day-old chicks. These data
support a tight tie between the development of ghrelin and related
parameters in the crop and proventriculus.

There is evidence of cross talk between gastrointestinal peptides
and the cholinergic system,with atropineblocking the effect ofmotilin
on contractions of the chicken small intestine in vitro (Kitazawa et al.,
1995). Atropine inhibits ghrelin-stimulated contractions of chicken
proventriculus strips in vitro (Kitazawa et al., 2007).

The effects of cholinergic antagonists in the present study are
consistent with the tonic release of acetylcholine from nerve endings
or other cells. There is evidence of in vitro acetylcholine release
from cholinergic nerve endings in gastrointestinal tissue (ileal
tissue: Paton, 1957). It remains unclear whether the acetylcholine
influencing ghrelin parameters originates from cholinergic nerve
endings or acetylcholine-producing cells, in a manner similar
to its release from pancreatic islet cells (Rodriguez-Diaz et al.,
2011). The present results on the effects of cholinergic antagonists
are consistent with the models (Figure 3). It is clear that within
an age, there were consistent increases in all ghrelin-related
parameters in crop explants from newly hatched chicks incubated
with hexamethonium. However, there are consistent decreases
in all ghrelin-related parameters in crop explants from day-1
chicks incubated with hexamethonium and with proventriculus
and duodenal explants from day-1 chicks incubated with atropine.
There are also marked differences in the effect of cholinergic
antagonists between newly hatched chicks (day 0) and day-1
chicks. The explanation for this remains unclear. However, the
marked differences in the effect of cholinergic receptor antagonists
between newly hatched chicks (day 0) and day-1 chicks support the
hypothesis that acetylcholine (synthesized by gastrointestinal cells
and/or released from the vagus nerve) controls ghrelin release and
synthesis during avian gastrointestinal growth and development.

5 Conclusion

Ghrelin is synthesized in and released from explants of the
crop, proventriculus, and duodenum of newly hatched and 1-day-
old chicks. There are strong relationships between the expressions
of GHRL, GOAT, and GHSR-1a in both the crop and duodenum
from newly hatched chicks. Cholinergic antagonists influenced
both ghrelin release and synthesis in the crop, proventriculus, and
duodenum, supporting the presence of cholinergic control.

FIGURE 3
Cholinergic control of ghrelin release and synthesis (GHRL expression),
together with GHSR-1a and GOAT in newly hatched chicks (within
2 hours of hatching). Red lines indicate negative effects. Blue lines
indicate positive effects. (A) Crop; (B) proventriculus; (C) duodenum.
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