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Introduction: The aim of this research is to elucidate chronic obstructive
pulmonary disease (COPD) progression by quantifying lung ventilation
heterogeneities using single-photon emission computed tomography
(SPECT) images and establishing correlations with quantitative computed
tomography (qCT) imaging-based metrics. This approach seeks to enhance our
understanding of how structural and functional changes influence ventilation
heterogeneity in COPD.

Methods: Eight COPD subjects completed a longitudinal study with three visits,
spaced about a year apart. CT scans were performed at each visit and qCT-based
variables were derived tomeasure the structural and functional characteristics of
the lungs, while the SPECT-based variableswere used to quantify lung ventilation
heterogeneity. The correlations between key qCT-based variables and SPECT-
based variables were examined.

Results: The SPECT-based ventilation heterogeneity (CVTotal) showed strong
correlations with the qCT-based functional small airway disease percentage
(fSAD%Total) and emphysematous tissue percentage (Emph%Total) in the total
lung, based on cross-sectional data. Over the 2-year period, changes in SPECT-
based hot spots (TCMax) exhibited strong negative correlations with changes in
fSAD%Total, Emph%Total, and the average airway diameter in the left upper lobe,
as well as a strong positive correlation with alternations in airflow distribution
between the upper and lower lobes.

Discussion: In conclusion, this study found strong positive cross-sectional
correlations between CVTotal and both fSAD% and Emph%, suggesting that these
markers primarily reflect static disease severity at a single time point. In contrast,
longitudinal correlations between changes in TCMax and other variables over
2 years may capture the dynamic process of hot spot formation, independent
of disease severity. These findings suggest that changes in TCMax may serve as
a more sensitive biomarker than changes in CVTotal for tracking the underlying
mechanisms of COPD progression.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a
prevalent respiratory disease that imposes a significant burden on
healthcare systems worldwide (Halpin et al., 2022). The Global
Initiative for Chronic Obstructive Lung Disease (GOLD) report
(Global Strategy For Prevention, 2023) has been continuously
updated to better characterize the heterogeneities of COPD and
improve treatment outcomes (Ferrera et al., 2021; Vogelmeier et al.,
2020). In addition, imaging modalities, such as computed
tomography (CT) and single-photon emission computed
tomography (SPECT), have been utilized to visualize and
quantify regional functional and structural changes associated
with various pathological processes in lung diseases, such as
emphysema (Israel et al., 2019).

Innovative biomarkers based on quantitative CT (qCT) imaging
have been developed to investigate the underlying causes of COPD.
These biomarkers assess a wide range of risk factors and associated
defects, such as airway-branch variation (Smith et al., 2018),
dysanapsis (Smith et al., 2020), and pulmonary vascular dysfunction
(Alford et al., 2010; Iyer et al., 2016). The introduction of the
qCT-based parametric response map has significantly advanced
research on functional small airway disease (fSAD) and emphysema
(Emph) (Galbán et al., 2012). Both fSAD and Emph are critical
phenotypes in COPD, with the former considered a precursor
to the latter (Ostridge et al., 2016). It is suggested that targeting
small airways with appropriate treatments may potentially control
the progression of both airway and parenchymal diseases in
COPD (Singh, 2017). Novel multiscale qCT biomarkers have been
developed to capture a wide range of phenotypes at various stages
of lung disease (Choi et al., 2015). These imaging-based biomarkers
enable the identification of unique structural and functional
features within COPD subgroups, exhibiting strong associations
with distinct clinical characteristics. For instance, Haghighi et al.
applied unsupervised clustering techniques to cross-sectional qCT
biomarkers and identified four clinically relevant subgroups among
former and current smokers, respectively (Haghighi et al., 2018a;
Haghighi et al., 2019a). In addition, Zou et al. analyzed longitudinal
qCT biomarkers to study COPD progression (Zou et al., 2021a).

SPECT ventilation imaging allows for the assessment of global
and regional lung ventilation by measuring the concentration of a
radioactive tracer. This tracer acts as a biomarker for ventilation,
provided that the aerosol size of the tracer is small enough
to reach the alveoli. De Backer et al. demonstrated a strong
correlation between CT-based lobar air volume change and lobar
SPECT tracer aerosol concentration with aerosol diameter less
than 2 µm (De Backer et al., 2010). They further demonstrated
that the hot spots observed on SPECT images corresponded to
airway narrowing on CT images. Studies have also demonstrated
a correlation between heterogeneities observed on SPECT images
and impaired lung functions. Xu et al. found that the coefficient of
variation (CV) observed in SPECT images, a measure of ventilation
heterogeneity, not only differentiated patientswith emphysema from
non-emphysematous smokers and non-smokers, but also correlated
with pulmonary functions (Xu et al., 2001).Thus, combining SPECT
and CT imaging allows for a comprehensive evaluation of both
functional and structural relationships within different regions of
the lungs (Israel et al., 2019).

In this study, we aimed to evaluate COPD progression
by quantifying structural and functional changes in CT and
SPECT images of COPD subjects acquired at three visits,
approximately 1 year apart. Our objective was to establish
connections between qCT-based variables and SPECT-based
biomarkers to better understand how structural and functional
alterations interact both cross-sectionally and longitudinally
during COPD progression, offering new insights into ventilation
heterogeneities. We hypothesized that qCT-based structural
and functional alterations correlate with SPECT-measured
functional ventilation characteristics in COPD. While this
correlation was anticipated, it had never been established or
quantified in vivo.

Materials and methods

Fourteen subjects were initially recruited for a longitudinal
study with three visits at baseline (V0), 12.84 ± 1.68 months (V1),
and 26.20 ± 3.06 months (V2). The inclusion criteria were as
follows: current or former smokers with at least a 10 pack-year
smoking history, who have been classified as a COPD GOLD
0-4. Five subjects dropped out due to other health issues or
personal reasons, and one subject was excluded due to an abnormal
airway structure with an accessary bronchus connected to the
right main bronchus. Thus, eight subjects who completed all three
visits were analyzed in this study. Pulmonary function tests (PFTs,
see Supplementary Material/Content 1; Supplementary Figure S1
for more details), CT scans, and SPECT scans were acquired at each
visit. This study was approved by the institutional review board of
the University of Iowa and the informed consent was obtained from
all the patients before the study.

CT images and qCT variables

Three static three-dimensional (3D) CT scans were acquired
using the Siemens SOMATOM Force Scanner at the lung volumes
of total lung capacity (TLC), functional residual capacity (FRC)
and residual volume (RV). The lung volume control system used
was the same as that employed in the previous study (Fuld et al.,
2012). The TLC scan protocol used dose modulation with 36
reference mAs, 120 kV, pitch of 1.0, and rotation time of 0.25 s.
The FRC and RV scans used dose modulation with 15 reference
mAs, 120 kV, pitch of 1.0, and rotation time of 0.25 s. The CT
images have a spatial resolution of 0.5 mm in the z-axis, and
0.5–0.7 mm in the x and y-axes. The subjects were positioned
on the CT table in the supine position and were instructed to
breathe normally through the mouthpiece for a few breathing
cycles. While the CT scans were performed, they were instructed
to take in a deepest breath and hold it at the desired lung volume
of TLC, FRC, or RV. The subject breathed normally for several
cycles before the next CT scan was performed. Repeatability tests
assessing qCT measures have demonstrated excellent reliability and
reproducibility (Motahari et al., 2023).

The CT images were processed using VIDA Vision (VIDA
Diagnostics Inc., Coralville, Iowa) to segment the lung, lobes,
and airways. A mass preserving image registration technique
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FIGURE 1
The multiscale structural and functional qCT variables.

was performed to match FRC (or RV) with TLC images
(Haghighi et al., 2018b). TLC and RV images were registered
to derive functional variables, while TLC and FRC images were
registered to match SPECT images. A total of 69 structural
and functional multiscale qCT variables presented in previous
studies were derived (Haghighi et al., 2018a; Haghighi et al.,
2019a; Zou et al., 2021a) as shown in Figure 1. Please refer to
Supplementary Material/Content 2 for a detailed explanation of
these variables, and to Content 3 for a list of abbreviations of qCT
variables. The structural variables describe regional alterations in
lung structures, while the functional variables capture changes in
regional lung function. The qCT variables most relevant to this
study include normalized airway wall thickness (WT

∗
), normalized

airway hydraulic diameter (Dh
∗
), fractional air volume change

(∆VF
air), determinant of Jacobianmatrix (J), anisotropic deformation

index (ADI), fraction-based small airways disease (fSAD%),
fraction-based emphysema (Emph%), and tissue fraction at TLC
(βtissue). Specifically, the wall thickness and hydraulic diameter were
normalized, as indicated by an asterisk, using predicted values from
healthy subjects to account for inter-subject variability related to sex,
age, and height (Choi et al., 2015). ∆VF

air represents the ratio of the
air-volume change in the lobes to the total air-volume change in the
whole lung, while ∆VF

air,UML represents the ratio of the air-volume
change in the upper lobes to the air-volume change in the combined
middle and lower lobes.

The region where the qCT variable was measured is indicated
as a subscript of the variable, formatted as {Variable}{Region}. The
structural variables were measured from the lung shape, central
airways, and segmental airways. The lung shape was measured at
TLC as the ratio of apical-basal distance and ventral-dorsal distance.
The central airways include trachea, leftmain bronchus (LMB), right
main bronchus (RMB), right intermediate bronchus (BronInt), and
trifurcation of left lower lobe (TriLLB). The segmental airways were
grouped by lobes, such as sub-grouped segmental airways of left
upper lobe (sLUL), sub-grouped segmental airways of left lower lobe
(sLLL), sub-grouped segmental airways of right upper lobe (sRUL),
sub-grouped segmental airways of right middle lobe (sRML), and
sub-grouped segmental airways of right lower lobe (sRLL). The
functional variables were measured at lobar level, including left
upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL),
right middle lobe (RML), and right lower lobe (RLL), as well as total
lung level (Total).

SPECT images and variables

The subject was positioned supine on the SPECT scanner
to replicate the positioning used in the above CT scans. The
subject inhaled 99mTc sulfur colloid, a radioactive tracer aerosol
generated by a specialized nebulizer, through a mouthpiece with
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the nose occluded. A 3D SPECT scan of the whole lung was
then performed. The particle size of the sulfur colloid is below
1 µm (Krogsgaard, 1976), allowing the tracer aerosol to penetrate
deep into the lung (Sirr et al., 1985). Since 99mTc sulfur colloid
is non-absorbable, it is not rapidly cleared from the lungs. The
3D SPECT scan took approximately 20 min to complete and was
acquired during continuous tidal breathing. The SPECT images
have a spatial resolution of 3.895 mm along the x, y, and z-axes.
The estimated radiation dose retained by the subject was 0.17
mSv, well below the U.S. Nuclear Regulatory Commission standard
of 50 mSv/year. Initially, the SPECT imaging protocol involved
using 99mTc-HMPAO labeled neutrophils to assess inflammation
distribution. This method was used for the first two subjects at V0
but yielded minimal signal capture, as the 99mTc-HMPAO-labeled
neutrophils moved too quickly through the pulmonary vessels.
Consequently, we modified the protocol, which is why the first two
subjects did not have SPECT ventilation scans at V0.

SPECT imaging is a dynamic process that produces time-
averaged images during tidal breathing, while CT images are static
scans acquired at TLC, FRC, and RV. It is preferable to match
the SPECT images with the FRC CT images, as FRC represents a
lung volume closer to tidal breathing, compared to RV or TLC.
The lung deformation from FRC to the peak of tidal volume
was assumed to be relatively small and quasi-linear. Thus, the
SPECT images were first aligned with the FRC CT images using
affine transforms, with mutual information as the cost function.
Displacement fields for transforming the FRC CT images to TLC
were then obtained through image registration. These displacement
fields were subsequently applied to the SPECT images, deforming
them to match the TLC CT images, which provide detailed
anatomical information of the lungs.

After aligning the SPECT imageswith theTLCCT images, tracer
concentrations (TC) within the lung and each lobe were quantified
based on the domain of TLC CT images. The ratio of TC in a lobe
over the total lung (TC%), the TC coefficient of variation for the
total lung (CVTotal), and the standardized maximum TC in the total
lung (TCMax) were used to quantify the distribution, heterogeneity,
and hot spots of TC. Specifically, TC% measured lobar ventilation
distribution, while CVTotal, the ratio of the standard deviation to the
average of TC (Xu et al., 2001), measured ventilation heterogeneity.
TCMax quantified the magnitude of local hot spots as an indicator of
airway narrowing.The normalized CVTotal and TCMax accounted for
variations in the amount of TC inhaled. Moreover, the correlation
between TC% and ∆VF

air was used to assess the efficacy of the
image registration of SPECT and CT images. Pearson’s correlation
coefficients (r) between CVTotal and PFT values were calculated
and validated against previous studies (Xu et al., 2001; Nagao and
Murase, 2002). Correlation strengths were categorized as follows: |r|
≤ 0.3 as negligible, 0.3 < |r| ≤ 0.5 as weak, 0.5 < |r| ≤ 0.7 as moderate,
0.7 < |r| ≤ 0.9 as strong, and |r| > 0.9 as very strong.

Analysis of SPECT and qCT variables

The associations between SPECT and qCT variables were
evaluated to enhance the interpretation of the SPECT variables.
Exploratory factor analysis (EFA)was applied to reduce the extensive
number of qCT variables derived from the 799 current and former

smokers analyzed previously (Haghighi et al., 2018a; Haghighi et al.,
2019a) to a smaller set of factors that preserved the variability of
qCT-captured features. EFA identifies patterns or structures in a
large set of variables by reducing them to a smaller number of factors,
making complex data easier to interpret. The number of factors
was determined using the parallel analysis (Horn, 1965). Factors
were extracted using principal component analysis with Varimax
orthogonal rotation (Kaiser, 1958) to ensure their independence.

We then identified key qCT variables that significantly
contributed to each factor, using them as surrogates to interpret
disease phenotypes. qCT variables were regarded as key if their
loading values on their corresponding factors exceeded 0.6.We then
examined the correlations between key qCT variables and SPECT
variables, using cross-sectional data from V0, V1, and V2 as well as
the longitudinal data showing changes between any two visits of V1
and V0 (V1-V0, 1 year apart), V2 and V1 (V2-V1, 1 year apart), and
V2 and V0 (V2-V0, 2 years apart).

With small sample sizes, we prioritized large effect sizes
(Pearson’s coefficients >0.7) in this exploratory study (Akoglu,
2018; Cohen, 1992). This approach acknowledges two challenges
of small samples: insufficient statistical power to detect real
effects (increasing Type II errors) and vulnerability to spurious
significance from random fluctuations. Importantly, statistical
power can be deemed adequate with a smaller sample when the
effect size is large (Shreffler andHuecker, 2023). By focusing on effect
size, we quantified relationship magnitudes independent of sample
size, ensuring the observed effects were substantial and meaningful
despite limited data.

Result

The clinical data and PFT results for the eight COPD subjects
are presented in Table 1 (see Supplementary Table S1 formore data).
These subjects (age: 63.1 ± 11.5 years; range: 51–84 years) had an
average Tiffeneau ratio [FEV1/FVC (%)] of 52.9% ± 16.6% and an
average predicted forced expiratory volume ratio (FEV1%predicted)
of 67.9% ± 16.3% at V0. The mean changes between V1 and V0
were 0.0% ± 1.9% for FEV1/FVC (%) and −2.5% ± 5.4% for FEV1
(%) predicted. Additionally, the mean changes between V2 and
V1 were 0.8% ± 1.9% for FEV1/FVC (%) and 3.5% ± 4.6% for
FEV1% predicted. Thus, the lung function of all subjects remained
approximately stable over the 2-year period (Pellegrino et al., 2005).

At V0, Subjects 2 and 5 had moderate-to-severe (GOLD 2,
bordering on GOLD 3) and severe (GOLD 3) airflow obstruction,
respectively, according to their PFT results. Subjects 1, 3, and 4 had
moderate (GOLD 2) airflow obstruction. Subject 6 had mild airflow
obstruction (GOLD 1), while Subjects 7 and 8 were at risk of COPD
(GOLD 0). Additionally, Subjects 1 through 5 were former smokers,
while Subjects 6 through 8 were current smokers.

SPECT features

TC% and ∆VF
air of each lobe at each visit are listed in

Supplementary Table S2. The correlation coefficient between TC%
and∆VF

air was 0.73, indicating a strong positive relationship between
the two variables (Figure 2a). In addition, the correlations between
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FIGURE 2
(a) A scatter plot showing the strong correlation between TC% and ΔVair

F of the lobes (r = 0.73). (b) A scatter plot showing the strong correlations
between CVTotal and PFT results (FEV1% predicted: r = −0.74, FEV1/FVC (%): r = −0.80). Data points are derived from all three visits.

CVTotal and PFT values revealed a strong negative correlation
with FEV1% predicted (r = −0.74) and an even stronger negative
correlation with FEV1/FVC (%) (r = −0.80) (Figure 2b).

The SPECT images for all the subjects are displayed in
Figure 3. CVTotal and TCMax at each visit, together with their
changes between visits, are summarized in Table 2. Across
all visits, these subjects were categorized into three distinct
subgroups: (Global Strategy for Prevention, 2023; Israel et al., 2019),
(Smith et al., 2018; Smith et al., 2020; Alford et al., 2010) and
(Halpin et al., 2022; Ferrera et al., 2021; Vogelmeier et al., 2020).
Subjects 2 and 5 were characterized by higher CVTotal and extremely
elevated TCMax. In contrast, Subjects 6, 7, and 8 exhibited more
homogeneous TC distributions, while Subjects 1, 3, and 4 showed
ventilation distribution patterns that fell between the other two
subgroups. Notable hot spots, revealed by concentrated red areas,
were evident in the SPECT images of Subjects 2 and 5 throughout
all visits. A prominent hot spot was also observed on the left
upper lobe in the SPECT image of Subject 3 at V2. The changes
of CVTotal and TCMax between visits were minimal for all subjects,
around 10%.

Key qCT-based factors and variables

Seven factors, extracted from the qCT variables of former
and current smokers (Choi et al., 2015; Haghighi et al., 2018a),
accounted for 78.4% of the variance in the original features.
Among all the qCT variables, ADITotal, JTotal, βtissue,Total, fSAD%Total,
Dh
∗
sLUL, Emph%Total, ∆ VF

air,UML, WT
∗
sLLL, and Dh

∗
LMB were

the key qCT variables that contributed significantly to the
factors and were selected for analysis in this study. The key
qCT variables with moderate-to-high (factor loading = 0.6–0.7)

and high contributions to the factors (factor loading >0.7)
are listed in Supplementary Table S2.

The above key qCT variables at each visit and their changes
between visits are presented in Table 3; Supplementary Table S3.
Across all visits, Subjects 2 and 5 exhibited higher fSAD%Total
and Emph%Total compared to the other subjects. Subjects 1, 3,
and 4 showed moderate fSAD%Total, while Subjects 6 through 8
had low fSAD%Total. Within the subgroups (Halpin et al., 2022;
Ferrera et al., 2021; Vogelmeier et al., 2020) and (Smith et al., 2018;
Smith et al., 2020; Alford et al., 2010), Emph%Total was mild for all
subjects except Subject 3.

Association between SPECT and qCT
variables

Association tests between SPECT and qCT variables were
conducted using both cross-sectional and longitudinal data. The
cross-sectional tests captured inter-subject variation, while the
longitudinal tests tracked intra-subject progression. In the cross-
sectional analysis, the SPECT variables CVTotal and TCMax showed
the strongest correlations with the qCT variables fSAD%Total and
Emph%Total. Specifically, CVTotal correlated 0.90 with fSAD%Total
and 0.71 with Emph%Total. Similarly, TCMax correlated 0.86 with
fSAD%Total and 0.77 with Emph%Total. This association is visually
illustrated in Figure 4, which compares the fSAD-pixel maps on CT
coronal slices at V1 with TC distributions in the SPECT images.
The relationship between qCT-based fSAD maps and SPECT-
based ventilation patterns is particularly evident in the grouping of
Subjects (Global Strategy for Prevention, 2023; Israel et al., 2019),
(Halpin et al., 2022; Ferrera et al., 2021; Vogelmeier et al.,
2020), and (Smith et al., 2018; Smith et al., 2020; Alford et al.,
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FIGURE 3
Normalized SPECT images transformed to the TLC domain at three visits. Subjects 1 and 2 did not have ventilation scans at V0. Intensities were
normalized using the minimum and maximum values, resulting in contour values ranging from 0 to 1. The localized red spots in Subjects 2 and 5
indicate high-intensity hot spots where inhaled aerosols tend to deposit.

2010), which correspond to high, moderate, and low fSAD%Total,
respectively. Importantly, participants who had more compromised
lung function (specifically participants 2, 3, and 5) showed∆VF

air,UML
values exceeding 1 throughout all visits, as indicated in Table 3.

In the longitudinal analysis, the correlations between the 1-
year changes in SPECT variables and the corresponding changes in
qCT variables were weak. However, over 2 years, TCMax exhibited
strong correlations with several qCT variables, including fSAD%Total
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TABLE 2 CVTotal and TCMax at each visit and their changes between visits.

Subject V0 V1 V2 V1-V0 V2-V1 V2-V0

CVTotal

1 0.73 0.75 0.02

2 1.69 1.42 −0.27

3 0.59 0.61 0.7 0.02 0.09 0.11

4 0.66 0.86 0.78 0.2 −0.08 0.13

5 0.94 1.18 0.93 0.24 −0.25 0

6 0.46 0.48 0.47 0.03 −0.02 0.01

7 0.55 0.58 0.48 0.04 −0.1 −0.07

8 0.53 0.57 0.54 0.03 −0.02 0.01

Mean ± SD 0.62 ± 0.15 0.84 ± 0.38 0.76 ± 0.29 0.09 ± 0.09 −0.08 ± 0.12 0.03 ± 0.07

TCMax

1 7.27 5.36 −1.91

2 37.69 20.83 −16.86

3 7.32 5.36 16.33 −1.97 10.97 9.01

4 5.03 14.22 7.82 9.19 −6.4 2.79

5 24.1 18.66 19.59 −5.44 0.93 −4.51

6 3.51 4.19 9.23 0.68 5.05 5.72

7 4.14 5 4.2 0.86 −0.81 0.06

8 3.82 4.21 3.55 0.39 −0.65 −0.26

Mean ± SD 7.99 ± 7.31 12.07 ± 10.88 10.87 ± 6.57 0.62 ± 4.41 −1.21 ± 7.62 2.14 ± 4.37

(r = −0.70), Dh,sLUL
∗

(r = −0.74), Emph%Total (r = −0.75), and
∆VF

air,UML (r = 0.75) (Figure 5). Additionally, the change (V2-V0)
in Dh,sLUL

∗
showed a moderate correlation with the change in

fSAD%Total (r = 0.61), while the change (V2-V0) in ∆VF
air,UML was

moderately correlated with the change in Emph%Total (r = −0.63)
(Supplementary Figure S2).

A post hoc study was conducted to establish the causal
relationship between fSAD and heterogeneity of lung ventilation.
Cross-lagged panel analysis, which is commonly used to infer the
direction and strength of a relationship between two variables
measured repeatedly at different time points, was employed (Kenny,
1975). The imaging variables of fSAD%Total and CVTotal at V1 and
V2 were selected for analysis since they were strongly correlated at
all visits.The type one error rate (α) was set at 0.05. As demonstrated
in Figure 6, two synchronous correlations (rfSAD1,CV1 and rfSAD2,CV2)
and two stability correlations (rCV1,CV2 and rfSAD1,fSAD2) were
significantly greater than zero, indicating that the assumptions
of synchronicity and stationarity were not violated. For the
cross-lagged correlations (rfSAD1,CV2 and rCV1,fSAD2), rfSAD1,CV2 was

significantly greater than zero while rCV1,fSAD2 was not, suggesting
that fSAD is the cause of heterogeneity of lung ventilation. Note
that the cross-lagged correlations were partial correlations, with the
contributions of the stability correlations partialled out. In COPD,
the narrowing of small airways leads to higher airflow resistance
and greater particle deposition in the lungs (Marsh et al., 2006;
Kim and Kang, 1997; Zhang et al., 2022a). As a result, subjects with
higher fSAD%Total were observed to have localized areas of elevated
TC activity.

Discussion

This longitudinal study successfully enrolled eight COPD
subjects for three visits to examine cross-sectional and longitudinal
relationships between qCT and SPECT biomarkers in COPD. Cross-
sectional relationships reflect associations between variables at
a single time point, whereas longitudinal relationships describe
changes in these variables over time. Our analysis revealed strong
positive cross-sectional correlations between SPECT-measured
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TABLE 3 The selected qCT variables at each visit and their changes between visits.

Subject V0 V1 V2 V1-V0 V2-V1 V2-V0

fSAD%Total

1 12.49 14.3 12.52 1.81 −1.78 0.03

2 34.01 32.71 31.15 −1.3 −1.56 −2.86

3 13.55 13.13 12.26 −0.42 −0.87 −1.29

4 11.29 11.13 8.46 −0.16 −2.67 −2.84

5 22.83 21.3 24.86 −1.53 3.55 2.03

6 1.36 0.93 0.64 −0.43 −0.3 −0.73

7 0.65 0.8 0.35 0.16 −0.45 −0.3

8 0.53 0.96 1.37 0.43 0.41 0.84

Mean ± SD 12.09 ± 11.06 11.91 ± 10.56 11.45 ± 10.73 −0.18 ± 0.98 −0.46 ± 1.76 −0.64 ± 1.58

Dh,sLUL
∗

1 0.21 0.21 0.21 0 0 0

2 0.23 0.18 0.23 −0.05 0.05 0

3 0.23 0.14 0.22 −0.09 0.09 −0.01

4 0.21 0.2 0.21 −0.01 0.01 0

5 0.25 0.21 0.31 −0.03 0.1 0.06

6 0.28 0.27 0.25 −0.01 −0.01 −0.02

7 0.26 0.3 0.24 0.04 −0.06 −0.02

8 0.22 0.24 0.25 0.02 0.01 0.02

Mean ± SD 0.24 ± 0.02 0.22 ± 0.05 0.24 ± 0.03 −0.02 ± 0.04 0.02 ± 0.05 0 ± 0.03

Emph%Total

1 3.15 7.57 8.47 4.42 0.9 5.32

2 27.12 29.64 29.37 2.52 −0.27 2.25

3 18.14 18.65 15.93 0.51 −2.72 −2.21

4 3.43 3.31 3.88 −0.12 0.58 0.46

5 39.36 40.42 41.1 1.06 0.68 1.74

6 3.39 4.25 4.32 0.86 0.06 0.92

7 0.9 0.65 0.75 −0.25 0.1 −0.15

8 4.97 6.51 7.07 1.53 0.56 2.1

Mean ± SD 12.56 ± 13.28 13.87 ± 13.46 13.86 ± 13.34 1.32 ± 1.44 −0.01 ± 1.09 1.3 ± 2.04

∆VF
air,UML

1 0.54 0.46 0.54 −0.08 0.08 0

2 1.43 1.68 1.91 0.25 0.24 0.48

(Continued on the following page)
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TABLE 3 (Continued) The selected qCT variables at each visit and their changes between visits.

Subject V0 V1 V2 V1-V0 V2-V1 V2-V0

3 1.44 1.59 2.61 0.14 1.02 1.17

4 0.61 0.62 0.7 0.02 0.08 0.1

5 1.22 1.3 1.2 0.07 −0.09 −0.02

6 0.92 0.85 1 −0.08 0.15 0.08

7 0.6 0.59 0.7 −0.01 0.11 0.1

8 0.55 0.54 0.56 −0.01 0.02 0.01

Mean ± SD 0.91 ± 0.37 0.95 ± 0.46 1.15 ± 0.69 0.04 ± 0.1 0.2 ± 0.32 0.24 ± 0.38

FIGURE 4
The fSAD-voxel maps (left column) and normalized TC SPECT images (right column) for each subject at V1, where fSAD stands for functional small
airway disease and TC represents tracer concentration. These images were plotted in the coronal planes of the CT images. The relationship between
qCT-based fSAD maps and SPECT-based ventilation patterns reveals distinct groupings among subjects: Subjects 2 and 5 exhibit high fSAD%Total,
Subjects 1, 3, and 4 display moderate fSAD%Total, and Subjects 6, 7, and 8 demonstrate low fSAD%Total. SPECT intensities were normalized using the
minimum and maximum values, resulting in contour values ranging from 0 to 1.
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FIGURE 5
The correlation maps between the SPECT variables and the qCT variables for both cross-sectional and longitudinal data. Correlation magnitudes
exceeding 0.7 were highlighted using blue boxes.

FIGURE 6
The cross-lagged panel analysis estimated a total of six correlations.
The correlations colored in red were significantly greater than zero.
The result that rfSAD1,CV2 was greater than zero suggested that fSAD
cause the heterogeneity of lung ventilation.

ventilation heterogeneity (CVTotal) and qCT-derived functional
small airway disease (fSAD%Total) and emphysema (Emph%Total),
suggesting that both small airway abnormalities and parenchymal

destruction contribute to ventilation abnormalities in COPD,
reflecting disease severity. Longitudinally, changes in TCMax
exhibited strong negative correlations with changes in fSAD%Total,
Emph%Total, and average airway diameter, as well as a strong positive
correlationwith changes in lobar airflowdistribution.These findings
suggest that longitudinal changes in TCMax may serve as a more
sensitive biomarker for capturing the dynamic process of hot spot
formation, independent of disease severity.

To our knowledge, this study is the first longitudinal CT/SPECT
analysis to provide insights into COPD progression. The novelty of
this study lies in its comprehensive qCT-based phenotyping at both
local (segmental) and global (whole-lung) scales, the integration of
dual imaging modalities, and its longitudinal design.

Association between imaging variables and
PFTs

The strong correlation observed between TC% and ∆VF
air of the

lobes (Figure 2: r = 0.73) indicated that qCT-based∆VF
air can serve as

a viable alternative for measuring lobar ventilation. This correlation
also validates the effectiveness of the registration process utilized
to align SPECT and CT images. Furthermore, significant negative
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correlations were found between TC heterogeneity (CVTotal) and
PFT results (Figure 2: r = −0.74 with FEV1% predicted; r = −0.80
with FEV1/FVC (%)), agreeing with previous studies (r = −0.84 to
−0.89 with FEV1% predicted) (Xu et al., 2001; Doganay et al., 2019).

Association between SPECT and qCT
variables

The SPECT variables CVTotal and TCMax showed strong
correlations with the qCT variables fSAD%Total (CVTotal: r = 0.90;
TCMax: r = 0.86) and Emph%Total (CVTotal: r = 0.71; TCMax:
r = 0.77) in the cross-sectional data. This indicates that both
small airway disease and emphysema are associated with lung
ventilation heterogeneity, with small airway disease showing a
stronger correlation.

Analysis of the longitudinal data collected over 2 years revealed
strong correlations between TCMax and Dh,sLUL

∗
(r = −0.74) as

well as ΔVair
F
UML (r = 0.75) (Figure 5). These findings suggest

that reduced diameters of segmental airways and imbalances in
ventilation between the upper and lower lobes may contribute to the
development of TC hot spots. In human anatomy, the lower lobes
of the lungs are generally larger than the upper lobes in terms of
volume (Yamada et al., 2020). Notably, subjects with more impaired
lung function (subjects 2, 3, and 5) consistently demonstrated
∆VF

air,UML values greater than 1 across all visits (Table 3), suggesting
compensatory mechanisms where ventilation shifts preferentially to
the upper lobes rather than the lower lobes. Visual inspection of the
segmental airways in the LUL of Subjects 3 and 5 showed constricted
branches at V2 and V0, respectively (Figure 7). This observation
highlights the negative correlations between changes in Dh,sLUL

∗
and

changes in SPECT ventilation images, supporting a previous study
identifying Dh,sLUL

∗
as a significant qCT variable in characterizing

COPD subjects (Haghighi et al., 2019a).
Furthermore, changes in TCMax over 2 years were negatively

correlated with changes in fSAD% (r = −0.70) and Emph% (r
= −0.75) (Figure 5). This suggests that variations in Dh,sLUL

∗
and

∆VF
air,UML may moderate the relationship between changes in TCMax

and changes in fSAD%Total and Emph%Total, particularly when
disease progression, in terms of COPD stages, remains relatively
stable. Namely, Emph%Total and fSAD%Total progression may
experience airway collapse/alveolar destruction, which contribute
less to overall ventilation and redistribute airflow to less affected
areas. These findings indicate that the formation of hot spots in
COPD patients could be influenced by alterations in segmental
airways in the left upper lobe (Figure 7), as well as changes in
airflow distribution between the upper and lower lobes, in addition
to factors such as fSAD and emphysema.

Interestingly, the correlations between TCMax and both fSAD%
andEmph% in the longitudinal data differed from those in the cross-
sectional data. Cross-sectional correlations reflect static disease
phenotypes and severity at a single time point, whereas longitudinal
correlations capture changes in variables over 2 years, independent
of severity. These findings align with Zou et al. (2021a)’s distinction
between cross-sectional and longitudinal analyses, where “cross-
sectional clustering was based on static disease stage (severity)”
while “longitudinal clustering aims to identify COPD progression
clusters, which are more dependent upon disease progression than

severity.” In our data, cross-sectional correlations capture disease
severity, with increased small airway disease and emphysema
leading to greater ventilation heterogeneity.However, longitudinally,
areas with high TCMax may experience reduced progression of
fSAD and emphysema, possibly due to compensatory mechanisms
or a plateau in disease progression. These findings suggest that
studies investigating COPD progression should consider not only
severity markers but also progression patterns identified through
longitudinal imaging.

The U.S. National Institutes of Health (NIH) has sponsored
multi-center trials, such as the Genetic Epidemiology of COPD
study (COPDGene) (Regan et al., 2010; Regan et al., 2019) and
the SubPopulations and InteRmediate Outcome Measures in
COPD Study (SPIROMICS) (Couper et al., 2014; Woodruff et al.,
2015), to collect comprehensive clinical, biologic, genetic,
and CT data across large populations. These efforts aim to
uncover novel disease pathways, identify surrogate markers of
severity, define endotypes, predict health trajectories, and inform
clinical trial and treatment strategies. Additionally, these large
datasets present both opportunities and challenges for advancing
analytical, computational, and machine learning methods in
complex biological systems (Peng et al., 2021; Alber et al., 2019;
Lin et al., 2021). For example, based on COPDGene data, several
novel COPD subgroups and pathways have been identified
(Young et al., 2019a; Young et al., 2019b), including an airway-
predominant disease subgroup progressing from GOLD 0 to
preserved ratio-impaired spirometry (PRISm) status, and an
emphysema-predominant disease subgroup progressing from
GOLD 0 to GOLD 1 status.

Furthermore, based on SPIROMICS data, qCT-based clusters
have been identified in both current and former smokers
(Haghighi et al., 2018c; Haghighi et al., 2019b), with additional
longitudinal qCT-based clusters identified in former smokers
(Zou et al., 2021b). Deep learning approaches have also been
developed to identify lung tissue pattern clusters, their latent
traits, and associations with drug use in COPD patients (Li et al.,
2021). In addition, a CT-based, subject-specific computational fluid
and particle dynamics (CFPD) model for the whole lung has also
been developed and applied to post-COVID-19 subjects to explore
airway resistance and particle deposition across different subgroups
(Zhang et al., 2022b; Zhang et al., 2024).

The ultimate goal of this study is to bridge the gaps between
big data (including clinical and imaging data), artificial intelligence
(machine learning and deep learning), and advanced computational
models. The specific objective was to explore the connections
between qCT-based variables and SPECT-measured ventilation
features, both cross-sectionally and longitudinally. In future studies,
the findings summarized below can be used to assess the sensitivity
of the CFPD model in predicting SPECT-measured ventilation
biomarkers across various COPD severities in both former and
current smokers, aiding model validation and data interpretation.
The validated CFPD model can then be applied to predict the
deposition of inhaled particles of various sizes in conducting
and respiratory airways with different breathing patterns, thereby
improving tailored inhalational therapies. For example, subgroup-
specific inhalers or inhalational waveforms could be developed to
target different regions of the lung for optimal deposition efficiency
and improved clinical outcomes.
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FIGURE 7
A constricted segmental airway in the LUL (red arrow) of Subject 3 at V2, which may contribute to the TC hot spot observed in the same region. In
addition, a constricted segmental airway in the LUL (red arrow) of Subject 5, present at V0, had resolved by V2, potentially increasing ventilation
homogeneity.

This study had several limitations. Firstly, the spatial resolution
of SPECT images (3.985 mm) is lower than that of CT scans
(0.5–0.7 mm), whichmay lead to inaccuracies in quantifying certain
regions on SPECT images. Additionally, subjects were exposed to
radiation during SPECT imaging, although the dose was within
safety limits. Recently approved by the FDA, hyperpolarized xenon-
129 magnetic resonance imaging (XeMRI) offers an alternative
method for assessing lung ventilation distribution without exposing
patients to ionizing radiation (Doganay et al., 2019; Peiffer et al.,
2023; Kim et al., 2019; Bayat et al., 2023). Secondly, the strong

correlations observed (|r| > 0.70) suggest large effect sizes, indicating
potentially meaningful relationships between qCT and SPECT
variables, despite the small sample size. Nonetheless, increasing the
sample size and distinguishing current smokers from non-smokers
is essential for achieving more robust and reliable results. Lastly,
the subjects in this study effectively managed their disease over
the 2-year period, with no significant changes in lung function.
To gain a clearer understanding of COPD progression, it may
be necessary to extend the interval between visits beyond the
2-year period.
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Although this study was limited by a small sample size, our
analysis suggests that SPECT ventilation imaging can effectively
capture ventilation heterogeneity in COPD patients and provide
complementary insights when paired with CT-based biomarkers.
Specifically, SPECT images identified three distinct categories of
subjects: severe COPD (Subjects 2 and 5),moderate COPD (Subjects
1, 3, and 4), and those with mild symptoms or at risk of developing
COPD (Subjects 6, 7, and 8). Our findings indicate that small
airway disease plays a crucial role in the heterogeneous ventilation
observed in COPD patients. Additionally, the formation of hot spots
in COPD could be influenced by changes in the segmental airways
of the left upper lobe, alternations in airflow distribution between
the upper and lower lobes, and the extent of small airway disease
and emphysema. Further research into small airway disease could
enhance our understanding of COPD’s diverse characteristics, aid
in the identification of novel phenotypes across various imaging
modalities and offer deeper insights into the disease’s progression.
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