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Lung transplantation remains the only effective treatment for end-stage
lung disease, offering the potential to significantly prolong survival and
enhance quality of life for recipients. However, primary graft dysfunction
(PGD)-a severe form of lung injury occurring within the first 72 h post-
transplantation-constitutes a major cause of early mortality and presents a
substantial barrier to the broader clinical adoption of lung transplantation.
Biomarkers, defined as specific molecules, cells, or other biological indicators
detectable within or outside the body, can reflect physiological states, disease
progression, or therapeutic responses. The identification of accurate and
reliable biomarkers for the prediction and diagnosis of PGD is therefore critical
for improving diagnostic precision and therapeutic outcomes. This review
provides a comprehensive overview of recent advances in the discovery of
PGD-related biomarkers, encompassing a wide range of candidates such as
plasma proteins, hormones, cell-free DNA, and immunoreactive substances.
The complex biomarker landscape associated with PGD involves multiple
signaling pathways and cellular phenotypes. Despite ongoing research, no single
biomarker has yet demonstrated sufficient predictive or diagnostic power to be
used independently in clinical practice. Consequently, continued investigation
is essential to validate existing biomarkers and develop optimized strategies for
their integration into routine clinical application.

KEYWORDS

primary graft dysfunction, lung transplantation, biomarker, plasma proteins, cell-free
DNA

Introduction

Lung transplantation remains an effective treatment for end-stage lung
diseases, although its success is often limited by primary graft dysfunction (PGD)
(Shah and Diamond, 2018; Young and Dilling, 2019; Avtaar Singh et al., 2023).
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PGD presents as a severe form of lung injury within the first 72 h
after transplantation and is characterized by hypoxemia, pulmonary
edema, and decreased pulmonary compliance (Criner et al.,
2021). With an incidence rate as high as 30%–50%, PGD is
strongly associated with both early and long-term post-transplant
mortality (Hunt and Cantu, 2023). Currently, there is a lack
of reliable biomarkers and pharmacological treatments for PGD,
making early diagnosis and intervention challenging. Therefore,
identifying biomarkers that can predict, diagnose, and potentially
guide treatment for PGD is a pressing need in the field of lung
transplantation.

Biomarkers are substances that reflect physiological or
pathological states and can be detected in bodily fluids such as blood,
urine, bronchoalveolar lavage fluid (BALF), or organ perfusate
to evaluate organ function or injury (Calfee and Ware, 2007;
Chacon-Alberty et al., 2022; Hamilton et al., 2017; Nakata et al.,
2023). In recent years, advances in molecular biology, proteomics,
and metabolomics have led to some progress in identifying
potential PGD biomarkers. However, challenges remain, including
small sample sizes, inconsistent findings, and a lack of thorough
validation.

This review aims to summarize current research on PGD
biomarkers, including plasma proteins, hormones, cell-free DNA,
and immunoreactive substances. It discusses their advantages,
limitations, and potential clinical applications, while also
highlighting the challenges and future directions in biomarker
discovery for PGD.

Primary graft dysfunction and
biomarkers

Biomarkers are substances that reflect physiological or
pathological states, including genes, proteins, metabolites, and
cytokines (Lozano-Edo et al., 2022; Lee and Christie, 2011;
Suzuki et al., 2013). They can be detected in bodily fluids such
as blood, urine, BALF, or organ perfusate, and are used to
assess organ function or the extent of injury. PGD is one of
the most common complications following lung transplantation,
significantly affecting patient survival and quality of life (Wu et al.,
2023). As such, identifying reliable biomarkers for the early
prediction and accurate diagnosis of PGD remains a critical
goal in the field. Despite encouraging progress, most studies on
PGD biomarkers have been limited by relatively small sample
sizes, and further research is needed to validate these findings
for clinical use. Currently, PGD diagnosis primarily depends on
the oxygenation index, chest radiographs, and clinical judgment
(Sanchez-Gonzalez et al., 2022; Li et al., 2021; Neves et al., 2016).
However, these methods often lack sensitivity and specificity, and
may not effectively capture the onset or resolution of PGD. The
discovery of biomarkers capable of predicting PGD risk, monitoring
its progression, and guiding treatment strategies holds substantial
clinical promise (Figure 1). Advancing biomarker research could
ultimately transform the diagnosis, management, and outcomes
of PGD in lung transplant recipients. Table 1 summarizes the
detailed information of biomarkers for PGD following lung
transplantation.

Plasma proteins

Plasma proteins are essential for maintaining homeostasis,
facilitating substance transport, supporting immune defense, and
regulating coagulation (Christie et al., 2009; Covarrubias et al., 2007;
Leon et al., 2009). A retrospective analysis examined the relationship
between plasma cytokine levels before and after lung transplantation
and the severity of PGD (Frick et al., 2020). Of the 30 proteins
tested, eight showed significant differences between patients with
mild and severe PGD: IL-6, IL-10, IL-13, eotaxin, G-CSF, IFN-γ,
MIP-1α, and SP-D. Notably, IL-10 and IL-13 were associated with
prolonged extubation times, extended ICU stays, and longer overall
hospitalizations, independent of donor and recipient characteristics.
Plasma IL-10 and IFN-γ levels in both donors and recipients
correlated positively with PGD incidence and severity, whereas SP-D
levels were inversely correlated with PGD severity.

Patients with PGD typically exhibit elevated levels of
inflammatory mediators in early post-transplant serum, such
as MCP-1, IP-10, IL-1β, IL-2, IFN-γ, and IL-12 (21). Further
investigations revealed that PGD-induced inflammation may
enhance donor HLA class II antigen expression on the graft,
increase antigen presentation, and stimulate donor-specific immune
responses (Bharat et al., 2008).

In a multicenter cohort study, protein C and plasminogen
activator inhibitor-1 (PAI-1) levels were measured in the plasma
of lung transplant recipients (Christie et al., 2007). Those who
developed PGD had significantly lower post-transplant protein C
levels and higher PAI-1 levels compared to those without PGD.
Pre-transplant pulmonary artery systolic pressure was positively
correlated with post-transplant PAI-1 levels, potentially linking
pulmonary hypertension to PGD development.

Another study collected blood samples from lung transplant
recipients before surgery and at 6, 24, 48, and 72 h post-transplant
to evaluate plasma ICAM-1 and von Willebrand factor (vWF)
levels (Covarrubias et al., 2007). ICAM-1 is a cell adhesion
molecule predominantly expressed on the surface of endothelial
and immune cells (Singh et al., 2023; Bui et al., 2020; van de Stolpe
and van der Saag, 1996). It plays a critical role in the inflammatory
response by interacting with integrins on leukocytes, thereby
facilitating their adhesion and migration across the endothelium.
This process promotes the infiltration of inflammatory cells into
injured tissues. vWF is a large glycoprotein synthesized and secreted
by endothelial cells (Zanetta et al., 2000; Xiang and Hwa, 2016;
Nakhaei-Nejad et al., 2019). It is primarily involved in hemostasis,
contributing to blood coagulation and platelet aggregation. ICAM-
1 levels were significantly higher in patients with PGD and positively
correlated with PGD occurrence. Although vWF levels tended to
rise postoperatively, theywere not significantly associatedwith PGD.
ICAM-1 levels also correlated with pre-transplant pulmonary artery
pressure and recipient diagnosis (Covarrubias et al., 2007).

CC16, a protein secreted by airway epithelial cells, has been
significantly associated with PGD, particularly in recipients without
idiopathic pulmonary fibrosis (non-IPF) (Diamond et al., 2011a).
Produced by non-ciliated pulmonary epithelial cells, CC16 may
serve as a biomarker for epithelial injury (Shah et al., 2014). In a
prospective cohort, CC16 levels at 6 h post-transplant were notably
higher in PGDpatients, and a 15 ng/mL increase inCC16was linked
to a 1.6-fold higher PGD risk. Additionally, MCP-1, a chemotactic
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FIGURE 1
Identification of biomarkers in primary graft dysfunction can be evaluated at different time points in lung transplantation recipients.

protein released by pulmonary epithelial cells, plays a key role in
recruiting inflammatory cells and mediating ischemia-reperfusion
injury (IRI) (Yoshimura, 2018; Singh et al., 2021; Ferreira et al.,
2005). Elevated MCP-1 levels at 24 h post-transplant were positively
correlated with PGD risk and severity within 72 h (Shah et al., 2012).

Angiopoietin-2 (Ang2), a vascular growth stimulator involved
in angiogenesis, binds to the TIE2 receptor and acts as a
negative regulator of theANG1/TIE2 signaling pathway,modulating
endothelial responses to cytokines (Akwii et al., 2019; Scholz et al.,
2015; Song et al., 2012; Eklund et al., 2017; Nicolini et al., 2019). In
PGD patients, Ang2 plasma levels changed significantly over time,
particularly in those with idiopathic pulmonary fibrosis (IPF), but
showed no significant association in chronic obstructive pulmonary
disease (COPD) patients (Diamond et al., 2017).

Vascular endothelial growth factor (VEGF), a key regulator
of vascular permeability, was evaluated preoperatively in lung
transplant patients (Guzmán et al., 2023; Shi et al., 2022). VEGF
serum levels were significantly higher in patients who developed
grade 3 PGD compared to those with lower-grade PGD or healthy
controls. Elevated VEGF levels were predictive of more severe
PGD outcomes (Krenn et al., 2007).

Long pentraxin-3 (PTX3), a protein involved in complement
activation and regulation, has also been linked to PGD (Cieślik
and Hrycek, 2012; Chiari et al., 2023). In IPF recipients, PTX3
levels at 6 and 24 h post-transplant correlated positively with PGD
risk (Diamond et al., 2011b). Genetic analysis in lung transplant
recipients identified two PTX3 gene polymorphisms associated with
increased PGD risk (Diamond et al., 2012).

The receptor for advanced glycation end-products (RAGE), a
transmembrane protein of the immunoglobulin superfamily, has
a soluble form (sRAGE) that includes its extracellular domain
(Eva et al., 2022; Yue et al., 2022; Bongarzone et al., 2017). sRAGE
levels measured at 6 and 24 h post-transplant were higher in PGD
patients. These levels were influenced by right heart pressure and
cardiopulmonary bypass and were associated with red blood cell
transfusion and bypass usage (Kim T. et al., 2023).

Hormones

Prostaglandin E2 (PGE2) is a hormone-like lipid compound
that plays a key role in numerous physiological processes, including
smooth muscle contraction and relaxation, vasodilation and

vasoconstriction, blood pressure regulation, and the modulation of
inflammation (Képes et al., 2023; Cheng et al., 2021; Finetti et al.,
2020; Finetti et al., 2023). In a large-scale gene association study, 17
genetic variants were significantly linked to PGD, four of whichwere
located within genes related to the PGE2 pathway (Diamond et al.,
2014). One notable variant involved a coding change in the PTGES2
gene, resulting in the substitution of arginine with histidine at
position 298, which was associated with an increased risk of PGD.
The other three variants were found in the promoter region and first
intron of the PTGER4 gene andwere associatedwith a decreased risk
of PGD. Functional analysis showed that the rs4434423A variant in
PTGER4 influenced the inhibitory function of regulatory T cells.

In another study, plasma estradiol levels were measured
before transplantation and at 6 and 24 h post-transplantation
to assess their relationship with PGD severity within 72 h after
surgery. While no significant differences were found between
male and female recipients overall, a positive correlation between
estradiol levels at 24 h and PGD severity was observed in
male recipients. This association was not present in female
recipients (Bastarache et al., 2012).

Pro-adrenomedullin (pro-ADM), a precursor of adrenomedullin
(ADM), has been identified as a potential biomarker in various acute
conditions such as sepsis, acute heart failure, cardiac arrest, and stroke
(Liang et al., 2023; Hagag et al., 2011; Spoto et al., 2023; Zelniker et al.,
2023; Ishiyama et al., 2023). It reflects the rapid breakdown of ADM
in circulation. In a prospective study of lung transplant recipients,
pro-ADM levels were measured at 24, 48, and 72 h following ICU
admission (Riera et al., 2016). Findings indicated that pro-ADM
levels were strongly correlated with PGD severity and positively
associated with ICU mortality. Patients with PGD grade 3 exhibited
significantly higher pro-ADM levels at 72 h. Furthermore, pro-ADM
levelsmeasured at 24 h could predict the development of PGDgrade 3
by72 h.Thepredictive value of pro-ADMfor ICUmortality surpassed
that of PGD grading alone, and combining both enhanced prognostic
accuracy. Elevated pro-ADM levels were strongly linked to early graft
dysfunction and post-transplant mortality.

Endothelin-1 (ET-1) is a potent peptide hormone known for
its vasoconstrictive and proliferative effects and plays a critical role
in the pathogenesis of various pulmonary diseases (Banecki and
Dora, 2023; Salama et al., 2010). In a study analyzing lung tissue and
serum samples from lung transplant donors and recipients, both ET-
1 mRNA expression in lung tissue and serum ET-1 concentrations
were positively correlated with the severity of PGD(65).
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Follistatin-like protein 1 (FSTL1) is a secretory glycoprotein
involved in multiple biological functions, including the
regulation of myocardial ischemia-reperfusion injury, airway
remodeling, and inflammatory responses (Veraar et al., 2022;
Kim DK. et al., 2023; Chiou et al., 2019). In a prospective cohort
of bilateral lung transplant recipients with end-stage lung disease,
post-transplant elevations in plasma FSTL1 levels were identified,
showing significant associations with the incidence and clinical
severity of PGD(66).

Cell-free DNA

Cell-free DNA (cfDNA) refers to the free DNA fragments
existing in the extracellular environment (Valpione et al., 2018;
Mattox et al., 2023). It mainly originates from apoptosis, necrosis,
inflammatory responses, and tumor cells. Present in bodily fluids
such as blood, saliva, and urine in the form of short fragments,
cfDNA is characterized by its diverse sources, fragmentation, and
short half-life (Bruhm et al., 2025; Hu et al., 2021; Sherwood
and Weimer, 2018). Under normal physiological conditions, the
concentration of cfDNA in the bloodstream of healthy individuals
remains relatively low. However, in conditions that accelerate cell
turnover, such as acute or chronic inflammation, cfDNA levels
can rise significantly. Given its short half-life-typically less than
one to two hours-cfDNA can serve as a real-time biomarker for
disease. By distinguishing between donor- and recipient-specific
single nucleotide polymorphisms (SNPs), the origin of circulating
cfDNA can be determined, enabling the detection of donor-
derived cfDNA. This has potential applications in identifying
graft injury following transplantation (Magnusson et al., 2022;
Li and Liang, 2023; Zou et al., 2017; Keller and Agbor-Enoh,
2021; Balasubramanian et al., 2024; Ju et al., 2023; Keller et al.,
2022a; Keller et al., 2024; Kim et al., 2024; Keller et al., 2022b;
Zhang et al., 2024; Keller MB. et al., 2022).

In lung transplant recipients, cfDNA levels are almost twice as
high as those observed in healthy individuals, primarily originating
from innate immune cells involved in inflammatory responses
(Keller and Agbor-Enoh, 2022). Elevated cfDNA levels prior to
transplantation are associated with a heightened risk of post-
transplant pulmonary edema (such as PGD) and mortality. These
levels also show potential in predicting both early and long-term
complications, such as PGD, chronic lung allograft dysfunction
(CLAD), and death, making cfDNA a promising molecular tool for
risk stratification in transplant recipients (Keller et al., 2024; Keller
and Agbor-Enoh, 2022).

Analysis of perfusate from donor lungs at one and 4 hours of
perfusion revealed significantly higher levels of cfDNA-including
mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA)-in
lungs that later developed severe PGD (grade 3) within 72 h after
transplantation, particularly those from donation after circulatory
death (DCD) donors. While cfDNA shows promise as a predictive
marker for PGD, its diagnostic accuracy still requires further
refinement (Kanou et al., 2021).

In a prospective study involving lung transplant recipients,
plasma samples collected on days 1, 3, and 7 post-transplantation
revealed that patients who developed PGD had elevated levels of
percentage donor-derived cell-free DNA (%ddcfDNA). These levels

correlated positively with the severity of PGD. Furthermore, PGD
patients with higher %ddcfDNA levels were at increased risk for
developing CLAD. Notably, %ddcfDNA levels in PGD patients who
progressed to CLAD were approximately double those in PGD
patients who did not develop CLAD (Keller et al., 2021).

Immunoreactive substances

Surfactant protein A (SP-A) is a key pulmonary surfactant
involved in immune defense and the regulation of inflammation
in the lungs (D'Ovidio et al., 2013; Depicolzuane et al., 2021;
King and Chen, 2020). Low expression of SP-A mRNA in
donor lungs has been significantly associated with reduced post-
transplant survival. After transplantation, recipients with low SP-
A mRNA levels show decreased SP-A concentrations in BALF,
elevated levels of IL-2 and IL-12, and an increased incidence of
rejection episodes (D'Ovidio et al., 2013).

Elevated levels of CCR5 and its ligands have been observed
in both mouse and human models of ischemia-reperfusion injury
(IRI). CCR5-positive natural killer (NK) cells accumulate in the
lungs and airways, exhibiting markers of maturity and tissue
residency. The CCR5 antagonist maraviroc has been shown to
reduce NK cell migration to the airways, decrease pulmonary
vascular permeability, improve oxygenation, and lower the
incidence and severity of PGD (Santos et al., 2023).

Dectin-1, a C-type lectin receptor, plays a role in recognizing
and activating a variety of ligands, including β-glucans, endogenous
damage-associated molecular patterns (DAMPs), and fungal
pathogen-associated molecular patterns (PAMPs) (Ochoa et al.,
2023; Drummond et al., 2022; Yang et al., 2023). It is involved
in modulating inflammatory responses and immune tolerance.
A specific Dectin-1 mutation (Y238X) has been linked to
acute rejection after lung transplantation, increased lymphocyte
proportions in BALF, the development of bronchiolitis obliterans
syndrome (BOS) (Calabrese et al., 2019). Additionally, levels of
transforming growth factor-beta (TGF-β) increase during PGD
and are associated with BOS development. Immunohistochemistry
has revealed TGF-β expression in epithelial cells, interstitial
cells, and macrophages in transplanted lungs, suggesting that
TGF-β may serve as a critical mediator linking PGD and
BOS, and could potentially function as a biomarker for both
conditions (DerHovanessian et al., 2016).

In a large cohort of lung transplant recipients, patients were
grouped by underlying conditions-such as COPD, IPF, and cystic
fibrosis (CF)-to investigate the relationship between antibodies
against lung-associated self-antigens (SAgs) and PGD. The highest
pre-transplant positivity rates for SAg antibodies were observed
in the IPF and CF groups. Recipients with pre-existing SAg
antibodies exhibited higher rates of PGD and elevated serum levels
of inflammatory cytokines (Tiriveedhi et al., 2013).

Type V collagen (col(V)), primarily located at the apex of lung
epithelial cells, has been shown to induce complement-dependent
cytotoxicity (Mak et al., 2016; Iwata et al., 2008; Zaffiri et al.,
2019). In lung transplant recipients, high pre-transplant plasma
levels of anti-col(V) antibodies have been significantly associated
with severe PGD following surgery. Lung-restricted autoantibodies
(LRAs) are recognized as important pathogenic contributors to
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PGD, with mechanisms involving IL-1β-mediated increases in
pulmonary vascular endothelial permeability and activation of the
complement cascade. These findings offer promising targets for
preventive and therapeutic strategies (Yang et al., 2022).

Genetic studies have identified a variant (rs3168046) in the Toll-
interacting protein (TOLLIP) gene that is significantly associated
with PGD, as well as with plasma levels of plasminogen activator
inhibitor-1 (PAI-1) (Cantu et al., 2016). Additionally, two IL-17
receptor (IL-17R) gene variants (rs882643 and rs2241049) have been
linked to increased risk of PGD, with carriers of the risk genotypes
more likely to experience higher PGD grades within the first 48 h
post-transplantation (Somers et al., 2015).

Others

Extracellular histones are a novel class of highly tissue-
damaging molecules released during cell death and the formation
of neutrophil extracellular traps (NETs). These molecules exhibit
diverse biological activities, including cytotoxic effects, promotion
of inflammation, and enhancement of platelet aggregation (Jin et al.,
2020; de Vries et al., 2023; Zhong et al., 2023). Following lung
transplantation, extracellular histone levels increase significantly,
particularly in patients who develop PGD. In vitro studies have
shown that serum collected within 24 h post-transplantation from
patients with high extracellular histone levels is markedly toxic
to human pulmonary artery endothelial cells (HPAECs) and
stimulates cytokine production in human monocytic cell lines
(THP1). These effects are largely mitigated by heparin or anti-
histone antibodies (Jin et al., 2020).

Telomere length in airway epithelial cells has also been
associated with PGD severity (Greenland et al., 2023). In one
analysis of lung transplant recipients, a negative correlation
was observed between telomere length in airway epithelial
cells and the severity of PGD within the first few weeks
after transplantation. Further evidence suggests that PGD may
contribute to telomere dysfunction, thereby enhancing immune
activation. Telomere impairment in airway epithelial cells
may represent a mechanistic link between PGD and the later
development of CLAD (Spahn et al., 2015).

The transient receptor potential vanilloid 4 (TRPV4) channel
in endothelial cells has emerged as a key mediator of lung IRI.
Inhibition or genetic deletion of TRPV4 significantly improves
pulmonary function, reduces pulmonary edema and inflammatory
cell infiltration, and lowers levels of inflammatory cytokines. These
findings suggest that TRPV4 channels may serve as promising
therapeutic targets for preventing PGD after lung transplantation
(Kuppusamy et al., 2023; Weber et al., 2020).

Limitations and future prospects

Although numerous biomarkers associated with PGD have been
identified, most current studies are limited by small sample sizes
and a lack of multicenter validation. Therefore, there is an urgent
need for further research to identify biomarkers with high sensitivity
and specificity, and to develop standardized detection methods and
diagnostic criteria.

PGD is a dynamic and evolving condition, with biomarker
levels fluctuating over time to reflect different pathophysiological
mechanisms and prognostic implications. Thus, determining the
optimal timing and frequency for biomarker collection, as well as
defining clinically relevant thresholds, is crucial for early prediction
and real-timemonitoring.However, threshold values for biomarkers
vary across studies, which may be due to differences in sample
sizes, study designs, detection methods, and patient populations.
The biomarkers highlighted in this review offer advantages such
as higher sensitivity, stronger specificity, and the ability to guide
therapeutic adjustments. For instance, cytokines like IL-10 and IL-
13 show significantly elevated levels in early post-transplant serum
and are closely associated with PGD severity. These changes often
precede the appearance of clinical symptoms, enabling physicians to
identify high-risk patients before PGD fully develops. Additionally,
certain biomarkers are closely linked to the pathogenesis of PGDand
demonstrate high specificity. For example, SP-A, which plays a key
role in pulmonary immune defense and inflammation regulation,
has been shown to correlate with reduced post-transplant survival
when expressed at low levels in donor lungs. Such biomarkers,
directly involved in the pathogenesis of PGD, more accurately
reflect post-transplant pathological states and reduce the risk of
misdiagnosis.

Furthermore, monitoring biomarker fluctuations allows
clinicians to more precisely assess PGD severity and progression,
facilitating timely therapeutic adjustments. For example, elevated
levels of circulating cfDNA are strongly associated with both the
occurrence and severity of PGD, as well as an increased risk of
CLAD. By measuring cfDNA levels, physicians can identify patients
at risk of developing CLAD in advance and implement appropriate
preventive or therapeutic strategies.

Given the complexity and heterogeneity of PGD, a single
biomarker may be insufficient for accurate diagnosis or prognosis.
Therefore, combining and integrating multiple biomarkers may
improve diagnostic precision. Advanced analytical approaches,
such as multivariate statistical analyses and machine learning,
can support the development of composite scoring systems or
predictive models. Currently, most biomarker detection methods
rely on ELISA and quantitative PCR, which are cost-effective and
easily implemented.However, detectionmethods for some emerging
biomarkers are still under development.

Biomarkers not only serve diagnostic and prognostic roles but
may also act as therapeutic targets. Future research should focus
on elucidating the functional roles, regulatory mechanisms, and
detection strategies of these biomarkers, paving the way for effective
prevention and treatment strategies for PGD.
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