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Introduction: Breast cancer (BC) is a malignant neoplasm that originates in the
mammary gland’s cellular structures and remains one of the most prevalent
cancers among women, ranking second in cancer-related mortality after lung
cancer. Early and accurate diagnosis is crucial due to the heterogeneous nature
of breast cancer and its rapid progression. However, manual detection and
classification are often time-consuming and prone to errors, necessitating the
development of automated and reliable diagnostic approaches.

Methods: Recent advancements in deep learning have significantly improved
medical image analysis, demonstrating superior predictive performance in
breast cancer detection using ultrasound images. Despite these advancements,
training deep learning models from scratch can be computationally expensive
and data-intensive. Transfer learning, leveraging pre-trained models on large-
scale datasets, offers an effective solution to mitigate these challenges. In
this study, we investigate and compare multiple deep-learning models for
breast cancer classification using transfer learning. The evaluated architectures
include modified InceptionV3, GoogLeNet, ShuffleNet, AlexNet, VGG-16, and
SqueezeNet. Additionally, we propose a deep neural network model that
integrates features from modified InceptionV3 to further enhance classification
performance.

Results: The experimental results demonstrate that the modified InceptionV3
model achieves the highest classification accuracy of 99.10%, with a
recall of 98.90%, precision of 99.00%, and an F1-score of 98.80%,
outperforming all other evaluated models on the given datasets.
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Discussion: The achieved findings underscore the potential of the proposed
approach in enhancing diagnostic precision and confirm the superiority of the
modified InceptionV3 model in breast cancer classification tasks.
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1 Introduction

Cancer is a leading cause of death worldwide, making it a
critical area of study for improving human health. Characterized
by the uncontrolled and disruptive growth of abnormal somatic
cells, cancer spreads rapidly and poses significant risks. It is
broadly categorized into benign and malignant types. Benign
tumors grow relatively slowly and are typically non-malignant,
whereas malignant tumors proliferate at an alarming rate and can
metastasize, endangering lives (Ara et al., 2021). Among women,
breast cancer is one of the most common and deadly forms,
alongside brain, lung, bone, blood, and liver cancers. According
to the World Health Organization, approximately 2.1 million
women are affected by potentially life-threatening breast cancer
annually (Solanki et al., 2021). The survival rate is closely tied
to tumor size at diagnosis: patients with tumors smaller than
10 mm have a 98% survival likelihood, while 70% of cases are
diagnosed when tumors reach 30 mm (Roslidar et al., 2020). Early
detection through imaging techniques like X-rays (Din et al.,
2022), ultrasound (Allaoua Chelloug et al., 2023), and CT scans
(Rafiq et al., 2023) is vital, yet these methods often face limitations,
including misclassification of malignant tissues (Loizidou et al.,
2023). With an 85% 10-year survival rate in the United States for
early-diagnosed cases, and a drop from 98% in stages 0 and I to
65% in stage III (Madej-Czerwonka et al., 2022), the importance of
accurate, timely diagnosis cannot be overstated.

Extensive research has been conducted on breast cancer
diagnosis, particularly through imaging modalities such as
mammography, ultrasonography, and magnetic resonance imaging
(MRI). Ultrasonography, which uses high-frequency sound waves
to distinguish solid from fluid-filled masses, is often paired
with mammography or MRI to enhance diagnostic accuracy
(Chahal et al., 2020). However, challenges persist: radiologists
misdiagnose approximately 30% of breast malignancies due to the
diverse sizes and shapes of masses, and evaluating large volumes of
ultrasound images remains difficult even for experts (Chahal et al.,
2020). To address this, Computer-aided Diagnosis (CAD) systems
have been developed to assist radiologists by analyzing images
and highlighting suspicious areas, potentially catching cancers that
might otherwise bemissed (Elton et al., 2022). Recent advancements
in deep learning, particularly convolutional neural networks
(CNNs), have improved detection (Elton et al., 2022), classification
(Pathak et al., 2020), and segmentation (Byra et al., 2020) of medical
images. Despite these advances, limitations remain, including the
need for large datasets, which are scarce in medical imaging due
to the limited number of patients screened. Transfer Learning
(TL) has emerged as a solution, leveraging pre-trained models
like AlexNet (Krizhevsky et al., 2012), Inception (He et al., 2016),
GoogLeNet (Huang et al., 2017), ShuffleNet (Zhang et al., 2017),

and SqueezeNet (Iandola et al., 2016) to overcome data constraints.
However, these models, often trained on non-medical datasets
like ImageNet (Krizhevsky et al., 2012), struggle with generalization
to medical images, leaving room for further improvement in
precision and automation for breast ultrasound diagnostics.

This research addresses persistent gaps in breast cancer detection
by enhancing the accuracy and efficiency of CAD systems
for breast ultrasonography. It focuses on optimizing Transfer
Learning to overcome generalization challenges inmedical imaging.
Specifically, the study refines the Inception V3 model, known for
its sophisticated architecture and performance, to develop a less
complex yet highly precise diagnostic tool. The work evaluates
whether integrating benchmark ultrasound datasets and tailoring
pre-trained deep learningmodels can outperform existingmethods,
aiming to improve early diagnosis and patient survival rates. Our
contributions advance the field of breast cancer diagnostics in
several ways.

• We demonstrate that Transfer Learning with pre-trained
ImageNet models can achieve exceptional results in detecting
breast cancer from ultrasound images.

• We implement data augmentation to enhance model
performance and mitigate overfitting, ensuring robustness.

• We evaluate and compare various deep neural network
(DNN)-based approaches using metrics such as precision,
accuracy, recall, and F-score, providing a comprehensive
performance analysis.

• We customize the high-performing Inception V3 model to
create an improved CAD system for breast ultrasonography,
validated on an integrated dataset of two benchmarking
ultrasound image sets. This approach not only boosts accuracy
but also enhances generalization, offering a practical tool for
radiologists.

The paper is structured as follows: Section 2 reviews related
work, Section 3 details materials and methods, Section 4 presents
results and discussion, and Section 5 concludes with future
directions.

2 Related works

Extensive research has been conducted on the application of
machine learning (ML) and deep learning (DL) in biomedical
imaging, particularly in breast cancer and brain tumor detection.
Ragab et al. (2019) proposed a novel CAD approach to classify
breast tumors as malignant or benign. Their study utilized two
segmentation techniques: one in which the region of interest (ROI)
was manually selected and another employing a threshold- and
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region-based method. The support vector machine (SVM) classifier
achieved an area under the curve (AUC) of 94% and an accuracy
of 87.2%. To detect breast mass anomalies, Ragab et al. (2013)
employed the Discrete Wavelet Transform (DWT) for feature
extraction. They compared the performance of SVM and artificial
neural networks (ANN) in classifying normal and abnormal tissues,
as well as malignant and benign microcalcification (MC) tumors.
The ANN and SVM models achieved detection accuracies of
96% and 98%, respectively. Additionally, they integrated deep
convolutional neural networks (DCNN) with transfer learning
to improve classification performance. When applied to a digital
mammographic screening dataset, the proposed approach attained
an accuracy of 89.9% in distinguishing between tumor masses
and healthy tissues. To further advance breast cancer diagnosis,
researchers in (Dubey and Kumar, 2024; Prusty et al., 2023) provide
an uncertain expert system for breast cancer prediction, designed
to handle the ambiguity and imprecision often present in breast
cancer classification. Additionally, researchers in (Hirra et al., 2021)
provided a comprehensive review of the latest CAD systems based
on deep learning for breast imaging and histopathology. They
explored the correlation between histopathological classifications
andmammographic findings, considering various biological factors.
The study also proposed a computational modeling framework
that establishes a relationship between histological representations
of mammographic abnormalities and their associated features or
phenotypes. The research done by Mondal et al. (2023) introduces
an enhanced system architecture for image reconstruction and
breast cancer diagnosis with a microwave-tomographic method.
Data is acquired by 12 dipole antennas (2.4 GHz), engineered
using HFSS software, to simulate the breast structure with
differing dielectric characteristics. The data is subsequently
processed with the Newton–Kantorovich method to rebuild
tomographic images, surpassing alternative techniques such as
the gradient method. The program precisely identifies malignant
areas, recognizing tissue heterogeneity and providing superior
performance relative to leading techniques. The research illustrates
the efficacy of microwave imaging in breast cancer detection,
offering comprehensive data on tumor dimensions and dielectric
characteristics. The simulation outcomes indicate that enhanced
algorithms and hardware implementation may augment early-stage
breast cancer detection. Khuriwal and Mishra (2018) proposed
a Deep Learning Neural Network (DLNN) algorithm for breast
cancer detection using the Wisconsin Breast Cancer Database.
Their study demonstrated the potential of the UCI dataset in
diagnosing breast cancer by implementing a deep learning (DL)
approach. While DL techniques are widely applied in fields such
as computer vision, image processing, clinical diagnostics, and
natural language processing, the authors successfully utilized
DL methods to achieve a diagnostic accuracy of 99.67% on the
Wisconsin Breast Cancer Database. Their research also compared
the proposed DL model with other machine learning algorithms,
demonstrating its superior performance. In a related study,
Hagos et al. (2018) developed a multi-input CNN designed to
incorporate symmetry for breast lump detection. The model was
trained on a large dataset comprising 28,294mammography images.
TheAreaUnder the ReceiverOperatingCharacteristic (ROC)Curve
(AUC) and the Competition Performance Metric (CPM) were
used to evaluate the model’s performance. Without incorporating

symmetry, the baseline architecture achieved an AUC of 0.929 with
a confidence interval of [0.919, 0.947]. However, when symmetry
data was included, the model’s AUC improved to 0.933 with a 95%
confidence interval of [0.920, 0.954], highlighting the effectiveness
of symmetry-based modeling. Selvathi and Aarthy Poornila (2018)
introduced an automated mammogram-based approach for breast
cancer detection, utilizing deep learning techniques such as CNNs
and stacked sparse autoencoders. Their study evaluated and
compared the performance of different algorithms, proposing
two frameworks: a single-task CNN and a multi-task CNN
incorporating data augmentation and preprocessing. The single-
task CNN was employed to diagnose malignancy, whereas the
multi-task CNN classified different malignancy levels and image
magnifications. The preprocessing steps involved resizing and
cropping images to optimize them for CNN input. Their proposed
approach achieved a detection accuracy of 83.25%. Additionally, a
study (Spanhol et al., 2015) investigated multiclass breast cancer
classification using a deep learning model based on DenseNet,
a pre-trained convolutional neural network with 201 layers. The
classification was conducted on the public BreakHis database,
distinguishing both images and patients. The proposed model
achieved an image classification accuracy of 95.4% and a patient
classification accuracy of 96.48%. Spanhol et al. (2015) further
evaluated the algorithm using 600 images from the open-source
BreakHis dataset. They utilized the Softmax activation function
to compute class probabilities, assigning each test image to the
class with the highest probability. As a result, their approach
successfully attained an inter-class classification accuracy of 91.5%.
The research (Ghosh et al., 2020) thoroughly assesses an automated
segmentation technique for breast ultrasound images utilizing
DCNNs. The authors provide an innovative CNN architecture
that integrates U-Net and a modified ResNet for the automatic
segmentation of breast lesions. The suggested method demonstrates
substantial enhancements in accuracy, dice coefficient, mean
Intersection over Union (IoU), recall, and precision when evaluated
on a dataset of 163 pictures, relative to contemporary state-of-the-
art techniques. The architecture incorporates a feature extraction
unit and utilizes data augmentation approaches to improve training
stability and minimize false positives, attaining an accuracy rate
of 99%, so establishing it as a potential tool for computer-aided
diagnosis in breast cancer detection.

A study by Borah et al. (2022), investigates the application of
Vision Transformers (ViT) for the automated diagnosis of breast
cancer usingmammography pictures.TheViT-basedmodel attained
significant accuracy with reduced training duration, rendering it
optimal for real-time medical picture interpretation. A graphical
user interface (GUI) was created to aid physicians in achieving
quicker and more precise diagnosis. The model, validated on
the INbreast dataset, attained an accuracy of 96.48%, precision
of 93.65%, recall of 93.69%, and an F1-score of 93.34%. The
study indicates that ViT is an effective method for breast cancer
classification, surpassing current methodologies and demonstrating
potential for future applications in medical imaging.

In their study (Sharma and Kumar, 2021), Sharma and Kumar
compared handcrafted features with those extracted using the
proposed XceptionNet model for breast cancer classification.
Their findings demonstrated that the XceptionNet algorithm,
employed as a feature extractor, outperformed handcrafted feature
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extraction techniques. Additionally, the support vector machine
(SVM) classifier achieved an accuracy of 96.25% at the ×40
magnification level.

Inan et al. (2022) introduced a comprehensive automated
framework for breast tumor segmentation and classification.
Their approach relied on segmentation as a preliminary step
to enhance classification accuracy. The tumor segmentation was
performed using SLIC and K-Means++, while classification was
carried out using VGG16, VGG19, DenseNet121, and ResNet50.
Among various model combinations, SLIC, U-Net, and VGG16
demonstrated superior performance. Chiu et al. (2020) employed
machine learning techniques for breast cancer classification.
They utilized principal component analysis (PCA) for feature
extraction to address the dimensionality problem and applied a
multilayer perceptron (MLP) as the classifier. Similarly, Jabarani
et al. (Jebarani et al., 2021) proposed a novel hybrid model for breast
cancer detection. Their approach involved specific pre-processing
techniques to remove image background noise, employing an
adaptive median filter for noise reduction. Additionally, they
optimized the K-Means and Gaussian mixture model parameters
for image segmentation. The proposed hybrid model achieved an
accuracy of 95.5%. Saber et al. (2021) implemented a transfer
learning approach with six performance-enhancing matrices in
a deep-learning model for automatic breast cancer detection.
Feature extraction and classification were conducted using five pre-
trained deep learning models: ResNet50, InceptionV3, VGG19,
VGG16, and InceptionV2-ResNet. Among these, the VGG16 model
demonstrated the highest classification accuracy, achieving 98.96%.
Toğaçar et al. (2020) proposed a novel deep learning model for
breast cancer classification based on the CNN architecture. The
model comprised two primary components: the hyper-column
method attention mechanism and a residual block. When applied
to the BreakHis dataset, the model achieved an accuracy of
98.80%. Ting et al. (2019) developed an enhanced convolutional
neural network architecture for breast cancer classification, termed
CNNI-BCC. This supervised deep learning model demonstrated
superior performance compared to previous studies, achieving
an accuracy of 89.47%. Eroğlu et al. (2021) introduced a hybrid
CNN-based model for breast cancer classification. Their approach
utilized AlexNet, ResNet50, and MobileNetV2 for feature extraction
from ultrasound images of breast cancer patients. The extracted
features were optimized using the minimum redundancy maximum
relevance (mRMR) technique and subsequently classified using an
SVM classifier. The proposed hybrid model achieved a classification
accuracy of 95.6%.

Masud et al. (2020) proposed a custom CNN model for
breast cancer diagnosis. Additionally, they employed a transfer
learning approach, utilizing eight pre-trained deep learning models
to classify two breast cancer datasets. Among these models,
ResNet50, optimized with the Adam optimizer, achieved the highest
classification accuracy of 92.4%. Meanwhile, VGG16 demonstrated
the highest area under the curve (AUC) performance, attaining a
value of 0.97. Xiao et al. (2018) conducted an analysis using the
breast ultrasound image dataset to evaluate the performance of
InceptionV3, XceptionNet, and ResNet50. Based on their findings,
they proposed a simplified breast cancer diagnosis model consisting
of three convolutional layers. The dataset comprised 2,058 images,
with 1,370 categorized as benign and 688 as malignant. Their

experimental results indicated that InceptionV3 yielded the highest
classification accuracy, achieving 85.13%. Xiaofeng et al. (Qi et al.,
2022) developed amobile phone-basedmethodology for diagnosing
breast cancer utilizing ultrasound images. Their system comprises
three subsystems: DeepRec, DeepCls, and DeepAti. DeepRec:
Mitigates noise and reconstructs high-fidelity images utilizing
autoencoders and GANs. DeepCls: Utilizes Convolutional Neural
Networks based on pre-trained Inception-v3 to classify images
as malignant or non-malignant. DeepAti: Identifies anomalies to
minimize false negatives with Generative Adversarial Networks
(GANs). The research employed an extensive dataset of 18,225
breast ultrasound images and 2,416 reports from three hospitals,
exhibiting a good diagnostic performance with 94.51% accuracy
for high-quality photos and 89.34% accuracy for low-quality
images. Khan et al. (2019) proposed a novel framework for breast
cancer identification and classification using transfer learning.Their
approach leveraged GoogLeNet, VGG, and ResNet architectures to
extract features, which were then combined and fed into a fully
connected layer for classification. Moon et al. (2020) conducted a
study aimed at detecting breast cancer using ultrasound imaging.
They utilized two independent datasets and integrated multiple
CNN models. Their methodology achieved an accuracy of 91.10%
on the first dataset and 94.62% on the second, demonstrating
the effectiveness of their approach. The authors in (Ye et al.,
2021) prepared a gold standard dataset for their study, which
included 910 benign and 934 malignant B-mode breast ultrasound
images, comprising 110 triple-negative (TNBC) and 824 non-
triple-negative (NTNBC) cases. A pretrained ResNet50 DCNN
was employed for the analysis. The results demonstrated that
the mean area under the receiver operating characteristic curve
(AUC) for distinguishing malignant from benign cases was
0.9789 (benign vs TNBC) and 0.9689 (benign vs NTNBC),
whereas for distinguishing TNBC from NTNBC breast cancer
was 0.90, with an accuracy of 88.9%, sensitivity of 87.5%, and
specificity of 90.0%.

3 Materials and methods

This section outlines the comprehensive process of breast cancer
detection, encompassing data collection, pre-processing (including
data augmentation), model training, and classification. The overall
workflow of the developed breast cancer detection and classification
model is illustrated in Figure 1.

3.1 Data collection

In this study, we utilized two publicly available breast cancer
databases.Themotivation for incorporating both datasets is twofold:
(1) to expand the size of the training dataset, thereby mitigating
the risk of bias and overfitting, and (2) to include three distinct
classes—normal, benign, and malignant. The integration of these
datasets is expected to enhance the model’s accuracy and improve
its overall effectiveness.

The first one is the breast cancer ultrasound scans BUSI (Al-
Dhabyani et al., 2020). This dataset has been previously used in
a published study and was compiled in 2018 from 600 distinct
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FIGURE 1
The block diagram of breast cancer detection framework using the proposed model.

female subjects aged between 25 and 75 years. It comprises
a total of 780 ultrasound images, categorized as follows: 133
normal, 437 benign, and 210 malignant cases. Figure 2 presents
an example of an ultrasound image from this dataset. Each
image has a resolution of 500 × 500 pixels and is stored in the
PNG file format.

The second dataset is the Breast Ultrasound Image dataset, as
described in (Paulo, 2017). This dataset comprises 250 breast cancer
ultrasound images, including 100 benign and 150 malignant cases.
A summary of these breast cancer datasets is presented in Table 1.
The integration of these datasets enhances model performance but
also introduces challenges.

Related to imaging conditions, device specifications, and
patient demographics. Variations in ultrasound machines
and imaging protocols could impact consistency, however,
preprocessing techniques such as contrast normalization and
intensity standardization effectively minimize these discrepancies.

Additionally, while the BUSI dataset includes patient age (25–75
years), the second dataset lacks demographic details, making
direct comparisons difficult. Despite this, the diverse data
sources improve generalizability. Furthermore, differences in class
distribution—BUSI including normal, benign, and malignant cases
while the second dataset lacks normal images—were addressed
through balanced sampling and data augmentation. These steps
ensure a more robust and unbiased model, ultimately improving its
reliability in real-world applications.

3.2 Pre-processing and data augmentation

The normalization step is essential before feeding images into
the CNN model. This process ensures that both datasets are resized
to match the input dimensions of the deep learning models. Deep
learning algorithms require large amounts of data for effective
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FIGURE 2
Ultrasound images of breast cancer from the selected dataset.

TABLE 1 Detailed description of the two BC datasets.

Dataset Normal Benign Malignant Total

BUSI (Al-Dhabyani et al., 2020) 133 437 210 780

Breast Ultrasound Image (Paulo, 2017) - 100 150 250

Total 133 537 360 1,030

training and optimal performance. However, in domains with
limited data availability, training deep models becomes challenging.
To address this issue, a data augmentation strategy was employed.
In the training set, images were randomly shifted up to 30 pixels
horizontally and vertically and rotated within a range of −30 to
30°. Additionally, image scaling was applied by randomly adjusting
the size within the range of [0.9, 1.1]. This augmentation technique
helped generate diverse training samples, improving the model’s
generalization and preventing overfitting to the majority class,
thereby enhancing the overall classification performance.

3.3 Deep learning model

Traditional machine learning approaches involve a sequence
of steps, including pre-processing, feature extraction, and feature
selection, to achieve classification. The effectiveness of these
methods heavily relies on the quality of the selected features,
which may not always be optimal for class discrimination. In
contrast, deep learning (DL) enables automatic feature extraction
tailored to specific tasks (Mendonça et al., 2023). CNNs represent a
specialized subset of deep neural networks designed for analyzing
visual data. CNNs process an input image by assigning weights

to different components, allowing them to distinguish between
various elements within the image. Due to their ability to
learn hierarchical features directly from raw data, CNNs have
demonstrated exceptional accuracy in image classification and
recognition tasks (Ba Mahel et al., 2024; Alabdulhafith et al.,
2024; Ba Mahel and Kalinichenko, 2024; Ba Mahel and
Kalinichenko, 2022; Ba Mahel et al., 2022; Nemirko et al., 2024;
Mahel et al., 2024).

3.4 Transfer learning models

Deep CNN techniques continue to be widely used due to
their ability to provide innovative solutions for detection and
classification tasks. However, a common challenge with deep CNN
models is their reliance on large amounts of training data, which
may not always be readily available. Acquiring and annotating large
datasets is often time-consuming and resource-intensive. To address
this limitation, transfer learning (TL) has emerged as an effective
approach (Kim et al., 2022). Transfer learning involves pre-training
CNN models on large datasets and then fine-tuning them for a
smaller, domain-specific dataset.This approach significantly reduces
training time and computational cost while improving model
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FIGURE 3
The block diagram of the proposed model.

performance, even with limited training data. Since the pre-trained
model has already learned fundamental features, it requires less data
to achieve high accuracy. One widely used dataset for pre-training
deep learning models is the ImageNet dataset (Russakovsky et al.,
2015), which contains over 15 million images categorized into
more than 22,000 classes. Many state-of-the-art CNN architectures
have been trained on ImageNet and are frequently utilized for
transfer learning applications. In this study, rather than training
the model from scratch, the BUSI dataset was used for fine-tuning
and training the final classification model. Transfer learning is one
of the most effective techniques for addressing computer vision
challenges, especially when data availability is limited. Figure 3
illustrates the fine-tuning process of nine different CNN models
for breast cancer detection and classification. Additionally, Table 2
provides a detailed overview of the number of parameters in
millions and layers associated with each CNN architecture used
in this research.

3.4.1 XceptionNet
Xception is an advanced DL architecture that builds

upon and improves the Inception model. Instead of using
traditional convolutional layers, Xception employs depthwise
separable convolutions, which decouple spatial and cross-
channel correlations. This separation allows for more efficient
feature extraction and computational savings compared to
standard CNNs. Unlike conventional CNNs that blend spatial
and cross-channel relationships, Xception processes them
independently. This architectural enhancement improves model
performance and robustness, making Xception more effective
than its predecessor, Inception. The Xception model consists
of 36 convolutional layers, which are grouped into 14 distinct
modules. After removing the initial and final layers, residual

TABLE 2 The parameters and layers of the pre-train model for breast
cancer detection.

Methods Number of
layers

Size Parameters (M)

AlexNet 8 227 Mb 60 M

ResNet-101 101 171 MB 44 M

Inception-v3 42 93 MB 27 M

VGG-16 50 96 MB 25.6 M

GoogLeNet 22 27 MB 7 M

connections link each consecutive layer, enhancing gradient
flow and training stability. The model first captures cross-
channel relationships within the input image and then translates
them into spatial correlations within each output channel. This
process is followed by depthwise 1 × 1 convolutions, which
refine feature representation while maintaining computational
efficiency. These architectural innovations contribute to Xception’s
superior performance across various image classification and
recognition tasks.

3.4.2 GoogLeNet
GoogLeNet has 144 layers and uses Inception modules with

four parallel branches (1 × 1, 3 × 3, 5 × 5 convolutions, and
max pooling). It applies ReLU activation in all convolutions. 1
× 1 convolutions reduce parameters, improving efficiency. The
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TABLE 3 Additional parameters and layers information of the proposed model.

S.No Name of layer Filter size Filter/Neurons Epsilon

1 Conv_1 1 × 1 960

2 BatchNormalization_1 0.001

3 Clipped_ReLU_Activation_Layer_1

4 Group_Conv 3 × 3 960

5 BatchNormalization_2 0.001

6 Clipped_ReLU_Activation_Layer_2 0.001

7 Conv_2 1 × 1 320

8 BatchNormalization_3 0.001

9 Conv_3 1 × 1 1,280

10 BatchNormalization_4 0.001

11 Clipped_ReLU_Activation_Layer_3 0.001

12 GlobalAvg_ Pooling_Layer 64

13 FullyConnected_Layer 3

14 Softmax_Layer

15 FullyConnected_Classification_Layer with 3 output neurons (Softmax) 3

architecture minimizes parameters from 60 million to ∼4 million,
enhancing computational performance without losing accuracy.

3.4.3 ShuffleNet
The ShuffleNet model, comprising 50 layers, processes input

images of 224 × 224 pixels. It extracts 544 deep features through
global average pooling, enabling advanced image representation.
Pre-trained on the ImageNet dataset, ShuffleNet efficiently classifies
new tasks by leveraging learned features from large-scale image data.

3.4.4 AlexNet
The AlexNet architecture consists of eleven layers, designed

to enhance feature extraction. While its depth improves learning,
numerous parameters can impact performance. The first layer is a
convolutional layer, followed by max pooling and normalization
layers. The network concludes with a SoftMax layer for
classification.

3.4.5 SqueezeNet
The SqueezeNet model consists of 18 layers and processes input

images of 227 × 227 pixels. Despite having fewer parameters, it
achieved high accuracy on ImageNet. High-level features were
extracted using activations from the topmost fully connected layer,
interpreting input images as 1,000 deep features.

3.4.6 Proposed model (InceptionNetV3)
The convolution process constitutes the most critical phase

within a neural network that incorporates convolutional layers.

TABLE 4 The hyperparameters of the proposed model.

Parameters Values given

Validation frequency 82

Learning rate 0.001

Optimization algorithm SGDM

Iterations per epoch 82

Shuffle Every epoch

Verbose false

Batch size 10

Maximum epochs 50

Activation function Leaky ReLu + ReLu

Typically, convolution algorithms that employ larger spatial filters
demand substantial computational resources. The adoption of the
Inception module represents a pivotal advancement in mitigating
these costs. By leveraging optimally efficient local sparse structures,
the computational expense associated with the Inception module
is significantly reduced. The design of the Inception block
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FIGURE 4
The confusion matrix of the CNN-based transfer learning models.

TABLE 5 Pre-trained model experimental results.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

Modified InceptionNet-v3 99.10 98.90 99.05 98.80

GoogLeNet 95.70 95.50 95.40 95.20

AlexNet 96.10 95.70 95.80 95

Shufflenet 95 94.60 94.70 94.30

SqueezeNet 97.10 97.05 96.90 96

VGG-16 96.40 96.10 95.90 95.80

predominantly depends on statistical analysis of layer correlations
during the layer-by-layer construction process. Filter banks are
formed from interconnected layers, and the ultimate outcomes may
be achieved by concatenating multiple large filter banks within a
single region. However, these filter banks introduce patch alignment

challenges, which can be addressed by employing smaller filter
sizes, such as 1 × 1, 3 × 3, and 5 × 5. Furthermore, in the
sequence of computations for dimensionality reduction, the 1 ×
1 convolution precedes the 3 × 3 and 5 × 5 convolutions. The
internal architecture of an Inception module, illustrated in Figure 3,
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FIGURE 5
The ROC curves of the proposed and pre-trained transfer learning models.

serves as the foundation for InceptionNet. To extract features
from images across varying spatial resolutions, input images are
convolved with kernels of different sizes, such as 3 × 3 and 5
× 5. In the final stage, the activation maps derived from these

parallel computations are concatenated depth-wise to produce the
desired output.

Additionally, the Inception block depicted in Figure 3 operates
with reduced dimensions. The input is processed through
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TABLE 6 The TPR, TNR, and MCC values.

Model TPR (%) TNR (%) MCC (%)

Modified InceptionNet-v3 99 98 99

GoogLeNet 95 95 95

AlexNet 96 95 95

Shufflenet 95 94 94

SqueezeNet 97 97 96

VGG-16 95 95 95

four parallel convolutional pathways, consisting of three scaled
convolutions and one pooling operation. The first pathway involves
a 1 × 1 convolution followed by a 5 × 5 convolution, while the
second pathway comprises a 1 × 1 convolution followed by a 3 × 3
convolution (Das et al., 2020). The third pathway employs pooling
prior to a 1 × 1 convolution, and the fourth pathway follows a
similar procedure (Szegedy et al., 2016). The output of the Inception
block is generated by concatenating the filtered results of these four
convolutional pathways, resulting in extensive spatial filtering that
accounts for layer correlations.

The InceptionNetV3 model, pre-trained on the ImageNet
dataset, comprises 48 deep layers that utilize the ReLU activation
function and integrate 1 × 1, 3 × 3, and 5 × 5 convolutional layers
(Kokkalla et al., 2021; Szegedy et al., 2015). The model’s upper
structure has been modified to enable binary classification. To
effectively constrain the number of trainable parameters within
the convolutional layers, these parameters were designated as
non-trainable, reducing the total from 22,982,626 to 1,179,842.
Despite its depth, the architecture of InceptionNetV3 substantially
lowers the number of training parameters compared to earlier
neural networks. For instance, VGG16 encompasses approximately
90 million parameters but offers considerably less depth than
InceptionNetV3. Greater depth enhances model accuracy by
enabling the capture of finer details. The InceptionV3 framework
underpins the enhanced InceptionNetV3 architecture. Utilizing a
pre-trained model, rather than constructing a new network from
scratch, is recommended. InceptionNetV3 was selected as the
foundation due to its demonstrated efficacy with biomedical data
and the benefits derived from its pre-trained knowledge, aligning
with the goal of optimizing model performance. In the customized
version of the InceptionNetV3 model, the top four layers have
been removed, transforming it into an InceptionNetV3 variant.
These layers have been replaced with fifteen additional layers. The
architecture of this tailored InceptionNetV3 model is detailed in
Figure 3. The sequential arrangement of layers is critical in hybrid
architectures and any subsequent advancements in CNN designs
employed in DL. Comprehensive details regarding the properties
of these additional layers are provided in Table 3. These custom
layers improve performance by addressing common DL challenges.
ClippedReLUActivation prevents vanishing or exploding gradients,
ensuring stable training and faster convergence. Group Convolution
reduces parameters and computational costs by partitioning input

channels, which helps reduce overfitting and increase efficiency.
Together, these layers enhance stability, reduce complexity,
and improve model performance without compromising
predictive power.

3.5 Hyperparameters and experimental
settings

Setting hyperparameters before training is essential, as they
significantly influence the learning process and model performance.
Variousmethods exist to determine the optimal values. For training,
breast cancer ultrasound images were split using a 70/30 ratio. The
number of training samples tallied in a single forward and backward
pass is called the batch size. As the batch size is increased, there is
a corresponding increase in the amount of memory space that is
necessitated. Due to hardware constraints, we set the batch size to 10
images. An epoch represents one complete pass through the training
dataset.With transfer learning andmodel training, we set 50 epochs,
requiring 82 iterations per epoch to complete. Furthermore, we
trained both the pre-trained and modified models using a learning
rate of 0.001. The detailed parameter specifications for both the
customized model and pre-trained models are presented in Table 4.
We employed stochastic gradient descent (SGD) as the optimization
algorithm for training the proposed model and conducted our
experiments in Python 3.8 and TensorFlow 2.9.

4 Results and discussion

To assess the proposedmodel, we employ themetrics outlined in
Equations 1–4.The “True Positive” (TP) concept pertains to positive
data that has been accurately predicted and assessed. The diagonal
contains the most prominent values.

A true negative (TN) is when a test or diagnostic procedure
correctly identifies the absence of a particular condition or attribute.
A false positive (FP) refers to data that should have been classified as
negative but are erroneously identified as positive during evaluation.
The summation is computed by adding up all the values in the
column corresponding to each class, excluding TP. One instance of
a false negative can be observed in interpreting positive information
as having a detrimental effect. The summation encompasses
all the values within the row corresponding to each class,
excluding TP.

Accuracy = TP+TN
TP+ FP+TN+ FN

(1)

precision = TP
TP+ FP

(2)

Recall = TP
TP+ FN

(3)

F1− Score = 2 ·
(precision · recall)
(precision+ recall)

(4)

During this study, the dataset was split into training and testing,
with 70% of the data used for model training and 30% used
for testing. The proposed research used DL-based classification
strategies such as Alex Net, VGG-16, SqueezeNet, Shufflenet, and
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TABLE 7 A comparative study of the proposed with recent ML/DL models of breast cancer detection.

References Model Dataset Purpose Accuracy (%)

Latha et al. (2024) SLIC-based ROI extraction +
SVM

BUSI Classify breast tumors in
ultrasound images

88%

Zhang et al. (2022) XGBoost-based ML model 952 patients’ ultrasound
images

Predict sentinel lymph node
metastasis in breast cancer

patients

84.6%

Lyu et al. (2023) Radiomics model with random
forest

302 small breast masses’
ultrasound images

Differentiate minimal breast
cancer from small benign

breast masses

AUC: 79.3%

Rakha et al. (2024) MobileNetV2 combined with
CBAM

Combined dataset from two
ultrasound image sources

Classify breast cancer
ultrasound images

93.00%

Zhuang et al. (2021) Image decomposition and
fusion with adaptive

multi-model spatial feature
fusion

Collected 1,328 BUSI Classify breast tumors in
ultrasound images

95.48%

Pang et al. (2021) Semi-supervised GAN-based
radiomics model

Collected 1,447 BUSI Data augmentation for breast
ultrasound mass classification

90.41%

This work Modified InceptionNet-v3 BUSI Breast cancer image
classification (benign,
malignant, normal)

99.10%

modified InceptionNet-v3. The confusion matrices generated by the
various pre-trained models, as well as the proposed customized
model, are presented in Figure 4. It was observed that InceptionNet-
V3 achieved the highest accuracy at 99%, while ShuffleNet obtained
the lowest accuracy at 95%, followed byGoogLeNetwith the second-
lowest accuracy. Furthermore, the results exceeded the performance
of the pre-trained models. Table 5 presents the classification results
for each model. In terms of accuracy, precision, recall, and F1-
score, the customized InceptionNet-V3 model outperformed all
pre-trained models.

Furthermore, the receiver operating characteristic (ROC) curve
is a crucial metric for breast cancer detection, as it provides a
comparative evaluation of the true negative rate (TNR) and true
positive rate (TPR). Figure 5 illustrates the ROC curves of the
proposed and pre-trained models, effectively demonstrating the
relationship between true positives and true negatives. Notably,
the proposed model exhibits higher average ROC values compared
to the pre-trained transfer learning models, indicating superior
performance.

To conduct a comprehensive evaluation and analysis of the
proposed model, a confusion matrix is employed to compute the
true negative rate (TNR), true positive rate (TPR), and Matthews
correlation coefficient (MCC). The success rates for TPR, TNR, and
MCC are presented in Table 6, with the proposed model achieving
99.1%, 99.2%, and 0.99, respectively. These results demonstrate the
model’s superior performance. Furthermore, the proposed model
has been compared against several benchmark algorithms. Table 7
presents the comparative results with the most recent benchmarks.
The proposed approach outperforms existing methods across key
evaluation metrics, including accuracy (Acc), precision (Pres),
sensitivity (Sens), specificity (Spec), and others.

4.1 Explainability analysis using Grad-CAM

To enhance the interpretability of the DL model’s decision-
making process, Grad-CAM visualizations (Selvaraju et al., 2016)
were generated for normal, benign, and malignant BUSI. Figure 6
presents the original ultrasound images, the corresponding Grad-
CAM heatmaps, and the overlayed heatmaps for each class,
illustrating the model’s focus during classification. For the normal
class, the heatmaps exhibit minimal and dispersed activation,
indicating that the model does not focus on specific regions
but instead confirms the absence of suspicious structures. The
activations are primarily distributed across homogeneous tissue
areas, suggesting that the model correctly identifies the lack of
distinct lesion-like features. This highlights the model’s ability
to distinguish between normal breast tissue and pathological
cases effectively. In benign cases, the heatmaps show moderate
activation over well-circumscribed, hypoechoic regions, which are
characteristic of benign breast lesions. The model’s attention is
distributed over the lesion area but lacks sharply concentrated
activation, suggesting that it relies on structural attributes such as
shape, margins, and internal echotexture to make its predictions.
For malignant lesions, the model exhibits strong and localized
activations in the central and peripheral regions of the lesion.
The heatmaps reveal an intense focus on irregular, heterogeneous
areas, which are the indicators of malignancy in BUSI. The sharp,
well-defined areas of attention indicate that the model captures
crucial morphological characteristics such as irregular contours,
and echogenic halo regions. Thus, the explainability analysis
demonstrates that themodel effectively leverages relevant diagnostic
features for classification, aligning with clinical knowledge. The
distinct activation patterns observed for normal, benign, and
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FIGURE 6
Grad-CAM visualization for model explainability in BUSI classification.

malignant classes suggest that the model accurately differentiates
between them, reinforcing its potential for assisting in breast cancer
diagnosis.

4.2 Limitations and future directions

This research’s drawback is that only a restricted quantity
of images in the breast cancer ultrasound imaging dataset is
available in public. This affects how well DL models perform.
This research has the potential to be improved further by
including additional images and datasets. In addition, the

outlook for the future study might concentrate on answering
therapeutically related questions. The effective development of
improved deep learning algorithms may assist radiologists and
oncologists in accurately detecting breast cancer using MRI and
CT scans.

5 Conclusion

This study evaluated five pre-trained DL models for breast
cancer detection using ultrasound images. The experimental results
demonstrated that the modified InceptionNet-V3 model achieved
the highest accuracy of 99.10%, outperforming other models, while
GoogLeNet obtained the lowest accuracy of 95%. By optimizing
the best-performing model, we further enhanced classification
performance, highlighting the effectiveness of transfer learning in
medical image analysis. The findings provide valuable insights for
researchers and practitioners in selecting optimal models for breast
cancer diagnosis.

Future work should focus on extending the dataset
to improve model generalization across diverse imaging
conditions and patient demographics. Additionally, exploring
lightweight architectures will facilitate real-time deployment in
healthcare settings.

Data availability statement

Publicly available datasets were analyzed in this
study. This data can be found here: https://data.mendeley.
com/datasets/wmy84gzngw/1 and https://scholar.cu.edu.eg/?q=
afahmy/pages/dataset.

Author contributions

SC: Formal Analysis, Funding acquisition, Project
administration, Supervision, Writing – original draft, Writing –
review and editing. AB: Investigation, Methodology, Validation,
Visualization, Writing – original draft, Writing – review and
editing. RA: Funding acquisition, Project administration, Resources,
Supervision, Writing – original draft, Writing – review and
editing. AR: Conceptualization, Data curation, Formal Analysis,
Writing – original draft, Writing – review and editing. MM:
Investigation, Methodology, Project administration, Writing
– original draft, Writing – review and editing. AA: Formal
Analysis, Resources, Writing – original draft, Writing – review
and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
supported by Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2025R239),
Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia.

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2025.1558001
https://data.mendeley.com/datasets/wmy84gzngw/1
https://data.mendeley.com/datasets/wmy84gzngw/1
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chelloug et al. 10.3389/fphys.2025.1558001

Acknowledgments

We are grateful to the Princess Nourah bint Abdulrahman
University Researchers Supporting Project Number
(PNURSP2025R239), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Alabdulhafith, M., Ba Mahel, A. S., Samee, N. A., Mahmoud, N. F., Talaat, R.,
Muthanna, M. S., et al. (2024). Automated wound care by employing a reliable U-Net
architecture combined with ResNet feature encoders for monitoring chronic wounds.
Front. Med. 11, 1310137. doi:10.3389/fmed.2024.1310137

Al-Dhabyani, W., Gomaa, M., Khaled, H., and Fahmy, A. (2020). Dataset of breast
ultrasound images. Data Brief 28, 104863. doi:10.1016/j.dib.2019.104863

Allaoua Chelloug, S., Alkanhel, R., Muthanna, M. S. A., Aziz, A., and Muthanna, A.
(2023).MULTINET: amulti-agent drl and EfficientNet assisted framework for 3D plant
leaf disease identification and severity quantification. IEEE Access 11, 86770–86789.
doi:10.1109/access.2023.3303868

Ara, S., Das, A., and Dey, A. (2021). “Malignant and benign breast cancer
classification using machine learning algorithms,” in 2021 international
conference on artificial intelligence (Islamabad, Pakistan: ICAI), 97–101.
doi:10.1109/ICAI52203.2021.9445249

Ba Mahel, A. S., Cao, S., Zhang, K., Chelloug, S. A., Alnashwan, R., and
Muthanna, M. S. (2024). Advanced integration of 2DCNN-GRU model for
accurate identification of shockable life-threatening cardiac arrhythmias:
a deep learning approach. Front. Physiology 15, 1429161. doi:10.3389/fphys.
2024.1429161

Ba Mahel, A. S., Harold, N., and Solieman, H. (2022). “Arrhythmia classification
using alexnet model based on orthogonal leads and different time segments,”
in 2022 conference of Russian young researchers in electrical and electronic
engineering (ElConRus) (Saint Petersburg: Russian Federation), 1312–1315.
doi:10.1109/ElConRus54750.2022.9755708

Ba Mahel, A. S., and Kalinichenko, A. N. (2022). “Classification of cardiac cycles
using a convolutional neural network,” in 2022 conference of Russian young researchers in
electrical and electronic engineering (ElConRus) (Saint Petersburg: Russian Federation),
1466–1469. doi:10.1109/ElConRus54750.2022.9755490

Ba Mahel, A. S., and Kalinichenko, A. N. (2024). “Classification of arrhythmia using
parallel channels and different features,” in 2024 conference of young researchers in
electrical and electronic engineering (ElCon) (Saint Petersburg: Russian Federation),
1007–1010. doi:10.1109/ElCon61730.2024.10468316

Borah, N., Varma, P. S. P., Datta, A., Kumar, A., Baruah, U., and Ghosal, P.
(2022). “Performance analysis of breast cancer classification from mammogram
images using vision transformer,” in 2022 IEEE Calcutta conference (CALCON)
(IEEE), 238–243.

Byra, M., Jarosik, P., Szubert, A., Galperin, M., Ojeda-Fournier, H., Olson,
L., et al. (2020). Breast mass segmentation in ultrasound with selective kernel
U-Net convolutional neural network. Biomed. signal Process. control 61, 102027.
doi:10.1016/j.bspc.2020.102027

Chahal, P. K., Pandey, S., and Goel, S. (2020). A survey on brain tumor
detection techniques for MR images. Multimedia Tools Appl. 79 (29), 21771–21814.
doi:10.1007/s11042-020-08898-3

Chiu, H.-J., Li, T.-H. S., and Kuo, P.-H. (2020). “Breast cancer–detection system using
PCA, multilayer perceptron, transfer learning, and support vector machine,” in IEEE
Access 8, 204309–204324. doi:10.1109/ACCESS.2020.3036912

Das, D., Santosh, K. C., and Pal, U. (2020). Truncated inception net: COVID-
19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med. 43 (3), 915–925.
doi:10.1007/s13246-020-00888-x

Din, N. M. U., Dar, R. A., Rasool, M., and Assad, A. (2022). Breast cancer detection
using deep learning: datasets, methods, and challenges ahead. Comput. Biol. Med. 149,
106073. doi:10.1016/j.compbiomed.2022.106073

Dubey, M., and Kumar, S. (2024). “A model for the diagnosis and prognosis of breast
cancer based on fuzzy expert system,” in Mathematical sciences and applications (CRC
Press), 30–36.

Elton, D. C., Turkbey, E. B., Pickhardt, P. J., and Summers, R. M. (2022). A deep
learning system for automated kidney stone detection and volumetric segmentation on
non‐contrast CT scans. Med. Phys. 49, 2545–2554. doi:10.1002/mp.15518

Eroğlu, Y., Yildirim, M., and Çinar, A. (2021). Convolutional Neural Networks
based classification of breast ultrasonography images by hybrid method with respect
to benign, malignant, and normal using mRMR. Comput. Biol. Med. 133, 104407.
doi:10.1016/j.compbiomed.2021.104407

Ghosh, D., Kumar, A., Ghosal, P., Chowdhury, T., Sadhu, A., and Nandi, D. (2020).
“Breast lesion segmentation in ultrasound images using deep convolutional neural
networks,” in 2020 IEEE Calcutta conference (CALCON) (IEEE), 318–322.

Hagos, B., Yeman, A., Mérida, G., and Teuwen, J. (2018). “Improving breast cancer
detection using symmetry informationwith deep learning,” in Image analysis formoving
organ, breast, and thoracic images (Cham: Springer), 90–97.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, USA, 18-20 June 1996, 770–778.

Hirra, I., Ahmad, M., Hussain, A., Ashraf, M. U., Saeed, I. A., Qadri, S. F., et al.
(2021). Breast cancer classification from histopathological images using patch-based
deep learningmodeling. IEEE Access 9, 24273–24287. doi:10.1109/access.2021.3056516

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, USA, 17-19 June 1997, 4700–4708.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K.
(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
model size. ArXiv. doi:10.48550/arXiv.1602.07360

Inan, H., Khan, M. S., Alam, F. I., and Hasan, R. (2022). Deep integrated pipeline of
segmentation guided classification of breast cancer from ultrasound images. Biomed.
Signal Process. Control 75, 103553. doi:10.1016/j.bspc.2022.103553

Jebarani, P. E., Umadevi, N., Dang, H., and Pomplun, M. (2021). A novel hybrid K-
means and GMM machine learning model for breast cancer detection. IEEE Access 9,
146153–146162. doi:10.1109/access.2021.3123425

Khan, S. U., Islam, N., Jan, Z., Din, I.Ud, and Rodrigues, J. J. P. C. (2019). A novel deep
learning based framework for the detection and classification of breast cancer using
transfer learning. Pattern Recognit. Lett. 125, 1–6. doi:10.1016/j.patrec.2019.03.022

Khuriwal, N., and Mishra, N. (2018). “Breast cancer diagnosis using deep learning
algorithm,” in 2018 international conference on advances in computing, communication
control and networking (ICACCCN) (IEEE).

Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., and
Ganslandt, T. (2022). Transfer learning for medical image classification: a literature
review. BMCMed. Imaging 22, 69. doi:10.1186/s12880-022-00793-7

Kokkalla, S., Kakarla, J., Venkateswarlu, I. B., and Singh, M. (2021). Three-class brain
tumor classification using deep dense inception residual network. Soft Comput. 25 (13),
8721–8729. doi:10.1007/s00500-021-05748-8

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60 6, 84–90. doi:10.1145/3065386

Latha, M., Kumar, P. S., Chandrika, R. R., Mahesh, T. R., Kumar, V. V., and Guluwadi,
S. (2024). Revolutionizing breast ultrasound diagnostics with EfficientNet-B7 and
Explainable AI. BMCMed. Imaging 24, 230. doi:10.1186/s12880-024-01404-3

Frontiers in Physiology 14 frontiersin.org

https://doi.org/10.3389/fphys.2025.1558001
https://doi.org/10.3389/fmed.2024.1310137
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1109/access.2023.3303868
https://doi.org/10.1109/ICAI52203.2021.9445249
https://doi.org/10.3389/fphys.2024.1429161
https://doi.org/10.3389/fphys.2024.1429161
https://doi.org/10.1109/ElConRus54750.2022.9755708
https://doi.org/10.1109/ElConRus54750.2022.9755490
https://doi.org/10.1109/ElCon61730.2024.10468316
https://doi.org/10.1016/j.bspc.2020.102027
https://doi.org/10.1007/s11042-020-08898-3
https://doi.org/10.1109/ACCESS.2020.3036912
https://doi.org/10.1007/s13246-020-00888-x
https://doi.org/10.1016/j.compbiomed.2022.106073
https://doi.org/10.1002/mp.15518
https://doi.org/10.1016/j.compbiomed.2021.104407
https://doi.org/10.1109/access.2021.3056516
https://doi.org/10.48550/arXiv.1602.07360
https://doi.org/10.1016/j.bspc.2022.103553
https://doi.org/10.1109/access.2021.3123425
https://doi.org/10.1016/j.patrec.2019.03.022
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1007/s00500-021-05748-8
https://doi.org/10.1145/3065386
https://doi.org/10.1186/s12880-024-01404-3
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chelloug et al. 10.3389/fphys.2025.1558001

Loizidou, K., Elia, R., and Pitris, C. (2023). Computer-aided breast cancer detection
and classification in mammography: a comprehensive review. Comput. Biol. Med. 153,
106554. doi:10.1016/j.compbiomed.2023.106554

Lyu, S., Zhang, M., Zhang, B., Zhu, J., Gao, L., Qiu, Y., et al. (2023). The value of
radiomics model based on ultrasound image features in the differentiation between
minimal breast cancer and small benign breast masses. J. Clin. Ultrasound 51 (9),
1536–1543. doi:10.1002/jcu.23556

Madej-Czerwonka, B., Korga-Plewko, A., and Czerwonka, M. (2022). Modern
breast cancer diagnostic methods. Curr. Issues Pharm. Med. Sci. 35 (1), 1–5.
doi:10.2478/cipms-2022-0001

Mahel, A. S.Ba, Alotaibi, F. M. G., and Rao, N. (2024). “The role of synthetic data in
mitigating imbalance in deep-learning-based arrhythmia classification: a comparative
study,” in Sixth international conference on image, video processing, and artificial
intelligence (IVPAI 2024) (SPIE), 13225, 16. doi:10.1117/12.3046225

Masud, M., Eldin Rashed, A. E., and Hossain, M. S. (2022). Convolutional neural
network-based models for diagnosis of breast cancer. Neural Comput. Appl., 34,
11383–11394. doi:10.1007/s00521-020-05394-5

Mendonça, M. O., Netto, S. L., Diniz, P. S., and Theodoridis, S. (2023).
Machine learning: review and trends. Signal Process. Mach. Learn. Theory, 869–959.
doi:10.1016/B978-0-32-391772-8.00019-3

Mondal, M., Ghosal, P., Kumar, A., and Nandi, D. (2023). “A modified microwave
based system design for early-stage breast cancer detection,” in International conference
on advanced computational and communication paradigms (Singapore: Springer Nature
Singapore), 251–258.

Moon, W. K., Lee, Y.-W., Ke, H.-H., Su, H. L., Huang, C.-S., and Chang, R.-F.
(2020). Computer‐aided diagnosis of breast ultrasound images using ensemble learning
from convolutional neural networks. Comput. methods programs Biomed. 190, 105361.
doi:10.1016/j.cmpb.2020.105361

Nemirko, A. P., Ba Mahel, A. S., and Manilo, L. A. (2024). Recognition of
life-threatening arrhythmias by ECG scalograms. Comput. Opt. 48 (1), 149–156.
doi:10.18287/2412-6179-co-1354

Pang, T., Wong, J. H. D., Ng, W. L., and Chan, C. S. (2021). Semi-supervised GAN-
based radiomics model for data augmentation in breast ultrasound mass classification.
Comput. Methods Programs Biomed. 203, 106018. doi:10.1016/j.cmpb.2021.106018

Pathak, V., Singh, K., Ahmed, A., and Dhoot, A. (2020). Efficient and compressive
IoT based Health care system for Parkinson’s disease patient. Procedia Comput. Sci. 167,
1046–1055. ISSN 1877-0509. doi:10.1016/j.procs.2020.03.441

Paulo, S. R. (2017). Breast ultrasound image. Mendeley data.
doi:10.17632/wmy84gzngw.1

Prusty, S., Das, P., Dash, S. K., and Patnaik, S. (2023). RETRACTED: prediction
of Breast cancer using integrated machine learning-fuzzy and dimension
reduction techniques. J. Intelligent and Fuzzy Syst. 45 (1), 1633–1652. doi:10.3233/
jifs-223265

Qi, X., Yi, F., Zhang, L., Chen, Y., Pi, Y., Chen, Y., et al. (2022). Computer-aided
diagnosis of breast cancer in ultrasonography images by deep learning.Neurocomputing
472, 152–165. doi:10.1016/j.neucom.2021.11.047

Rafiq, A., Alkanhel, R., Muthanna, M. S. A., Mokrov, E., Aziz, A., and Muthanna, A.
(2023). Intelligent resource allocation using an artificial ecosystem optimizer with deep
learning on UAV networks. Drones 7, 619. doi:10.3390/drones7100619

Ragab, D., Sharkas, M., Al-Sharkawy, M., and Abukir, A. (2013). “A comparison
between support vector machine and artificial neural network for breast cancer
detection,” in Proceedings of the 12th International Conference on Signal Process.
Robot. Autom, Cambridge, UK, 17-19 June 1997 (ISPRA’13), 20–22.

Ragab, D. A., Sharkas, M., Marshall, S., and Ren, J. (2019). Breast cancer detection
using deep convolutional neural networks and support vector machines. PeerJ 7, e6201.
doi:10.7717/peerj.6201

Rakha, M., Sulistiyo, M. D., Nasien, D., and Ridha, M. (2024). A combined
MobileNetV2 and CBAM model to improve classifying the breast cancer

ultrasound images. J. Appl. Eng. Technol. Sci. (JAETS) 6, 561–578. n. pag.
doi:10.37385/jaets.v6i1.4836

Roslidar, R., Rahman, A., Muharar, R., Syahputra, M. R., Arnia, F., Syukri,
M., et al. (2020). A review on recent progress in thermal imaging and deep
learning approaches for breast cancer detection. IEEE Access 8, 116176–116194.
doi:10.1109/access.2020.3004056

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115 (3), 211–252.
doi:10.1007/s11263-015-0816-y

Saber, A., Mohamed, S., Abo-Seida, O. M., Keshk, A., and Chen, H. (2021). A
novel deep-learning model for automatic detection and classification of breast
cancer using the transfer-learning technique. IEEE Access 9, 71194–71209.
doi:10.1109/access.2021.3079204

Selvaraju, R. R., Cogswell,M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2016).
Grad-CAM: visual explanations from deep networks via gradient-based localization.
ArXiv 128, 336–359. doi:10.1007/s11263-019-01228-7

Selvathi, D., and Aarthy Poornila, A. (2018). “Deep learning techniques for breast
cancer detection using medical image analysis,” in Biologically rationalized computing
techniques for image processing applications (Cham: Springer), 159–186.

Sharma, S., and Kumar, S. (2021). The Xception model: a potential feature
extractor in breast cancer histology images classification. ICT Express 8, 101–108.
doi:10.1016/j.icte.2021.11.010

Solanki, Y. S., Chakrabarti, P., Jasinski,M., Leonowicz, Z., Bolshev, V., Vinogradov, A.,
et al. (2021). A hybrid supervised machine learning classifier system for breast cancer
prognosis using feature selection and data imbalance handling approaches. Electronics
10 (6), 699. doi:10.3390/electronics10060699

Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L. (2015). A dataset for
breast cancer histopathological image classification. Ieee Trans. Biomed. Eng. 63 (7),
1455–1462. doi:10.1109/TBME.2015.2496264

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 1–9.

Szegedy, C., Vincent, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2818–2826.

Ting, F. F., Tan, Y. J., and Sim, K. S. (2019). Convolutional neural network
improvement for breast cancer classification. Expert Syst. Appl. 120, 103–115.
doi:10.1016/j.eswa.2018.11.008

Toğaçar, M., Özkurt, K. B., Ergen, B., and Cömert, Z. (2020). BreastNet:
a novel convolutional neural network model through histopathological images
for the diagnosis of breast cancer. Phys. A Stat. Mech. its Appl. 545, 123592.
doi:10.1016/j.physa.2019.123592

Xiao, T., Liu, L., Li, K., Qin, W., Yu, S., and Li, Z. (2018). Comparison of transferred
deep neural networks in ultrasonic breastmasses discrimination.Biomed. Res. Int. 2018,
4605191. doi:10.1155/2018/4605191

Ye, H., Hang, J., Zhang, M., Chen, X., Ye, X., Chen, J., et al. (2021). Automatic
identification of triple negative breast cancer in ultrasonography using a deep
convolutional neural network. Sci. Rep. 11 (1), 20474. doi:10.1038/s41598-021-00018-x

Zhang, G., Shi, Y., Yin, P., Liu, F., Fang, Y., Li, X., et al. (2022). A machine learning
model based on ultrasound image features to assess the risk of sentinel lymph node
metastasis in breast cancer patients: applications of scikit-learn and SHAP. Front. Oncol.
12, 944569. PMID: 35957890; PMCID: PMC9359803. doi:10.3389/fonc.2022.944569

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2017).ShuffleNet: an extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083v2.

Zhuang, Z., Yang, Z., Raj, A. N. J., Wei, C., Jin, P., and Zhuang, S. (2021). Breast
ultrasound tumor image classification using image decomposition and fusion based on
adaptive multi-model spatial feature fusion. Comput. Methods Programs Biomed. 208,
106221. Epub 2021 Jun 3. PMID: 34144251. doi:10.1016/j.cmpb.2021.106221

Frontiers in Physiology 15 frontiersin.org

https://doi.org/10.3389/fphys.2025.1558001
https://doi.org/10.1016/j.compbiomed.2023.106554
https://doi.org/10.1002/jcu.23556
https://doi.org/10.2478/cipms-2022-0001
https://doi.org/10.1117/12.3046225
https://doi.org/10.1007/s00521-020-05394-5
https://doi.org/10.1016/B978-0-32-391772-8.00019-3
https://doi.org/10.1016/j.cmpb.2020.105361
https://doi.org/10.18287/2412-6179-co-1354
https://doi.org/10.1016/j.cmpb.2021.106018
https://doi.org/10.1016/j.procs.2020.03.441
https://doi.org/10.17632/wmy84gzngw.1
https://doi.org/10.3233/jifs-223265
https://doi.org/10.3233/jifs-223265
https://doi.org/10.1016/j.neucom.2021.11.047
https://doi.org/10.3390/drones7100619
https://doi.org/10.7717/peerj.6201
https://doi.org/10.37385/jaets.v6i1.4836
https://doi.org/10.1109/access.2020.3004056
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/access.2021.3079204
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/j.icte.2021.11.010
https://doi.org/10.3390/electronics10060699
https://doi.org/10.1109/TBME.2015.2496264
https://doi.org/10.1016/j.eswa.2018.11.008
https://doi.org/10.1016/j.physa.2019.123592
https://doi.org/10.1155/2018/4605191
https://doi.org/10.1038/s41598-021-00018-x
https://doi.org/10.3389/fonc.2022.944569
https://doi.org/10.1016/j.cmpb.2021.106221
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Data collection
	3.2 Pre-processing and data augmentation
	3.3 Deep learning model
	3.4 Transfer learning models
	3.4.1 XceptionNet
	3.4.2 GoogLeNet
	3.4.3 ShuffleNet
	3.4.4 AlexNet
	3.4.5 SqueezeNet
	3.4.6 Proposed model (InceptionNetV3)

	3.5 Hyperparameters and experimental settings

	4 Results and discussion
	4.1 Explainability analysis using Grad-CAM
	4.2 Limitations and future directions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

