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Objective: This study aimed to develop and validate a multimodal deep learning
model that utilizes preoperative grayscale and contrast-enhanced ultrasound
(CEUS) video data for noninvasive WHO/ISUP nuclear grading of renal cell
carcinoma (RCC).

Methods: In this dual-center retrospective study, CEUS videos from 100 patients
with RCC collected between June 2012 and June 2021 were analyzed. A
total of 6,293 ultrasound images were categorized into low-grade (G1-G2)
and high-grade (G3-G4) groups. A novel model, the Multimodal Ultrasound
Fusion Network (MUF-Net), integrated B-mode and CEUS modalities to extract
and fuse image features using a weighted sum of predicted weights. Model
performance was assessed using five-fold cross-validation and compared
to single-modality models. Grad-CAM visualization highlighted key regions
influencing the model’s predictions.

Results: MUF-Net achieved an accuracy of 85.9%, outperforming B-mode
(80.8%) and CEUS-mode (81.8%, P < 0.05) models. Sensitivities were 85.1%,
80.2%, and 77.8%, while specificities were 86.0%, 82.5%, and 82.7%, respectively.
The AUC of MUF-Net (0.909, 95% CI: 0.829-0.990) was superior to B-mode
(0.838, 95% CI: 0.689-0.988) and CEUS-mode (0.845, 95% CI: 0.745-0.944).
Grad-CAM analysis revealed distinct and complementary salient regions across
modalities.

Conclusion:MUF-Net provides accurate and interpretable RCC nuclear grading,
surpassing unimodal approaches, with Grad-CAM offering intuitive insights into
the model’s predictions.
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1 Introduction

About 80% ∼ 90% of renal malignancies are RCC, and there
are three main pathological types of RCC: ccRCC (60% ∼ 85%),
pRCC, and chromophobe renal cell carcinoma (chRCC, 4% ∼ 5%).
Histological types and nuclear grading are important prognostic risk
factors in RCC(Galtung et al., 2022; Inamura, 2017). Traditional
imaging to diagnose RCC pathologic subtypes is challenging and
does not differentiate its nuclear grading. The 2016 edition of
WHO/ISUP categorizes RCC into four grades, and the grading
criteria and related terminology are described in more detail than
the previous Fuhrman grading criteria, with better reproducibility
and clinical significance (Moch et al., 2016b). The WHO/ISUP
grading system applies to ccRCC and pRCC, and RCC nuclear
classification is associated with clinical treatment strategies and
patient prognosis (Galtung et al., 2022). The study showed that the
5-year survival rates of patients with RCC histologic grades G1, G2,
and G3-G4 were 89%, 65%, and 46%, respectively (Galtung et al.,
2022; Tsui et al., 2000; Leclercq et al., 2007).

Lower-grade tumors represent cancer cells that more closely
resemble normal cells. G1 and G2 tumors tend to grow slowly, have
better differentiation, and spread less, making patients eligible for
nephron-sparing surgery. In contrast, cancer cells in G3 andG4 tend
to grow quickly, are poorly differentiated, and spread rapidly, with a
higher recurrence rate and worse outcomes after surgery. As a result,
more aggressive radical nephrectomy and stricter postoperative
monitoring are usually required (Moch et al., 2016a; Novara et al.,
2007). However, to obtain pathologic nuclear grading, renal biopsy
or pathological examination after tumor resection is commonly used
in clinical practice. Notably, recent studies have shown that renal
puncture biopsy is less accurate in determiningRCCnuclear grading
(62.5%–83%) with a tendency to underestimate (Perrino et al., 2018;
Bernhard et al., 2015). Additionally, biopsy proceduresmight elevate
the risk of complications, including bleeding, infection, and even the
potential hazard of tumor rupture (Wang et al., 2009). Such invasive
procedures have the potential to inflict considerable physical and
psychological distress on patients, while concurrently imposing a
significant economic burden on both the families involved and
society at large. RCC is one of the fewmalignancies currently known
to achieve significantly reduced long-term recurrence through early
surgical intervention. Early, non-invasive, and accurate subtyping
of RCC is crucial for minimizing inter-observer variability in
pathologic diagnoses. This approach plays a pivotal role in assisting
clinicians with real-time, individualized, and precise therapeutic
strategies, optimizing intervention timing, and maximizing patient
outcomes. Deep learning has demonstrated promising accuracy in
noninvasively distinguishing benign renal tumors from RCC using
ultrasound and MR imaging across multi-institutional datasets.
Numerous studies have reported successful applications of deep
learning for classifying benign andmalignant renal tumors (Xi et al.,
2020; Zhu et al., 2022). However, research on its use for noninvasive
RCC grading remains limited. Previous research has employed
traditional machine learning techniques using CT/MRI texture
features for the nuclear grading of RCC, yielding promising
preliminary results (Cui et al., 2020; Lin et al., 2019). These research
findings have highlighted the potential of applyingmachine learning
and deep learning to investigate the relationship between medical
imaging data and the pathological histology of renal malignant

tumors. They provide the impetus for addressing the more complex
task of nuclear grading in RCC within ongoing research efforts.
However, this field is still in its early stages, and the number of
studies remains limited. There is significant variability in model
accuracy and reproducibility across different institutions, and it is
still unclear whether CEUS presents any distinct advantages over
CT/MRI. Further in-depth investigation into this area is necessary.

To address challenges in noninvasive RCC grading, we
explore the feasibility of applying transfer learning with the
Multimodal Ultrasound Fusion Network (MUF-Net) from our
preliminary research (Zhu et al., 2022), which has exhibited
exemplary performance in classifying the malignancy of renal solid
tumor. This study aims to evaluate the potential of transfer learning
to further optimize MUF-Net for robust WHO/ISUP grading of
RCC across diverse datasets, providing a scalable and effective
solution for clinical applications.

2 Materials and methods

2.1 Study design

In this dual-center retrospective study, a total of 6,293
ultrasound images were obtained from CEUS videos of 100 patients
diagnosed with renal malignancies. The MUF-Net model facilitated
the automated extraction of image features from both modalities
and performed a weighted summation based on two predicted
weights, thereby fusing the multi-modal features. The data were
randomly split into a training cohort (80%) and a test cohort
(20%). To prevent overfitting and improve performance, data
augmentation techniques were employed to expand the training
cohort. Model performance was evaluated using a five-fold cross-
validation procedure, comparing MUF-Net to single-modality
models. Grad-CAM was generated to visualize the salient regions
influencing the RCCnuclear grading predictions. Figure 1 illustrates
the study workflow.

2.2 Data collection

A retrospective collection of 100 cases of patients diagnosed
with RCC through postoperative histopathology from June 2012
to June 2021 was conducted at two medical centers. The clinical
data included gender, age, BMI, clinical symptoms (e.g., lumbar
discomfort, hematuria), laboratory indicators (white blood cell
count, red blood cell count, hemoglobin, platelet count, albumin,
alkaline phosphatase, lactate dehydrogenase, total calcium),
tumor size, pathological type, and other relevant information.
All pathological diagnoses included WHO/ISUP grading results.
The study was approved by the ethics review committees of both
hospitals. All patients had complete greyscale ultrasound and CEUS
imaging data.

The inclusion criteria are as follows: (1) Postoperative
histopathological findings confirmed the diagnoses of ccRCC
and pRCC. Pathology reviews were conducted by pathologists
with over 8 years of clinical experience, using the WHO/ISUP
grading system for histopathological evaluation to determine the
final results of RCC nuclear grading. (2) All patients underwent
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FIGURE 1
The overall workflow of this study.

preoperative grayscale ultrasound and CEUS, with more than
2–3 min of complete and clear CEUS video data. (3) Prior to surgery,
the patients received no interventional, pharmacological, or other
antitumor treatments. (4) The renal tumor was solid. (5) Patients
had complete clinical data.

The exclusion criteria are as follows: (1) The histological type
was chRCC. (2) Clinicopathological information was incomplete.
(3) CEUS was not performed, or the quality of the CEUS imaging
was poor, failing to capture the entire renal tumor. The retained
CEUS video duration was too short to capture the characteristics
of tumor enhancement and washout. (4) Pathological stage ≥ T2b,
maximum tumor diameter >10 cm, or tumor involvement of the
perirenal area, including lymph node or distant metastases.

2.3 Ultrasound examination

CEUS examinations were performed using the following
three ultrasound systems: LOGIQ E9 (GE Healthcare, United
States), Resona7 (Mindray, Shenzhen, China), and IU22 (Philips,
Netherlands), all equipped with 1.0–5.0 MHz convex probes. CEUS
was conducted using ultrasound machines with contrast-specific
software, administering a bolus of 1.0–1.2 mL of microbubble
contrast agent (SonoVue; Bracco, Milan, Italy) via the antecubital
vein, followed by 5.0 mL of normal saline. Each CEUS digital video
lasted at least 3–5 min.

2.4 Data annotation and preprocessing

CEUS videos were annotated using Pair annotation software
(v2.6, RayShape Medical Technology, Shenzhen, China). In each
CEUS video, approximately 50–60 images were selected from
the cortical and medullary phases. A senior radiologist classified

the tumors as either benign or malignant and annotated their
locations in each selected image using bounding boxes. Based on
the bounding boxes, these images were cropped into smaller regions
of interest (ROIs) to exclude non-tumor areas. After the dataset was
fully labeled in 100 cases, a total of 6,293 imageswere obtained: 3,573
images for the low-grade group (G1-G2) from 74 cases, and 2,720
images for the high-grade group (G3-G4) from 26 cases.

2.5 Deep neural network structure

In our prior research (Zhu et al., 2022; Li et al., 2023), the
MUF-Net model we developed, which fuses B-mode and CEUS-
mode images features, has significantly improved the classification
performance for benign versus malignant solid renal tumors.
Therefore, we hypothesize that MUF-Net can leverage both B-mode
and CEUS data to classify different histological subtypes of RCC,
potentially outperforming single-modality models. To construct
MUF-Net, we used a similar approach as in our previous work,
training and testing several mainstream neural network algorithms
and comparing their performance.The overall architecture ofMUF-
Net is shown in Figure 2. Ultimately, EfficientNet-b3 was selected
as the backbone for MUF-Net due to its superior performance.
The input size of the backbone was 300 × 300 × 3, and after five
downsampling blocks, the output size became 10 × 10 × 1,536.
To decrease the network’s parameters and avoid overfitting, we
implemented a global average pooling layer, which reduced the
output feature maps of each backbone from 10 × 10 × 1,536 to
1 × 1 × 1,536. Following this, we combined the features from
the two modalities. Recognizing that each modality’s features in
a sample might have varying impacts on the final prediction, we
developed two attention blocks with shared weights to generate
adaptive weights α and β for the fusion of modalities. The feature
maps from the two modalities were then weighted and summed
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FIGURE 2
The overall architecture of MUF-Net. GAP: Global Average Pooling.

according to these adaptive weights, resulting in a fused feature map
of 1 × 1 × 1,536. Ultimately, a fully connected layer and a SoftMax
layer were used to provide the classification result.

In this study, we applied MUF-Net for transfer learning to
differentiate between low-grade (G1-G2) and high-grade (G3-
G4) RCC groups. We compared its performance with single-
modality EfficientNet-b3 models based solely on B-mode or CEUS
data to comprehensively evaluate the model’s efficacy. MUF-Net
initially extracts image features from the tumor regions using two
shared-weight EfficientNet-b3 networks, each processing one of the
two modalities. The Adaptive Weight Module then predicts the
importance of each modality, and the features are weighted and
combined accordingly. Finally, the RCC grade is predicted based on
the fused features.

2.6 Modeling and evaluation

We designed a series of comparative experiments to evaluate
the performance of different models in the histological grading
of RCC. All models were deployed on the same dataset with
uniform parameter configurations and were tested under consistent
environments. To rigorously validate model performance, we
employed a five-fold cross-validation approach in the training
cohort including training and validation set. During the partitioning
of the training and testing cohort, the distribution of data within
each class was maintained proportionally. This ensured that data
originating from a single patient was not split across different
cohorts, thereby preserving the integrity of the experimental
results. To mitigate the risk of model overfitting, we implemented
optimal data augmentation techniques on the training cohort,
predominantly including random spatial transformations, non-
rigid deformations, and noise injections, while no augmentations

were applied to the testing cohort. To address the issue of class
imbalance, all networkmodels involved in comparative experiments
consistently employed class-balanced sampling during the training
process. This entailed the sampler first selecting a class at random,
followed by the random selection of a sample from that class
for output.

In our study, training was conducted utilizing the Focal
Loss with a class-balancing factor. This loss function dynamically
addresses the challenges stemming from data imbalance. The
definition of the loss is as follows:

LCB_ focal(Z,C) = −
1− β
1− βnc

C

∑
i=1
(1− pti)

γ log (pti)

γ = 2.0, β = 0.9999, nc represents the number of
samples in category C, C represents all categories amd
C ∈ {RCC− 12,RCC− 34},The predicted output is Z =
[zRCC−12,zRCC−34]

⊺.
All models used in this experiment were constructed using the

PyTorch framework and trained on an NVIDIA RTX3090 GPU.
The SGD optimizer was employed with an initial learning rate
of 0.05, which was halved every ten epochs. Model training was
performed for 100 epochs across B-mode, CEUS-mode, and a fused
B + CEUS modality, utilizing a five-fold cross-validation approach
in the training cohort. In each round of five-fold cross-validation,
models based on B-mode, CEUS-mode, and B+ CEUS mode were
trained for 100 epochs, respectively, and themodels with the highest
accuracy on the testing cohort were saved.

2.7 Statistical analysis

All statistical analyses were performed using the SciPy package
in Python version 3.8. Depending on whether the data conformed
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to a normal distribution, continuous variables were compared
using either Student’s t-test or the Mann-Whitney U test. Non-
ordered categorical variables were compared using the chi-
square test. Receiver operating characteristic (ROC) curve analysis
was employed to evaluate single-modality networks and MUF-
Net. Additionally, various metrics were used to assess model
performance from multiple perspectives, including sensitivity,
specificity, positive predictive value (PPV), and negative predictive
value (NPV). Comparison of the difference between areas under
the ROC curve (AUCs) was performed using the Delong test. A
two-sided P value <0.05 was considered statistically significant.

3 Results

3.1 Patient characteristics

The high-grade group of patients exhibited a median albumin
level of 45.30 g/L, compared to 42.00 g/L in the low-grade group.
The difference in albumin levels between the two groups was
statistically significant (P < 0.05). However, other parameters,
including gender, age, lesion size, clinical manifestations, and
additional laboratory metrics, showed no significant differences
between the groups (Table 1).

3.2 Classification performance of MUF-Net
and other methods

We evaluated the classification performance of four distinct
methodologies in the histological grading of RCC (Table 2). The
ROC curves and confusion matrices are shown in Figures 3, 4,
respectively.

When EfficientNet-B3 was trained solely with B-mode images,
the model achieved an AUC of 0.838, an accuracy of 0.808, a
sensitivity of 0.778, a specificity of 0.827, a PPV of 0.750, and an
NPV of 0.850.

With training on CEUS-mode images only, EfficientNet-B3
achieved anAUCof 0.845, an accuracy of 0.818, a sensitivity of 0.802,
a specificity of 0.825, a PPV of 0.768, and an NPV of 0.863.

When jointly trained on B + CEUS fused modality images using
MUF-Net, the model yielded an AUC of 0.909, an accuracy of 0.859,
a sensitivity of 0.851, a specificity of 0.860, a PPV of 0.816, and an
NPV of 0.893.

3.3 Heatmaps of model predictions

The Grad-CAM-generated heatmaps in Figure 5 illustrate the
regions that are most influential to the model’s predictions for
different grades of RCC lesions. In both the low-grade (G1-G2)
and high-grade (G3-G4) groups, Grad-CAM provides an intuitive
visualization of how themodel integrates information fromdifferent
ultrasound modalities, including B-mode and contrast-enhanced
ultrasound (CEUS). For ultrasound images of the same lesion
within the same grade group but from different modalities, Grad-
CAM effectively visualizes the specific locations and morphologies
that the model focuses on, providing a visual explanation of its

decision-making process (color-coded, with red indicating a higher
degree of contribution). Regardless of whether the lesion is in the
low-grade or high-grade group, the heatmaps reveal complementary
features across the dual-modality images of the same lesion. In the
low-grade group, the CEUS modality contributes more significantly
to the region of interest (ROI) compared to B-mode. Conversely, in
the high-grade group, B-mode focuses on a greater area compared
to the CEUS modality.

4 Discussion

60% ∼ 85% of RCC is ccRCC (Linehan and Ricketts, 2019;
Inamura, 2017), patients with ccRCC usually lack clinical symptoms
in the early stages, and 25% ∼ 30% of patients have metastases
at diagnosis (Padala et al., 2020). The nuclear grading of RCC
serves as a crucial indicator of invasiveness and represents
a significant independent prognostic risk factor for patients
with RCC (Galtung et al., 2022; Novara et al., 2007). CEUS
provides real-time, continuous, and dynamic observations of
renal tumor perfusion, reducing the risk of missing diagnostic
information compared to interval-based scans with CECT
and CEMRI (Xue et al., 2013; Huang et al., 2023; Velasquez-
Botero et al., 2022). In this study, we developed the MUF-Net
model, which integrates features from B-mode ultrasound and
contrast-enhanced ultrasound mode, successfully achieving non-
invasive classification of renal cell carcinoma at nuclear grading of
differentiation.

To date, only three studies have utilized ultrasound images
for RCC grading, underscoring the uniqueness of our research
(Bai et al., 2024; Yang et al., 2024; Luo et al., 2024). The AUC
values reported in these previous studies ranged from 0.785 to
0.852, while our model achieved an AUC of 0.909, demonstrating
superior diagnostic performance. Our study differs from the
existing research in several significant aspects. First, whereas one
study used ultrasound radiomics combined with clinical data
for Fuhrman grade prediction (Yang et al., 2024), our deep
learning approach bypasses manual feature extraction by directly
leveraging multimodal data, thereby enhancing both accuracy and
generalizability. Second, compared to the CEUS-only XGBoost
model (Luo et al., 2024), ourmultimodalMUF-Netmodel integrates
B-mode and CEUS, capturing complementary features that boost
prediction accuracy. Lastly, unlike the RepVGG-based CEUS deep
learning model (Bai et al., 2024), which relied solely on CEUS,
our fusion of structural (B-mode) and vascular (CEUS) data offers
a more comprehensive differentiation of ccRCC grades, ultimately
leading to improved diagnostic efficacy and greater clinical utility.
Most prior studies have focused on CT or MRI-based models, with
variable outcomes. Zhao et al. developed a deep learning model
based on MRI, achieving an accuracy of 88% and an AUC of 0.88
in the testing set, with slightly lower performance in the validation
set (Zhao et al., 2020). Other studies, such as those by Shu et al. and
Lin et al., explored machine learning models using texture features
from CECT or CT scans, with AUCs ranging from 0.719 to 0.87
(Shu et al., 2019; Lin et al., 2019). In comparison, our multimodal
fusionmodel,MUF-Net, which integrates B-mode and CEUS-mode
data, demonstrated superior performance, achieving an accuracy of
85.9% and an AUC of 0.909. Even when using individual modalities
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TABLE 1 Patient characteristics.

Clinical data Low grade
(N = 74; n = 3,573)

High grade
(N = 26; n = 2,720)

P Value

Gender n (%) 0.244

Female 17 (23.0) 9 (34.6)

Male 57 (77.0) 17 (65.4)

Age (years) 58 ± 13 54 ± 15 0.231

Tumor max diameter (cm) 4.00 (3.00.6.00) 4.00 (3.00.6.63) 0.734

BMI (kg/m2) 23.31 ± 1.72 22.98 ± 2.02 0.435

Clinical manifestations n (%) 0.216

Yes 36 (48.6) 9 (34.6)

No 38 (51.4) 17 (65.4)

Surgery n (%) 0.955

Radical nephrectomy 46 (62.2) 16 (61.5)

Partial nephrectomy 28 (37.8) 10 (38.5)

Hemoglobin (g/L) 132.93 ± 16.20 140.04 ± 15.29 0.054

Albumin (g/L) 42.00 (39.88, 4.93) 45.30 (41.65, 49.00) 0.023

Alkaline phosphatase (U/L) 78.84 ± 23.33 85.81 ± 26.91 0.211

Lactate dehydrogenase (U/L) 185.61 ± 38.11 182.21 ± 36.26 0.693

total calcium (mmol/L) 2.26 ± 0.14 2.29 ± 0.11 0.184

WBC (109/L) 6.34 (5.24.8.46) 7.05 (5.88.9.64) 0.098

RBC (1012/L) 4.32 ± 0.51 4.48 ± 0.45 0.156

Platelet count (109/L) 187.12 ± 71.84 175.46 ± 49.26 0.446

N, Refers to the number of patients; n, Refers to the number of images.

TABLE 2 Performance of various models in the pathological grading of RCC.

Model AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

B-mode 0.838 (0.689,0.988) 0.808 (0.530,0.857) 0.778 (0.596,0.960) 0.827 (0.779,0.875) 0.750 (0.640,0.860) 0.850 (0.742,0.959)

CEUS-mode 0.845 (0.745,0.944) 0.818 (0.750,0.886) 0.802 (0.645,0.958) 0.825 (0.751,0.898) 0.768 (0.697,0.839) 0.863 (0.780,0.946)

MUF-Net 0.909 (0.829,0.990) 0.859 (0.789,0.928) 0.851 (0.736,0.966) 0.860 (0.791,0.930) 0.816 (0.737,0.895) 0.893 (0.825,0.961)

(B-mode or CEUS-mode), ourmodel’s performance (AUCs of 0.838
and 0.845, respectively) surpassed most previous research.

The fusion of B-mode and CEUS-mode features in MUF-
Net boosts the model’s performance in RCC grading tasks,
validating our previous hypotheses. This can be attributed to
the complementary characteristics between ultrasound B-mode

and CEUS-mode. B-mode offers clear visualization of tumor size
and morphological features, while the CEUS-mode reveals tumor
heterogeneity through the microcirculation perfusion process. This
complementarity enables MUF-Net to integrate richer information
by extracting and fusing features from both modalities, thus
enhancing the accuracy of tumor identification.This is an innovative
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FIGURE 3
ROC for RCC histological grading by MUF-Net and single-modality models. The multimodal MUF-Net outperformed the unimodal approaches.

FIGURE 4
Confusion matrix for single-modality and MUF-Net models.

aspect of this study. Furthermore, the fused multi-modal features
of MUF-Net are based on the cross-modality feature relationships
within the tumor.This means that the model associates feature from
different ultrasound modalities that correspond to the same spatial
locations. Such feature associations help mitigate the interference
of irrelevant and noisy features, allowing the model to focus more
effectively on the key characteristics of the tumor. This further
enhancement in model performance represents another innovative
contribution to our research.

When comparing the performance of convolutional neural
network (CNN)models individually trained on B-mode and CEUS-
mode, it was evident that CEUS-mode yielded superior results.
This enhancement is likely due to abundant biological information
regarding tumor characteristics contained within the CEUS data,
enabling the model to capture more relevant information associated

with tumor pathological grading. Additionally, the 95% confidence
interval (95% CI) for models trained on CEUS-mode was narrower
than that of B-mode, suggesting that CEUS-trained models exhibit
greater stability and robustness, thereby providing more reliable
diagnostic outcomes. Notably, in the validation set, an improvement
of over 6% in AUC is observed, along with significant enhancements
in other evaluation metrics.

Notably, the heatmaps generated by Grad-CAM also provide
an intuitive interpretation of the model’s predictions, highlighting
distinct focus regions for different grading groups. For lesionswithin
the same grading category, Grad-CAM delineates specific locations,
morphologies, and the significance of these areas for classification.
The focus regions are complementary between B-mode and CEUS-
mode images, with low-grade tumors predominantly emphasized
in CEUS, while high-grade tumors are more focused on B-mode.
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FIGURE 5
Grad-CAM visualization of the model’s focal regions and morphology within RCC lesions across different groups. The red color represents
higher weights.

Currently, there is a lack of studies quantifying these image features.
Fan et al. partially explained that CEUS features are effective in
differentiating high-grade from low-grade tumors. They found that
the presence of incomplete pseudocapsules was significantly higher
in high-grade tumors, suggesting that certain CEUS characteristics
correlate with tumor aggressiveness and grade (Fan et al., 2024).
Our findings are similar to previous studies in demonstrating
that machine learning and deep learning models effectively
differentiate between low-grade and high-grade renal cell carcinoma
(RCC). Specifically, deep learning models outperform traditional
methods, providing a robust foundation for AI-driven research on
pathological subtypes and molecular classifications of renal tumors.
This has the potential to significantly enhance clinical decision-
making in the management of renal cancer.

5 Limitations

While the MUF-Net model demonstrated promising
classification performance, several limitations should be
acknowledged One limitation of our study is the relatively small
sample size, particularly the low proportion of high-grade RCC
cases, whichmay impact the model’s generalizability. While we used
a large number of ultrasound images, the limited patient sample
size may reduce the model’s robustness and its ability to generalize
to new data, especially from diverse populations or institutions. To
address this, we employed data augmentation techniques such as
rotation, scaling, and flipping to increase data diversity, enhancing
the model’s robustness. Additionally, class-balanced sampling and
weighted loss functions were used to mitigate class imbalance,
ensuring fair performance on both low-grade and high-grade RCC
cases. Nevertheless, larger and more diverse datasets, particularly
with a balanced distribution of RCCgrades, are needed for improved

generalizability. Future studies with multicenter datasets would help
enhance the model’s clinical applicability and robustness across
various clinical settings. On the other hand, self-attention and
cross-attention mechanisms could be employed to facilitate direct
interactions among cross-modality features in the future, thereby
further improving performance.

6 Conclusion

TheMUF-Net model, utilizing multimodal data from grayscale
ultrasound and CEUS videos, demonstrates the feasibility
of automatic nuclear grading for RCC, achieving excellent
classification performance.
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