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Deep learning-based automated
tongue analysis system for
assisted Chinese medicine
diagnosis
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1College of Biomedical Engineering, Sichuan University, Chengdu, China, 2Sichuan Second Hospital of
TCM, Chengdu, China

This study proposes an automated tongue analysis system that combines
deep learning with traditional Chinese medicine to enhance the accuracy
and objectivity of tongue diagnosis. The system includes a hardware device
to provide a stable acquisition environment, an improved semi-supervised
learning segmentation algorithm based on U2net, a high-performance colour
correctionmodule for standardising the segmented images, and a tongue image
analysis algorithm that fuses different features according to the characteristics
of each feature of the TCM tongue image. Experimental results demonstrate the
system’s performance and robustness in feature extraction and classification.
The proposed methods ensure consistency and reliability in tongue analysis,
addressing key challenges in traditional practices and providing a foundation for
future correlation studies with endoscopic findings.
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1 Introduction

The diagnosis of the tongue in traditional Chinese medicine is a method used to assess
the health of internal organs by observing characteristics such as shape, color, texture,
and coating of the tongue. However, traditional tongue diagnosis relies heavily on the
experience of doctors, making it susceptible to subjective biases. With advancements in
artificial intelligence andmedical imaging technologies, intelligent tongue diagnosis systems
based on image processing have emerged, providing an objective and standardized approach
to tongue analysis. Nevertheless, due to variations in the photographic environment and
lighting conditions, the tongue images of the same patient can differ significantly.Therefore,
ensuring standardization in image acquisition and achieving precise image processing are
key research challenges in the field of tongue diagnosis.

This paper proposes a deep learning-based tongue analysis system that uses image
processing techniques to achieve automated segmentation and analysis of tongue images,
ensuring stability and consistency in results. Specifically, we propose a semi-supervised
learning-based tongue segmentation algorithm built on the U2Net model, incorporating
several innovative modules for precise feature extraction and evaluation. The key
innovations in this paper are as follows: (1) Development of a stable hardware and software
environment for tongue image acquisition, ensuring standardized and rational image
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assessment. (2) An improved semi-supervised method based on the
U2Net model, which effectively captures the scale characteristics
of tongue segmentation and enhances model performance and
generalization by utilizing a large number of unlabeled images.
(3) A precise color correction method for the tongue image
acquisition device, facilitating more standardized and accurate
classification in subsequent analysis. (4) A comprehensive tongue
diagnosis framework based on the image characteristics of different
tongue types, achieving excellent performance even in challenging
classification scenarios.

2 Related work

Tongue diagnosis has a long history in traditional Chinese
medicine. With advancements in technology, digital image
processing methods for tongue diagnosis have gradually developed.
In recent years, many researchers have attempted to apply tongue
image segmentation, color correction, and feature extraction in
automated tongue diagnosis systems.

Existing tongue segmentation methods primarily include
traditional image processing techniques and deep learning models.
Early studies utilized edge detection and color thresholding methods
for tongue segmentation; however, these approaches performed
poorly in complex backgrounds. With the development of deep
learning, convolutional neural networks (CNNs) have become the
main tools for tongue segmentation. Kang et al. (2024) cascaded
YOLOv5 with the LA-Unet network to refine the segmentation of
tongue regions, optimizing segmentation for mobile tongue images.
Zhang et al. (2022b) performed structural optimization on the
DeeplabV3+ network, leveraging prior knowledge of tongue images
to enhance edge regions, achieving precise results. Gao et al. (2021)
proposed a level set model with symmetry and edge constraints,
combining geometric features of the tongue for segmentation,
capable of handling tongue images in most conditions. However,
these segmentation methods only generalized their training to
different imaging devices, making it challenging to achieve precise
classification and recognition of tongue images, while not fully
utilizing unlabeled tongue images. In other areas of biomedicine,
Zhong et al. (2022) unsupervised approach to deconvolution in
genomic subclones. Zhang et al. (2022a) proposing a lesion-aware
dynamic network (LDNet) for polyp segmentation, which is a
conventional U-shaped encoder-decoder structure combined with
a dynamic kernel generation and update scheme. Gao et al. (2022)
proposed a novel weak semi-supervised framework called SOUSA
(Segmentation Using Only Sparse Annotations), which aims to learn
from a small number of sparsely annotated datasets and a large
amount of unlabeled data. Zhao et al. (2022) propose a cross-level
contrast learning scheme to enhance the representation of local
features in semi-supervised medical image segmentation. Inspired by
these previous studies and given the scarcity of specialized tongue
images, this paper proposes an improvedU2Net tongue segmentation
model combined with semi-supervised learning, enabling high-
precision segmentation of tongue images captured by professional
equipment, with strong interference resistance and robustness against
abnormal tongue conditions. This approach effectively addresses the
fragmentation of existing tongue analysis methods, enhancing their
practical application value.

Furthermore, in terms of color correction for tongue images,
existing research typically employs colormappingmethods to address
color discrepancies caused by different shooting devices and lighting
conditions. Sun et al. Xin et al. (2021) proposed a gray world-
based rapid color correction method for tongue images, assessing
the degree of distortion after image compression, followed by color
correction based on this degree, improving the effectiveness of
color correction. Yan et al. (2021) introduced a TCCGAN network
to correct tongue image colors, initially employing a differentiable
weighted histogram network for color feature extraction, utilizing a
new upsampling module called mixed feature attention upsampling
to assist in image generation, while constructing a stacked network to
generate tongue images from coarse to fine. However, enhancing the
generalization ability of color correctionmethods to adapt to complex
clinical environments remains a challenge. This paper proposes a
space-distance-weighted Lasso regression algorithm, optimized for
the regression environment of each color, effectively addressing issues
such as image distortion and color overfitting after correction, laying a
solid foundation for subsequent analysis of tongue and coating colors.

In tongue classification tasks, researchers have traditionally relied
on texture feature extraction and machine learning classifiers for
tongue evaluation. Recently, with the widespread application of deep
learning models, significant advancements have been made in neural
network-based tongue feature extraction and classification models.
Chen et al. (2023) employed the K-means algorithm for coating
separation and utilized RGB components of images to assess tongue
color, achieving a balance between simplicity and accuracy. Yiqin
(2022)usedaGaussianmixturemodel to separate tonguecoating from
the tonguebody, developingamodel for tongue image restoration, and
ultimately achieved good results in classifying tongue textures based
on ResNet101. Zhang et al. (2023) implemented a dual-threshold
segmentation method based on HSI color space to automatically
extract tongue bodies from original tongue images, categorizing
tongues into those with and without coating, and further classifying
coating thickness based on area. In the biomedical field, there are
also researchers who focus on image detail features using target
detection methods, Zhao et al. Prisilla et al. (2023) identified which
YOLOmodels (YOLOv5, YOLOv6, and YOLOv7) performed well in
detecting LDH in different regions of the lumbar disc. However, the
complexboundaries anddiverse texture information in tongue images
continue to pose challenges for models. Thus, designing models that
address the complex features of tongue coatings has become a current
research focus.This paper presents a tongue feature judgmentmodule
based on different tongue feature groupings and precise coating
separation, employingaprecisely annotatedcoating separationdataset
and a high-performance GSCNNmodel capable of handling complex
boundaries, while utilizing LBP images and wavelet fusion features to
significantly improve accuracy in difficult tongue classification.

Additionally, some researchers have combined other medical
features with machine learning to implement end-to-end tongue
applications. Yuan et al. (2023) integrated tongue coating
microbiomes to establish an AI deep learning model, evaluating
the value of tongue images and microbiomes in gastric cancer
diagnosis. In other areas of biomedicine, Syed (2023) develop an
automatic deep learning-based brain atrophy diagnosis model to
detect, segment, classify, and predict the survival rate. Alabi et al.
(2022) discussed deep learning technical knowledge and algorithms
for OSCC and the application of deep learning techniques to cancer
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detection, image classification, segmentation and synthesis, and
treatment planning. Zhou et al. (2022) summarized the workflows
of deep learning methods in medical images and the current
applications of deep learning-based AI for diagnosis and prognosis
prediction in bone tumors. Having received help in working
with the above systems, this paper proposes a comprehensive
tongue diagnosis system that integrates tongue image acquisition,
segmentation, color correction, and judgment, allowing accurate
and efficient capture of key features of patients’ tongue images.

3 Clinical samples

The clinical samples in this study were obtained from 2,738
patients at Sichuan Province SecondHospital of Traditional Chinese
Medicine, Mianzhu City Traditional Chinese Medicine Hospital,
Guanghan City Traditional Chinese Medicine Hospital, and Anyue
County People’s Hospital. Tongue images of these patients were
collected using a specially designed tongue imaging device, and
they underwent gastrointestinal endoscopy. Ethics approval for this
study was obtained from Medical Ethics Committee of Sichuan
SecondHospital of TraditionalChineseMedicine [approval number:
202304(H)-003-01]. All patients signed informed consent forms,
agreeing to the use of their clinical samples for this research,
and provided personal information including name, age, ethnicity,
occupation, medical history and use of medications.

The tongue image data for each patient, including tongue body
area, tongue coating area, tongue color, tongue texture (including
tooth-marked tongue and cracked tongue), tongue shape, coating
color, and coating texture, were annotated by professional physicians
from the aforementioned hospitals. Due to the complex boundaries
of the tongue coating area, pixel-level annotation was challenging
for regular annotation tools; therefore, high-standard pixel-level
annotations were conducted using Photoshop.

The tongue color was categorized into five types: pale, light
red, red, dark red, and others. The coating color was classified
into white, yellow, and other types. Additionally, various tongue
conditionswere classified as follows: tooth-marked tongue (presence
or absence), cracked tongue (presence or absence), thickness (thick
or thin coating), spotted tongue (presence or absence), peeling
coating (presence or absence), curdy or slimy coating (curdy coating,
slimy coating, or normal coating), andmoist-dry condition (slippery
coating, moist coating, or dry coating).

4 Materials and methods

A complete tongue image segmentation and evaluation system
was established. As shown in Figure 1, the system consists of four
modules: tongue image acquisition hardware module, segmentation
module, color correction module, and evaluation module.

4.1 Tongue image acquisition hardware
module

As shown in Figure 2,The acquisition box provides a constant
light source to stabilise the tongue image acquisition environment,

FIGURE 1
Flowchart of the intelligent tongue diagnosis system.

FIGURE 2
Appearance of the structure of the tongue filming equipment.

a customised industrial camera is used to provide high quality
images, and the box is designed with a tilted angle to facilitate the
presentation of the patient’s tongue. A mandibular rest is also used
for the purpose of positioning the tongue.

4.2 Tongue image segmentation module

A semi-supervised learning algorithm based on the U2Net
model is proposed to address the characteristics of tongue images.
In the acquired tongue images, most of the pixels are occupied
by the subject’s face and tongue, and the segmentation involves
only the foreground and background, making it a salient object
detection (SOD) task. Previous studies have used conventional
segmentation networks like Mask R-CNN and DeepLabv3+ for
tongue segmentation. Although these networks achieve excellent
segmentation performance, their pre-trained backbonenetworks are
typically trained on ImageNet, which limits their performance on
specific tongue image segmentation tasks. To overcome these issues,
we usedU2Net as themain segmentationmodel structure to achieve
stability in this SOD task for tongue segmentation. Since pixel-level
labeling of tongue images requires substantial time and effort, we
adapted it to a semi-supervised model to make full use of the data
and achieve optimal training results.

U2Net (U-square-Net) Qin et al. (2020) is a deep learning-based
segmentationmodel particularly suitable for salient object detection
and segmentation tasks. Its name comes from its unique nested U-
shaped structure. This model improves upon the traditional U-Net
by incorporating several smaller U-Nets (called Residual U-blocks
or RSU modules) to enhance feature extraction and multi-scale
feature aggregation capabilities. The overall model consists of a U-
shaped structure with 11 stages, each containing an RSU module,
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forming a six-level encoder and a five-level decoder, with skip
connections between corresponding encoder and decoder layers to
fuse multi-scale features.

To better suit the characteristics of tongue images, we
adapted U2Net into a semi-supervised model called U2Net-MT.
Mean Teacher Tarvainen and Valpola (2017) is a deep learning
model for semi-supervised learning, in which a teacher network
and a student network are used. The parameters of the teacher
network serve as the targets for the student network, allowing
the student to gradually learn more accurate parameters. This
method effectively utilizes unlabeled data and enhances model
generalization, especially in scenarios with limited labeled data.

As shown in Figure 3, during training, both labeled tongue
image A and unlabeled tongue image B are input into both the
U2Net student model and the teacher model (which share the
same structure). Randomnoise and image augmentations (including
horizontal flipping and random cropping) are added to the different
inputs in each model.

4.2.1 Encoder and decoder
In the U2Net model, the input image I is processed by

the encoder to generate a set of hierarchical features M =
{m1,m2,…,m6}. For each feature mi, the decoder processes it
hierarchically. In the decoder, each level’s input is obtained
by concatenating (using the Concat operation) the output of
the lower-level decoder and the corresponding encoder output,
expressed as Equation 1:

di = Concat(ui+1,mi) (1)

where ui+1 is the output of the lower-level decoder, and mi
is the output of the corresponding encoder. Each scale’s output
Oi in the decoder undergoes a 3× 3 convolution followed by
a sigmoid activation to generate the saliency probability map
Si, given by Equation 2:

Oi = σ(Wi ∗ di + bi) (2)

where Wi represents the convolution kernel, ∗ denotes the
convolution operation, bi is the bias term, and σ is the sigmoid
activation function defined as Equation 3:

σ (x) = 1
1+ e−x

(3)

The output Oi is upsampled to match the input image size, and
then concatenated with the input image. After a 1× 1 convolution
and sigmoid activation, the final saliency probability map Sfuse is
obtained, given by Equations 4, 5:

Oup
i = Upsample(Oi) (4)

Sfuse = σ(Wfuse ∗Concat(O
up
i , I) + bfuse) (5)

4.2.2 Loss function
For the labeled tongue image A, the loss L1 is calculated

for the fused probability map Sa using the binary cross-entropy
(BCE) loss (Equation 6):

L1 = −
1
N

N

∑
i=1
[yi log(Sai) + (1− yi) log(1− Sai)] (6)

For all input images, saliency maps Sis and Sit are obtained
for each level’s decoder from the student and teacher models,
respectively. A loss function L2i is calculated at each level using the
mean squared error (MSE) between Sis and Sit (Equation 7):

L2i =
1
N

N

∑
j=1
(Sisj − Sitj)

2 (7)

A confidence weighting module is introduced to strengthen
the loss function. The total consistency loss L2 is computed by
weighting each L2i with the average pixel confidenceCon fi of Sis and
Sit (Equation 8):

L2 =∑
i
(
ωiL2i
∑

i
ωi
) (8)

whereωi is calculated as the average confidence of Sis and Sit.The
overall loss of the model is given by (Equation 9):

L = L1 + λL2 (9)

where λ is the weighting coefficient for the loss. During training, L
is minimized to obtain the final model parameters.

The trained student model is used for inference to evaluate its
performance.

4.3 Color correction module

Equations should be inserted in editable format from the
equation editor. In this experiment, all tongue images were captured
using a mature, fixed hardware system. Therefore, all images
undergo a strict color correction process to ensure data accuracy and
consistency. During the experiment, ColorChecker 24 color card
images were taken using different hardware devices of the same
model, and various regression methods were used to calibrate the
RGB values of the images to match the true values. Below, the basic
theory of color correction and the applied color correction module
are described.

4.3.1 Basic principles of color correction
In color correction, the aim is to find the mapping relationship

between the RGB values of the image and the standard color values
of the ColorChecker 24 color card. Instead of performing regression
on each color channel (R, G, B) separately, all RGB values are
treated as a whole for regression analysis, which can account for
correlations among RGB values and achieve more accurate color
correction results.

4.3.1.1 Color correction process
A multiple regression model is built, including RGB values, to

directly map the original RGB values to the corrected RGB values.
The regression model can be represented as Equation 10:

[[[[

[

Rcorrected

Gcorrected

Bcorrected

]]]]

]

= X
[[[[

[

βR
βG
βB

]]]]

]

(10)

where X is the design matrix containing the original RGB
values, represented as [R G B 1]. βR,βG,βB are the regression

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2025.1559389
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1559389

FIGURE 3
U2Net-MT Network. (a) U2Net-MT Network Architecture. (b) Schematic Diagram of U2Net Network Architecture Qin et al. (2020).

coefficients to be solved, which map the original RGB values to

corrected RGB values. Rcorrected,Gcorrected,Bcorrected represent the

corrected red, green, and blue channel values.

In matrix form, this can be expressed as Equation 11:

Y = Xβ (11)
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where Y contains the corrected RGB values, represented
as [Rcorrected Gcorrected Bcorrected], and β is the regression
coefficient matrix (Equation 12):

[[[[

[

βR1 βR2 βR3 βR0
βG1 βG2 βG3 βG0
βB1 βB2 βB3 βB0

]]]]

]

(12)

The regression coefficients are solved using the least squares
method. Given n ColorChecker 24 samples and their standard
values, the optimization problem can be expressed as Equation 13:

minβ
n

∑
i=1
‖Ytrue,i −Xiβ‖

2 (13)

where Ytrue,i is the true RGB value of the i-th sample, and Xi is the
original RGB value matrix of the i-th sample.

The best regression coefficients β can be solved using
the matrix Equation 14:

β = (XTX)−1XTYtrue (14)

Using the obtained regression coefficients β, each pixel of a new
image can be corrected. The steps are as follows:

For each pixel (R,G,B), form an input vector (Equation 15):

X = [R G B 1] (15)

Use the regression model to calculate the corrected
RGB values (Equation 16):

Ycorrected = Xβ (16)

Obtain the corrected RGB values (Rcorrected,Gcorrected,Bcorrected).

4.3.2 Lasso regression algorithm based on spatial
distance weighting

ColorChecker 24 includes 24 color patches, covering a limited
range of the color spectrum. This limitation may lead to overfitting
issues, and the mapping derived from fitting these 24 colors often
lacks generalization, making it less effective for correcting colors
outside the range of the color patches.

To address this issue, this work employs a lasso regression
algorithm based on spatial distance weighting.

4.3.2.1 Calculating the distance and weight from pixels to
ColorChecker 24

Suppose the RGB values of ColorChecker 24 in the XYZ
Cartesian coordinate system are labeled as CCn(Rn,Gn,Bn), where
n = 1,2,…,24.

As shown in Figure 4 for each pixel P(R,G,B) in the image,
calculate its Euclidean distance to each CCn (Equation 17):

Ln = √(R−Rn)
2 + (G−Gn)

2 + (B−Bn)
2 (17)

Based on the calculated distance Ln, determine the regression
weight of each ColorChecker point CCn for point P (Equation 18):

wn =
1
Ln
+ω (18)

where ω is a dilution term to prevent excessively large weights when
Ln is small.

FIGURE 4
Spatial distribution of ColorChecker 24 patches and Euclidean
distances to the target pixel.

4.3.2.2 Polynomial feature transformation and lasso
regression

Assume the degree of polynomial transformation is D. For each
CCn and P, the transformed feature vector is Equation 19:

Poly(CCn) = [1,Rn,Gn,Bn,R2
n,RnGn,RnBn,

G2
n,GnBn,B2

n,…,RD
n ,GD

n ,BD
n ]

Poly (P) = [1,R,G,B,R2,RG,RB,

G2,GB,B2,…,RD,GD,BD]

(19)

The weighted lasso regression model is then used to
fit the data (Equation 20):

F (P) = Lasso (α = 0.01) (P) (20)

The loss function of the model is (Equation 21):

1
2m

m

∑
i=1

wi(yi − ŷi)
2 + α

n

∑
j=1
|θj| (21)

wherewi is the sampleweight, yi is the actual value, ŷi is the predicted
value, α is the regularization parameter, and θj are the regression
coefficients.

Use the trained lasso model to predict the corrected value
for each pixel, and combine the corrected pixel values into the
corrected image.

4.4 Tongue image analysis module

The tongue image analysis module consists of the tongue
coating color determination module and the coating texture
determination module. As shown in Figure 5, the color-corrected
segmented tongue image is first input into the tongue coating
color determination module. Here, the coating texture is separated
into tongue coating and tongue body images, and the respective
tongue and coating colors are determined. Finally, the color-
corrected segmented tongue image is input into the coating texture
determination module to obtain the texture analysis results.
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FIGURE 5
The network structure of the tongue image analysis module.

4.4.1 Color determination module
A deep learningmodel is used to separate the segmented tongue

image into the coating and body images. Due to the complex
boundaries and pixel-level distribution of tongue coatings, Gated-
SCNN (Gated Shape Convolutional Neural Network) is introduced
for coating separation.

Gated-SCNN (Gated Shape CNN) Takikawa et al. (2019) is
an improved convolutional neural network architecture specifically
designed for image segmentation tasks. Its main innovation is the
introduction of a shape stream and gating mechanism. Structurally,
Gated-SCNN consists of two parallel branches: the backbone
network, responsible for extracting semantic features from the
image, typically using ResNet or VGG; and the shape stream,
which focuses on capturing edges and contours through a shape
convolution module to extract multi-scale shape features.The shape
information is fused with the semantic features using the gating
mechanism, which dynamically adjusts the weight of the shape
information at different locations. This combination enhances the
ability of the model to handle complex boundaries and details,
significantly improving segmentation accuracy.

After applying GSCNN to the input image, the result is inverted
with the non-black regions of the original image to obtain the tongue
body image.

For color determination of the tongue body and coating,
color moments are used as feature extraction methods.
Color moments Stricker and Orengo (1995) include the mean,
variance, and skewness of color components. For each color
component (e.g., red, green, and blue), the following three statistics
are extracted:

1. Mean 2. Variance 3. Skewness.
These features are arranged in a specific order to form a

nine-dimensional vector representing the color characteristics.
Specifically, given a color component C, its mean, variance, and
skewness are calculated as follows (Equations 22–24):

μC =
1
N

N

∑
i=1

Ci (22)

σ2C =
1
N

N

∑
i=1
(Ci − μC)

2 (23)

γC =
1
N

N

∑
i=1
(
Ci − μC
σC
)
3

(24)

Where Ci represents the color value of the i-th pixel, N is the
total number of pixels, μC is the mean, σ2C is the variance, and γC is
the skewness of the color component.

The calculated mean, variance, and skewness are arranged in
the order of red, green, and blue components to form a nine-
dimensional feature vector (Equation 25):

F = [μR,σ
2
R,γR,μG,σ

2
G,γG,μB,σ

2
B,γB] (25)

This nine-dimensional vector F is then fed into a trained
classifier to determine the tongue and coating color.

4.4.2 Tongue image classification module
In the tongue image classification module, the features are

divided into three categories:
Category 1: Teeth marks, cracks, thickness, and spots.
Category 2: Peeling and curdy or slimy.
Category 3: Moistness and dryness.
For Category 1, the features are clear and the deep learning

network can easily extract them for direct classification. For
Category 2, where peeling and curdy or slimy coatings are to be
differentiated from non-peeling and normal coatings, the grayscale
images are analyzed using Local Binary Pattern (LBP) operator for
feature extraction.

The Local Binary Pattern (LBP) operator Ojala et al. (1994) is
used for texture feature extraction. Given an input image I with a
pixel at (x,y):

TheLBPvalue at each pixel is calculated as follows (Equation 26):

LBP (x,y) =
P−1

∑
p=0

s(I(xp,yp) − I (x,y)) ⋅ 2
p (26)
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Where (xp,yp) are the neighboring pixels of (x,y), P is the number of
neighbors, and s(x) is a sign function defined as Equation 27:

s (x) =
{
{
{

1 ifx ≥ 0

0 ifx < 0
(27)

The LBP values for each pixel are stored at the corresponding
location in the output image ILBP (Equation 28):

ILBP (x,y) = LBP (x,y) (28)

Where ILBP is of the same size as the original image I.
For Category 3, which deals with subtle texture changes, neural

networks alone are insufficient. It was found experimentally that a
combination of wavelet transformation and deep learning improved
performance for distinguishing between moist and dry coatings.

In this experiment, the Daubechies wavelet (db3) was selected
as the wavelet basis function. After the wavelet transformation,
three high-frequency detail images are obtained: horizontal details
(CH), vertical details (CV), and diagonal details (CD). To ensure
the resolution matches that of the original image (224× 224 pixels),
interpolation was applied to these detail images.

The original tongue image I ∈ RH×W×C, whereH andW represent
the image height andwidth respectively, andC is the number of color
channels. After wavelet transformation (Equation 29):

ICH, ICV, ICD = DWT (I,db3) (29)

Where DWT represents discrete wavelet transform and db3 is the
wavelet basis.

Each detail image is resized back to 224× 224 resolution
(Equations 30–32):

ICH = Interp(ICH, (224,224)) (30)

ICV = Interp(ICV, (224,224)) (31)

ICD = Interp(ICD, (224,224)) (32)

Where Interp represents interpolation.
Next, the processed high-frequency detail images ICH, ICV, and

ICD are concatenated with the original color channels IR, IG, and IB
along the channel dimension, resulting in a concatenated imagewith
six channels Istacked (Equation 33):

Istacked = [IR, IG, IB, ICH, ICV, ICD] (33)

To achieve feature fusion, Depthwise Separable Convolution
Howard et al. (2017) was used. Depthwise convolution applies
a 3× 3 convolution kernel to each input channel independently,
as shown by Equation 34:

Yd = Istacked ∗Kd (34)

where Yd represents the output after depthwise convolution, Kd is
the depthwise convolution kernel, and ∗ denotes the convolution
operation.

Subsequently, pointwise convolution uses a 1× 1
convolution kernel to combine information across all
input channels (Equation 35):

Yp = Yd ∗Kp (35)

where Yp is the output after pointwise convolution, and Kp is the
pointwise convolution kernel.

After the convolution operations, a ReLU activation function
is applied (Equation 36):

Z = ReLU(Yp) (36)

To further enhance feature representation, the Convolutional
Block Attention Module (CBAM) Woo et al. (2018) was
integrated. CBAM first performs adaptive max pooling and
adaptive average pooling on the input feature map to aggregate
global information along the channel dimension, producing two
descriptors (Equations 37, 38):

MaxPool (Z) =Max (Z,dim =H×W) (37)

AvgPool (Z) = Avg (Z,dim =H×W) (38)

These descriptors are then fed into shared convolutional layers
consisting of two 1× 1 convolution layers. The first convolutional
layer reduces the number of channels to half of the original size and
uses a ReLU activation function (Equation 39):

F1 = ReLU (W1 ∗ [MaxPool (Z) ,AvgPool (Z)]) (39)

The second convolutional layer restores the original
channel size (Equation 40):

F2 = σ (W2 ∗ F1) (40)

where σ represents the Sigmoid activation function. The output of
the convolutional layers serves as channel attention weights, which
are combined with the original feature map through element-wise
multiplication to enhance important features.

The enhanced feature map is then processed by the spatial
attention module. This module performs global max pooling and
global average pooling along the spatial dimension to generate two
single-channel feature maps (Equations 41, 42):

MaxPools (Z) =Max (Z,dim = C) (41)

AvgPools (Z) = Avg (Z,dim = C) (42)

These feature maps are concatenated along the channel
dimension to form a two-channel feature map, which is then
processed by a 7× 7 convolution layer to generate the spatial
attention map (Equation 43):

Fs = σ(Ws ∗ [MaxPools (Z) ,AvgPools (Z)]) (43)

The spatial attention map is combined with the channel-
enhanced feature map through element-wise multiplication to
further improve feature representation.

For the image classification task, Vision Transformer (ViT)
Dosovitskiy et al. (2021) was used as the classification head.
ViT divides the input image into fixed-size patches, flattens each
patch, and embeds it into a high-dimensional vector space. These
embedding vectors are then added to positional encodings to retain
positional information and processed throughmultiple Transformer
encoder layers.
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The input image Z ∈ RH×W×C is divided into N patches of
size P× P, where N = HW

P2
. Each patch zi ∈ RP×P×C is flattened

and mapped to a high-dimensional vector through a linear
transformation (Equation 44):

ei = Flatten(zi)We + be (44)

where We ∈ R
(P2C)×D is the embedding matrix, be ∈ R

D is the bias
vector, and D is the embedding dimension.

The positional encoding vector Epos ∈ R
N×D is added to the

embedding vectors to retain positional information (Equation 45):

E0 = [e1;e2;…;eN] +Epos (45)

where E0 ∈ RN×D is the initial embedding representation.
The initial embedding representation E0 is processed through L

Transformer encoder layers. Each encoder layer includes a Multi-
Head Self-Attention (MHSA) mechanism and a Feed-Forward
Neural Network (FFN):

Multi-Head Self-Attention (Equation 46):

MHSA (E) = [head1;head2;…;headh]WO (46)

where each attention head is defined as (Equation 47):

headi = Attention(EW
Q
i ,EW

K
i ,EW

V
i ) (47)

The attention calculation is (Equation 48):

Attention (Q,K,V) = softmax(QKT

√dk
)V (48)

whereQ,K,V are the query, key, and valuematrices, respectively, and
dk is the dimension of the keys.

Feed-Forward Neural Network (Equation 49):

FFN (E) = ReLU (EW1 + b1)W2 + b2 (49)

whereW1,W2 are weight matrices and b1,b2 are bias vectors.
The output of each Transformer encoder layer is represented as

(Equations 50, 51):

El+1 = LayerNorm(El +MHSA(El)) (50)

El+2 = LayerNorm(El+1 + FFN(El+1)) (51)

where LayerNorm represents the layer normalization operation.
After L Transformer encoder layers, the final feature

representation EL is fed into the classification head. A class
token is introduced in the feature representation, which is
processed by the Transformer encoder layers and used for the final
classification task (Equation 52):

class token = EL [0] (52)

The classification is performed using a linear transformation
followed by a softmax function (Equation 53):

y = softmax(Wcls ⋅ class token) (53)

whereWcls is the weight matrix of the classification head.
Focal Loss was used as the loss function to handle the imbalance

in tongue image features, calculated as (Equation 54):

FL(pt) = −αt(1− pt)
γ log(pt) (54)

where pt represents the predicted probability, and αt and γ are
hyperparameters.

5 Experiments

5.1 Evaluation metrics

For the segmentation task, Mean Absolute Error (MAE) and the
Dice coefficient were used as evaluation metrics. MAE provides an
intuitive measure of the overall pixel-wise classification accuracy,
while the Dice coefficient considers both precision and recall for all
instances, focusing on the overlap with the target regions.

For the classification task, accuracy (acc) and macro-F1 score
were used. This not only considers overall accuracy but also gives
more weight to frequently occurring samples.

To evaluate the performance of color correction, ΔE
∗
ab was used

to quantify color differences. ΔE
∗
ab is an index for quantifying and

describing color differences, based on theCIELAB color space, and it
compares the visual difference between two colors. A larger value of
ΔE
∗
ab indicates a more noticeable difference between the two colors.

The calculation of ΔE
∗
ab is as follows (Equation 55):

ΔE∗ab = √(ΔL
∗)2 + (Δa∗)2 + (Δb∗)2 (55)

where:

• ΔL
∗
represents the difference in lightness (L

∗
) between the

two colors;
• Δa
∗
represents the difference in the red-green axis (a

∗
) between

the two colors;
• Δb
∗

represents the difference in the yellow-blue axis (b
∗
)

between the two colors.

5.2 Experimental results

5.2.1 Performance analysis
To verify the performance of the proposedmethod, comparisons

were made with existing methods used in tongue image
segmentation and classification.

UNet Ronneberger et al. (2015) is a classic image segmentation
network consisting of an encoder and a decoder, which effectively
extracts and restores image details through its symmetric structure
and skip connections. The encoder extracts features, the decoder
restores resolution, and the skip connections transmit features
between the encoder and decoder, preventing feature loss and
improving segmentation accuracy. UNet has been widely used
in medical image processing and biological image analysis.
UNet++ Zhou et al. (2020) is an improved version of UNet,
adding more dense skip connections and decoder submodules.
It introduces additional convolution layers at each downsampling
and upsampling stage to form dense connectivity paths, capturing
multi-scale features and enhancing segmentation accuracy and
robustness, which is suitable for segmenting complex image
structures. FCN Long et al. (2014) (Fully Convolutional Network)
removes the fully connected layers and only uses convolution
and upsampling layers. It extracts features through a series of
convolution layers and restores the original resolution through
deconvolution. FCN’s design preserves spatial information and
enables efficient pixel-level classification, suitable for end-to-end
segmentation of images of any size. DeepLabv3+ Chen et al. (2018)
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TABLE 1 Comparison of the effect of the model used in this experiment with other image segmentation model methods.

Model Tongue segmentation Coating separation

MAE Dice MAE Dice

Unet 0.084 0.921 0.103 0.820

Unet++ 0.045 0.946 0.069 0.854

DeeplabV3+ 0.034 0.959 0.066 0.852

FCN 0.107 0.892 0.127 0.779

Mask-RCNN 0.061 0.938 0.076 0.846

U2net-MT/GSCNN 0.022 0.967 0.058 0.860

combines the encoder-decoder structure and atrous convolution,
using ResNet or Xception as the backbone. The encoder extracts
multi-scale features, and the decoder enhances segmentation
with atrous convolution to capture more contextual information.
The multi-scale feature fusion strategy improves segmentation
accuracy and detail retention, suitable for image segmentation
in complex scenes. Mask R-CNN Massa and Girshick (2018)
adds a branch for generating pixel-level segmentation masks on
top of Faster R-CNN. The backbone extracts features, the region
proposal network generates candidate regions, and each candidate
is classified, regressed, and mask-generated. Mask R-CNN performs
object detection and instance segmentation simultaneously,
providing more precise segmentation results and being widely
used in instance segmentation tasks. In this experiment, semi-
supervisedmodels used a 1:1 supervision rate, and GSCNN adopted
VGG16 as the backbone, with all models loaded with pre-trained
weights.

The Table 1 shows the comparison of U2net-MT and GSCNN
with other segmentation networks on the dataset used in this
study. Meanwhile Table 2 shows a more intuitive image of the
segmentation results under different models. The results indicate
that both networks achieved the best performance on two metrics,
demonstrating that the proposed and applied methods effectively
address the segmentation and coating separation problems of
the tongue dataset. Although other models listed in the table
have shown excellent performance in medical image processing
and semantic segmentation, they lack focused analysis of features
from specific depths during segmentation, and they struggle
with ambiguous boundaries between the tongue, throat, and
lips. For coating separation, traditional segmentation networks
face challenges in extracting effective features from the highly
detailed, dispersed, and weakly correlated coating on the tongue.
U2net-MT combines U2net’s strengths in retaining full-resolution
features and multi-scale feature fusion while optimizing significant
target detection, with a semi-supervised approach to improve
data utilization and generalization capability. By assigning more
weight to high-confidence scales, the model enhances scale-specific
attention during semi-supervised training, effectively improving
the classification performance of fuzzy pixels around the tongue.
GSCNN introduces the Canny operator in features, using a gating

mechanism to ensure that only boundary-related information is
processed in the shape stream, enabling it to effectively handle
complex coating boundaries.

The Table 3 shows the results of the proposed spatial-distance-
weighted Lasso regression algorithm and other common algorithms
in color correction of the ColorChecker 24 color card, measured
by ΔE

∗

ab. The results show that the spatial-distance-weighted
Lasso regression achieved the best results for both average
and maximum/minimum ΔE

∗

ab. This is because the spatial-
distance-weighted Lasso regression focuses more on the regression
relationships of similar colors instead of treating the 24 colors as
a whole. Regularization via Lasso regression also effectively solves
overfitting in small sample regressions. In contrast, traditional linear
regression methods have poor accuracy in color correction, and
higher-order regression, while adapting to the specific regression
characteristics of each color, can have steep gradients at color
boundaries, causing visual artifacts in the corrected images. These
results indicate that spatial-distance-weighted Lasso regression
effectively addresses subtle lighting variations caused by different
environments, providing a basis for subsequent classification of
tongue and coating colors.

To ensure the classification results of tongue diagnosis are of the
highest quality, different classifiers were applied to the Color and
Tongue feature sections to observe the experimental outcomes. Due
to space limitations in the table, only some of the more effective
methods are selected for comparison. In the Color section, the
classifiers primarily focus on the processed visual color features.
As a result, simpler machine learning classification methods are
more effective in the experiments. Among these methods, Random
Forest (RF) demonstrates excellent anti-overfitting capabilities and
can also filter the importance of features, thereby validating whether
the extracted features contribute significantly to classification.
Regarding K-Nearest Neighbors (KNN), the color-classification
boundaries in these color matrix samples should be relatively clear,
making KNN quite effective. Similarly, in the more complex color
matrix vectors, Support Vector Machines (SVM) can maximize
the margin between classes, and its advantage over KNN is that
it can be trained in advance. The Softmax method, combined
with a simple neural network structure, performs excellently in
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TABLE 3 Comparison of ΔE∗ab between the tongue colour correction
method used in this paper and other commonly used colour
correction methods.

Methods ΔE∗ab-ave ΔE∗ab-max

Origin image 10.60 22.55

LR (linear regression) 7.57 28.38

PR (Polynomial regression) 7.43 35.34

KNN 6.01 17.55

Adaboost 11.26 27.89

SVR 5.71 17.16

Ours-without Lasso (L1) 4.34 13.96

Ours-with Ridge (L2) 4.10 10.13

Ours 3.87 9.08

multi-class classification tasks and can also be optimized through
backpropagation.

In the Tongue feature section, the classical ResNet structure is
also used for comparison. The reason for choosing it is its ability
to extract deep features from images while being highly versatile.
EfficientNet enhances computational efficiency by optimizing the
structure, offering good advantages in texture feature computation.
MobileNet maintains high efficiency in lightweight design, and the
reason for selecting it is to observe the performance of lightweight
models in tongue feature extraction and computation. Vision
Transformers (ViT), relying on the self-attention mechanism and
Transformer architecture, are able to capture complex patterns and
details in images, and they perform well on large-scale datasets.
By combining the convolutional feature extraction capability of
ResNet50 with the global self-attention mechanism of ViT, both
local and global information can be utilized. If these features
are useful, the classification performance will be enhanced.
Among these methods, the focus of this paper is on those
that demonstrate efficient and stable performance across various
features.

TheTable 4 presents the results of the proposed tongue diagnosis
algorithm with different classifiers. The extracted tongue features
allowed the classifiers to effectively classify based on tongue
characteristics, indicating that tongue diagnosis, as an integrated
module, could effectively extract overall tongue information of
patients. Selecting the appropriate classifier for different information
yielded better results. In experiments, the ViT model maintained
stable and excellent performance in multiple classification tasks.
This is because the relatively simple structure of the transformer
and the efficient attention mechanism can focus on different
texture classification features. Therefore, the ViT-b model was
chosen for inference in the tongue diagnosis module. Additionally,
the ViT with ResNet as the backbone did not perform as
well in most classification tasks, indicating that deep feature
extraction is limited for guiding classification. The performance
of lightweight networks was also not remarkable, reaffirming the
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TABLE 4 Performance of multiple models and classifiers in tongue
image feature classification (%).

Part Category Methods Acc Macro-f1

Color

Tongue Color RF 86.27 67.65

KNN 91.36 79.21

SVM 93.10 81.29

Softmax 91.75 80.03

Coating Color RF 94.71 84.89

KNN 97.30 86.97

SVM 97.48 88.04

Softmax 98.09 88.73

Tongue feature

Tooth-marked
tongue

Resnet50 92.13 87.38

EfficientNetV2 94.16 90.77

MobileNetV2 85.26 84.39

Resnet50+ViT 93.64 90.61

ViT-b 96.77 93.20

Cracked
tongue

Resnet50 98.14 95.33

EfficientNetV2 93.26 92.97

MobileNetV2 87.13 85.01

Resnet50+ViT 96.56 94.72

ViT-b 98.65 95.19

Thickness Resnet50 85.18 82.53

EfficientNetV2 85.57 83.09

MobileNetV2 79.53 69.42

Resnet50+ViT 86.45 83.22

ViT-b 86.11 83.39

Spotted
tongue

Resnet50 98.07 97.15

EfficientNetV2 98.76 98.04

MobileNetV2 98.10 97.06

Resnet50+ViT 98.23 97.21

ViT-b 98.84 97.95

Peeling
coating

Resnet50 92.55 90.47

(Continued on the following page)

TABLE 4 (Continued) Performance of multiple models and classifiers in
tongue image feature classification (%).

Part Category Methods Acc Macro-f1

EfficientNetV2 94.61 92.44

MobileNetV2 90.73 82.39

Resnet50+ViT 94.18 91.97

ViT-b 94.32 92.58

Curdy or slimy coating Resnet50 81.20 74.53

EfficientNetV2 87.66 80.30

MobileNetV2 80.74 73.61

Resnet50+ViT 92.95 83.88

ViT-b 92.62 82.05

Moist-dry condition Resnet50 74.83 59.40

EfficientNetV2 81.09 61.14

MobileNetV2 69.95 39.62

Resnet50+ViT 84.54 66.07

ViT-b 86.61 71.20

suitability of the transformer structure for texture features of
the tongue.

5.2.2 Ablation study
This section presents ablation experiments to validate the

effectiveness of various components and key methods in each
module of the tongue image system on the test set. “Without”
indicates the absence of the specific key method from the module.
The experiments are divided as follows: (1) Evaluation of the
MT semi-supervised module and confidence-weighted module in
U2net-MT on the noisy test set. (2) Evaluation of the effectiveness
of the LBP features from the second group of tongue images, wavelet
features from the third group, feature fusion, and the CBAMmodule
in the tongue diagnosis module.

As shown in the Table 5, U2net-MT achieved optimal results
for both metrics. Removing the MT semi-supervised method led
to a significant decrease in the Dice coefficient, indicating that
the MT semi-supervised method effectively enhances the model’s
generalization capability, reduces the impact of noise, and improves
accuracy by leveraging features from unlabeled data. Removing
the confidence-weighted module resulted in a performance drop
in both metrics, suggesting that the confidence-weighted module
helps the model focus on feature information that is beneficial for
tongue image segmentation during backpropagation.These findings
demonstrate the effectiveness of the methods used in U2net-MT for
training in tongue image segmentation.
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TABLE 5 Experimental effects of ablation on each module of U2net-MT.

MAE Dice

U2net 0.030 0.956

U2net-MT without confidence weighting module 0.024 0.961

U2net-MT 0.022 0.967

TABLE 6 Results of ablation experiments on the strategy of using LBP
and wavelet features in tongue image classification (%).

Using feature (ViT) Acc Macro-F1

Origin image of peeling/Curdy or slimy
coating

80.40/85.50 59.71/70.27

LBP 94.32/92.62 92.58/82.05

Origin image of moist-dry condition 55.67 33.4

Origin image of moist-dry condition +
Spectrogram

54.32 33.3

Wavelet Feature 84.40 65.88

Origin image of moist-dry condition +
Wavelet Feature

86.61 71.20

TheTable 6 shows the comparison results between the extracted
features from the second and third classification groups and
the original images used directly for tongue classification. For
the peeling and greasy tongue coatings, which have significant
texture differences in grayscale images, LBP feature extraction
significantly improved classification performance by filtering out
much irrelevant noise. In the third group, related to the moist-
dry classification, the proportion of relevant features in the images
was too low for the model to extract effective information for
classification at various levels. The experiments demonstrated that
wavelet transform, which provides time-frequency localization,
could accurately capture subtle texture features in tongue images.
The wavelet features effectively reflect the moist-dry correlation,
solving the challenging moist-dry classification problem. The
fusion of original image features added complementary detail
features, further improving classification performance. Introducing
CBAM channel and spatial attention mechanisms allowed the
model to focus more on key features, enhancing classification
accuracy.

5.3 Conclusion

In this study, a complete tongue image analysis system
was successfully developed, combining modern deep learning
techniques with traditional Chinese medicine tongue diagnosis
to improve the accuracy of tongue segmentation and coating
assessment. Specifically, the semi-supervised learning algorithm
based on the U2Net model significantly improved the quality of

image segmentation. In addition, the color correction module
ensured the accuracy and consistency of image data, and wavelet
features were integrated for tongue diagnosis analysis. Experimental
results demonstrated the system’s outstanding performance in
feature extraction and classification of tongue images. Furthermore,
the color correction strategy effectively resolved color deviations
caused by device differences and environmental variations,
providing a more reliable foundation for tongue image analysis.
The integration of wavelet features also effectively addressed the
challenging problem of moist-dry classification. In future work,
the relationship between patients’ tongue characteristics and
endoscopic examination results will be analyzed to explore their
correlation.

This work not only realizes automated tongue analysis, but also
provides real-time feedback of the analysis results, reducing the
time and effort required for manual diagnosis. This is important
for improving diagnosis and treatment efficiency and reducing
the workload of medical staff, especially in large-scale patient
management and telemedicine.
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