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Impact of rigid cardiac motion
on the accuracy of
electrocardiographic imaging

Xiafeng Zhang, Kaiyu Chen, Yucheng Wang, Wei Li,
Tingcun Wei and Shaoxi Wang*

School of Microelectronics, Northwestern Polytechnical University, Xi’an, China

Introduction: Electrocardiographic Imaging (ECGI) offers a non-invasive
approach to reconstruct cardiac electrical activity. However, the inverse problem
of ECGI is highly ill-conditioned, making it sensitive to errors. In practice, rigid
displacements of the heart during beating introduce geometric errors into the
ECGI problem. This study aims to investigate the impact of cardiac rigid motion
on the accuracy of ECGI.

Methods: We employed the Boundary Element Method (BEM) to solve the
forward problem and the Tikhonov method to address the inverse problem.
We utilized a dataset from the CRVTI/SCI Institute, which involves Langendorff-
perfused dog hearts suspended in a torso-shaped tank. Based on clinical
experience, six different types of cardiac movement patterns, including
translations and rotations, were designed to assess the impact of various
displacements on the accuracy of the ECGI solution.

Results:Our study found that among the translational and rotationalmovements
of the heart, rotational motion should be prioritized for attention, as it
caused significantly stronger changes in ECGI correlation coefficient (CC) and
relative error (RE) than translational motion. Among the translations along the
coordinate axes, movement along the y-axis (anterior-posterior movement
within the chest cavity) had the least impact. For rotational movements,
rolling had the least impact, yaw had moderate impact, and pitch had the
greatest impact.

Conclusion: The inverse solution of ECGI demonstrates a certain robustness
to changes in heart position, with CC changes of less than 2% for 10
mm displacements and less than 5% for 10° rotations. This suggests that
ECGI changes due to cardiac geometric motion can be disregarded within a
certain range.

KEYWORDS

electrocardiographic imaging (ECGI), cardiac rigid motion, translation, rotation, inverse
solution

1 Introduction

Electrocardiographic Imaging (ECGI) is a promising medical technology that employs
body surface electrocardiograms (ECGs) and a torso volume conductor model to non-
invasively reconstruct cardiac electrical activity (Cluitmans et al., 2018). This technology
allows for the identification of extracellular potentials on the endocardium and epicardium
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(Kalinin et al., 2019; Pedron-Torrecilla et al., 2016), activation
time sequences on the cardiac surface (Van der Waal et al., 2021;
van der Waal et al., 2020; Zhou et al., 2019), and transmembrane
voltages of the heart (Zaman et al., 2021; Schuler et al., 2018),
among other details. ECGI has been clinically and experimentally
applied to a range of pathologies and applications, including
locating sites of premature activation, identifying arrhythmic
circuits, preoperative planning, and guiding ablation procedures
(Cluitmans et al., 2018; Salinet et al., 2021). Contemporary ECGI
research aims to address novel diseases and improve accuracy,
stability, and practicality (Dogrusoz et al., 2019; Schuler et al.,
2022). However, one source of input error in ECGI systems,
namely errors in modeling heart position, has not been effectively
addressed in limited studies, and its impact on the accuracy of ECGI
remains unclear (Rodrigo et al., 2018; Coll-Font and Brooks, 2018;
Bergquist et al., 2022; Bergquist et al., 2023).

The implementation of ECGI can be divided into two steps:
the forward model and the inverse problem. The forward model
describes the distribution of body surface potential (BSP) mapping
given a particular representation of the cardiac bioelectric source,
whose input is a mathematical model of the electrical activity of the
heart and the geometry, conductivity, and relative position of the
organs in the trunk. The inverse problem estimates the parameters
of the source model given a specific set of BSP signals, with the
forward model serving as an input for the inverse problem. The
ECGI inverse problem is an ill-posed estimation problem, meaning
that the solution is highly sensitive to small fluctuations or noise in
the input or small errors in the model (Figuera et al., 2016).

A frequent source of poorly controlled input error for ECGI
formulations is inaccuracy in the geometric model used in the
forward problem (Bergquist et al., 2023). An accurate three-
dimensional model of the torso and heart requires the use of
medical imaging techniques, such as MRI or CT, whose images
must be manually or semi-automatically segmented. MRI or CT
images are typically captured at a single phase of the respiratory and
cardiac cycles, often before or after electrocardiogram acquisition.
Changes in respiration, heartbeat, and body position inevitably
introduce uncertainties in the heart’s position, manifesting as
noise within the imaging modalities. Consequently, the geometric
models derived from these images cannot account for variations in
heart position (Bergquist et al., 2022).

Studies have shown that ECGI is sensitive to geometric
model errors. Several studies have examined how errors in
geometric models, particularly those stemming from uncertainties
in heart position, can adversely affect the forward solution. For
example, Swenson et al. and Bear et al. explored how such errors
influence the accuracy of the forward model (Swenson et al.,
2011; Bear et al., 2015). Cluitmans and Volders specifically
investigated how torso geometry accuracy impacts the noninvasive
reconstruction of electrical activation and recovery in the inverse
problem (Cluitmans and Volders, 2017). More recently, Bergquist
et al. focused on quantifying the uncertainty of cardiac position
variability (Bergquist et al., 2023), while Molero et al. evaluated the
robustness of inverse solutions in the face of atrial morphology
and location uncertainty (Molero et al., 2023). Similarly, Corrado
et al. examined the impact of atrial shape uncertainty on arrhythmia
prediction (Corrado et al., 2023). In addition, several studies
have sought to improve ECGI reconstruction quality by correcting

heart position and minimizing geometric input errors in the
forward model. Notable works in this area include those by
Gisbert et al. (2020), Bergquist et al. (2022).While these studies have
contributed significantly to enhancingmodel accuracy, fewer studies
have addressed the effects of persistent cardiac rigid motion on the
inverse problem.

In this paper we evaluated the impact of cardiac motion on
the accuracy of the inverse problem in ECGI. Specifically, we
analyzed the effect of modeling errors arising from changes in
the geometric position of the heart (translations and rotations
across six dimensions) on ECGI. Utilizing the dataset comprising
Langendorff-perfused dog hearts, we have quantified the accuracy
of the ECGI inverse solution under conditions of uncertainty in
heart position, focusing on aspects such as temporal and spatial
correlation, as well as variations in electrogram morphology’s peak
values and peak times.

2 Methods

2.1 Forward and inverse problems

We assume that the volume between the epicardial surface (SH)
and the body surface (SB) is a source-free homogeneous volume
conductor, then the forward problem can be regarded as a quasi-
static problem. The relationship between electric potentials on the
boundary SH and SB can be represented by

ΦB = ABHΦH (1)

where ΦB and ΦH represents the potential on SH and SB respectively,
and ABH is the transfer matrix, which is computed using the
boundary element method (BEM) for a homogeneous torso, as
detailed in (Barr et al. (1977), Horacek and Clements (1997).

In the forward problem, the epicardial potential distributions
electrograms (ΦH) is given, the BSPs (ΦB) can be calculated directly
by Equation 1. In the inverse problem, given the potential ΦB of
the torso surface, it is very complicated to solve ΦH directly by
the linear model. The matrix ABH may not be a square matrix,
and it's always highly ill-conditioned. Therefore the zero-order
Tikhonov regularization method, which is one of the most widely
used techniques for solving inverse problems (Figuera et al., 2016),
is used to stabilize the solution by punishing its complexity. The
solution can be expressed as Equation 2:

Φ̂H = argmin
ΦH

{‖ABHΦH −ΦB‖22 + λ
2‖ΦH‖22} (2)

where λ is the regularization parameter and is determined by the
L-curve method (Rodrigo et al., 2018). The estimated value of the
inverse problem is:

Φ̂H = (AT
BHABH + λ2I)−1AT

BHΦB (3)

where I is the identity matrix. Based on Equation 3, we can estimate
the epicardial potential distribution ΦH in the inverse problem.

2.2 Experimental data sets

The study utilized data recorded in a torso-tank canine
experiment conducted at the Cardiovascular Research and Training
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TABLE 1 Summary of experimental results.

Motion type Displacement/
Rotation

sCC change
(%)

sRE change
(%)

tCC change
(%)

tRE change
(%)

PT change
(ms)

Translation (X-axis:
Lateral)

−30 mm −4.89% ± 2.85% 2.07% ± 1.67% −2.68% ± 2.16% 3.56% ± 2.44% −1.53 ± 0.75 ms

−15 mm −1.60% ± 0.86% 0.60% ± 0.53% −0.61% ± 0.6% 1.07% ± 0.74% −0.73 ± 0.55 ms

+15 mm 0.65% ± 0.83% 0.15% ± 0.31% −0.56% ± 0.56% 0.54% ± 0.61% 0.74 ± 0.53 ms

+30 mm 0.42% ± 2.11% 0.92% ± 0.94% −1.73% ± 1.30% 2.35% ± 2.03% 1.23 ± 0.51 ms

Translation (Y-axis:
Anterior-Posterior)

−30 mm 0.20% ± 1.47% 0.62% ± 0.66% −0.89% ± 0.42% 1.97% ± 1.49% −0.12 ± 0.64 ms

−15 mm 0.78% ± 0.43% −0.10% ± 0.14% 0.12% ± 0.36% 0.48% ± 0.46% −0.08 ± 0.32 ms

+15 mm −1.25% ± 0.96% 0.67% ± 0.51% −0.40% ± 0.49% 0.64% ± 0.41% 0.15 ± 0.35 ms

+30 mm −2.57% ± 2.23% 1.59% ± 1.18% −0.87% ± 0.83% 2.00% ± 1.07% 0.44 ± 0.55 ms

Translation (Z-axis:
Cranio-Caudal)

−30 mm −4.66% ± 3.47% 2.46% ± 1.65% −5.26% ± 1.40% 6.94% ± 2.51% −1.47 ± 0.59 ms

−15 mm −1.08% ± 1.15% 0.63% ± 0.49% −1.27% ± 0.18% 2.25% ± 0.66% −0.94 ± 0.46 ms

+15 mm −1.56% ± 0.74% 0.74% ± 0.46% −0.18% ± 0.46% 0.42% ± 0.83% 1.01 ± 0.30 ms

+30 mm −5.31% ± 2.72% 2.52% ± 1.55% −1.80% ± 1.26% 2.91% ± 2.72% 2.24 ± 0.48 ms

Rotation (Pitch:
Forward-Backward

Tilt)

−30° −14.48% ± 7.93% 6.44% ± 4.61% −11.34% ± 2.40% 12.40% ± 6.66% 1.29 ± 0.67 ms

−15° −4.05% ± 2.63% 1.94% ± 1.52% −3.88% ± 0.89% 3.99% ± 2.59% 0.54 ± 0.55 ms

+15° −5.75% ± 3.10% 2.49% ± 1.84% −3.19% ± 0.52% 3.83% ± 1.80% −0.21 ± 0.65 ms

+30° −19.57% ± 10.14% 7.90% ± 5.59% −17.00% ± 3.37% 13.45% ± 6.33% 0.25 ± 0.99 ms

Rotation (Yaw:
Left-Right Rotation)

−30° −12.78% ± 6.32% 4.90% ± 3.40% −12.52% ± 2.65% 6.87% ± 3.08% 0.49 ± 0.69 ms

−15° −5.11% ± 3.05% 2.04% ± 1.56% −4.00% ± 1.70% 1.71% ± 0.88% 0.06 ± 0.57 ms

+15° 1.01% ± 1.72% −0.45% ± 0.68% −1.82% ± 0.66% 2.18% ± 1.57% −0.29 ± 0.54 ms

+30° −3.63% ± 2.55% 1.62% ± 1.05% −6.40% ± 0.78% 6.71% ± 3.95% −0.55 ± 0.47 ms

Rotation (Roll:
Torsion around
Septal Axis)

−30° −6.30% ± 4.46% 2.56% ± 2.13% −1.10% ± 1.66% −0.67% ± 1.20% 0.09 ± 0.42 ms

−15° −1.34% ± 1.79% 0.62% ± 0.74% 1.59% ± 0.59% −1.77% ± 1.11% 0.19 ± 0.32 ms

+15° −3.12% ± 0.82% 1.07% ± 0.55% −3.88% ± 0.47% 3.60% ± 1.77% −0.13 ± 0.51 ms

+30° −9.39% ± 2.11% 3.17% ± 1.58% −7.95% ± 1.42% 8.52% ± 3.93% −0.26 ± 0.51 ms

Institute (CVRTI), University of Utah. The experiment was based
on an improved Langendorff perfusion system in which isolated
canine hearts were wrapped in a rigid pericardial electrode cage
and suspended in a human-shaped torso tank (Bergquist et al.,
2021b). The recordings included epicardial electrograms (EGMs)
from a 256-electrode pericardial electrode cage and BSPs from
192 electrodes embedded in the tank surface. The experimental
data are published on EDGAR, an open source database of
the Consortium for ECG Imaging (CEI) (Aras et al., 2015).
We extended the experimental data set using the heart and
body surface geometry and the epicardial electrograms recorded
from the above experiments, as described below. Initially, a

series of geometric models representing the heart-torso were
developed through adjustments to the position and shape of
the pericardial electrode cage. Subsequently, combined with the
homogeneous torso model, the forward model is calculated using
the BEM. Finally, we synthesized corresponding BSPs utilizing
both the forward model and epicardial EGMs recorded by the
pericardial electrode cage. Notably, Gaussian white noise with
a SNR of 10 dB was incorporated into the synthesized BSP
signals prior to any filtering processes. Ultimately, we generated
a synthetic dataset comprising 163 data sets. This synthetic
dataset exclusively contains sinus rhythm signals, upon which
subsequent experiments will be conducted.
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FIGURE 1
Experimental setup and evaluation description. (A) Parametrization describing the motion coordinates. Left: Schematic illustration of the torso surface
(green), the pericardial cage in its original position (blue), and the pericardial cage in its displaced position (red). Right: Rotational angles defined on the
heart. Pitch (θ): the angle formed between the Z axis and the septal axis. Yaw (φ): the angle formed between the septal axis in the X/Y plane and the
X-coordinate. Roll (ρ): the rotation of the heart around the septal axis. (B) 3D and 2D displays of potential measurements on the surface of the heart. (C)
Estimated values from ECGI inverse calculation (time instant = 8). (D) Comparison of measured values (blue) and estimated values (red) of the EGM.

2.3 Description of the experiments

To evaluate the impact of cardiac rigid motion on the accuracy
of the ECGI inverse problem, we used the heart’s inherent periodic
beating as a basis to decompose cardiac motion into translational
and rotational motions. Then, we conducted experiments separately
for each type of motion. We calculated EGMs at various cardiac
positions using BSP signals. Subsequently, we evaluated the changes
in correlation coefficients, maximum values, minimum values, and
peak times of the EGMs reconstructed from different cardiac
positions, as illustrated in Figure 1. The study on the impact of
different cardiac motions on the accuracy of the ECGI inverse
problem is presented as follows:

Translation Motion: A single displacement along the X, Y, and Z
axes.Due to anatomicalmodel constraints, the displacement range is
limited from−30 to 30 mm,with a step size of 5 mm. Itwas evaluated
in a subset of 163 models (with 163 distinct models for each axis) by
assessing the correlation coefficients, extreme values, and peak times
of the EGMs, whichwere obtained through inverse calculations with
gradual displacement along each axis.

Rotational Motion: To effectively describe the rotation of the
real heart, the heart’s rotation is defined based on two anatomical
references: as illustrated in Figure 1, one is an anchor point
placed at the suspended position of the heart, and the other
is a septal axis, which extends from the anchor point through
the septum of the heart to the apex (Coll-Font and Brooks,
2018). Based on these references, the rotational angle is defined
as follows:

• Pitch (θ): the angle formed between the Z axis and the
septal axis.

• Yaw (φ): the angle formed between the septal axis projected on
the X/Y plane and the X axis.

• Roll (ρ): the rotation of the heart around the septal axis.

The evaluation was conducted across all models, wherein the
three parameters underwent gradual rotation in increments of 5°
from −30° to 30°. During yaw rotation, θ is set to 15°, and during
roll rotation, θ is set to 15° with φ also set to 15°. This configuration
allows the pericardial cage structure to be suspended at an angle
within the torso tank, more accurately mimicking the actual relative
position of the heart and torso. Additionally, it prevents yaw and roll
rotations from inadvertently resulting in a rotation primarily around
the Z-axis, which would undermine the experiment’s validity.

2.4 Evaluation metrics

ThePearson’s correlation coefficient (CC) and relative error (RE)
were used to evaluate the impact of cardiac rigid motion on ECGI,
by comparing the real measured data with the analytical results of
the inverse solutions after accounting for cardiac exercise. The CC
reflects the degree of spatial discrepancy between the estimated and
measured quantities, while the RE indicates the percentage deviation
of the estimates.These twometrics can be employed in two versions:
(i) Temporal version: For each node, the CC (or RE) is computed
across all time instances, followed by calculating the average CC (or
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RE) among the nodes; (ii) Spatial version: For each time instant,
the CC (or RE) is computed using all nodes, and subsequently, the
average CC (or RE) across time instances is determined. Finally,
statistics for CC (or RE) are conducted across all models. Temporal
CC or RE (tCC or tRE) assesses the reconstruction of EGMs
morphology within each lead, while spatial CC or RE (sCC or
sRE) reflects the fidelity of the reconstructed isopotential maps
at each time point. The effects of cardiac rigid motion on the
reconstructed EGMs morphology were evaluated using maximum
values, minimum values, and peak times, as illustrated in Figure 1D.
The maximum and minimum values refer to the peak voltage values
within the entire QRST data cycle. The peak time (PT) corresponds
to the moment when the maximum peak voltage of the QRS
complex occurs.

3 Results

3.1 Translation vs. inverse solution

We first evaluated the impact of translating a heart model along
coordinate axes on the accuracy of ECGI inverse solutions. Figure 2
presents the variations in inverse-solved sCC and sRE following
displacements along the three axes within the range of −30 mm to
30 mm. Overall, as the displacement increased, the sCC decreased
while the sRE increased; for displacement deviations within 30 mm
on the target dataset, the changes in sCC are less than 8%, and those
in sRE were less than 4%. In Figure 2, compared to the scenario
with no displacement, when moving −30 mm along the X, Y, and
Z axes respectively, the sCC decreased by 4.89% ± 2.85%, −0.20%
± 1.47%, and 4.66% ± 3.47%, while the sRE increased by 2.07% ±
1.67%, 0.62% ± 0.66%, and 2.46% ± 1.65%. For displacements of
30mm, the sCC decreased by −0.42% ± 2.11%, 2.57% ± 2.23%, and
5.31% ± 2.72%, while the sRE increased by 0.92% ± 0.94%, 1.59% ±
1.18%, and 2.52% ± 1.55%. Notably, whenmoving along the positive
X-axis and the negative Y-axis, the sCC initially increased slightly
before decreasing. In contrast, displacements along the Y-axis have
the minimal impact on the inverse solution. Figure 3 presents an
example of ECGI spatial inverse reconstruction at various X, Y, and
Z displacement distances, with a time instant equal to 8.

Figures 4, 5 illustrate the impact of translation on the temporal
dimension of the inverse solution in ECGI. Figure 4 reveals that, in
the case of a −30 mm translation, the inverse-solved tCC decreases
by 2.68% ± 2.16%, 0.89% ± 0.42%, and 5.26% ± 1.4% along the X, Y,
and Z axes, respectively, while the tRE increases by 3.56% ± 2.44%,
1.97% ± 1.49%, and 6.94% ± 2.51%, respectively. Similarly, for a
30 mm translation, the tCC decreases by 1.73% ± 1.30%, 0.87% ±
0.83%, and 1.80% ± 1.26% along the X, Y, and Z axes, respectively,
while the tRE increases by 2.35% ± 2.03%, 2.00% ± 1.07%, and
2.91% ± 2.72%, respectively. Notably, unlike the sCC, there is a slight
increase in tCC when moving along the positive Z-axis, which is an
interesting observation that warrants further investigation.

Figure 5 illustrates the variations in the maximum value,
minimum value, and PT of the inverse-solved EGM under different
displacements. When translated by −30 mm along the X, Y, and Z
axes, the maximum values of the EGM changed by −4.98% ± 3.19%,
6.84% ± 6.51%, and 4.75% ± 1.21%, respectively; the minimum
values changed by −0.90% ± 3.09%, 5.69% ± 1.44%, and 3.05%

± 2.22%, respectively; and the PTs changed by −1.53 ± 0.75 ms,
−0.12 ± 0.64 ms, and −1.47 ± 0.59 ms, respectively. Similarly, under
a 30 mm translation, the maximum values of the EGM varied by
3.40% ± 5.18%, −8.67% ± 2.16%, and −6.24% ± 1.92%, respectively;
the minimum values changed by 1.17% ± 3.97%, −3.21% ± 4.82%,
and −5.17% ± 4.30%, respectively; and the PTs shifted by 1.23 ±
0.51 ms, 0.44 ± 0.55 ms, and 2.24 ± 0.48 ms, respectively. Moving
along the positive direction of the X-axis increases the maximum
value of the inverse solution of EGM and shifts the PT later. Moving
along the Y and Z-axis directions decreases both the maximum and
minimum values of the inverse solution of EGM, with a slight shift
in PT to later. Overall, when the heart positionmoves within a range
of −30 mm to 30 mm, the changes in the maximum and minimum
values of the inverse-solved EGM are less than 10%, and the changes
in PT generally are less than 2 ms.

3.2 Rotation vs. inverse solution

The second stage involves assessing the impact of heart model
rotations on the accuracy of the inverse solution in ECGI. Figure 6
illustrates the changes in sCC and sRE of the inverse solution
after rotation between −30° and 30° around the each of the three
axes. Similar to translation, the quality of the inverse solution
generally exhibits a downward trend as the rotation angle increases.
In Figure 6, compared to the conditions with 0° of pitch, yaw,
and roll rotations, under a −30° rotation, the sCC decreased by
14.48% ± 7.93%, 12.78% ± 6.32%, and 6.30% ± 4.46%, respectively,
while the sRE increased by 6.44% ± 4.61%, 4.90% ± 3.40%, and
2.56% ± 2.13%, respectively. In the case of a 30° rotation, the
sCC decreased by 19.57% ± 10.14%, 3.63% ± 2.55%, and 9.39%
± 2.11%, respectively, and the sRE increased by 7.90% ± 5.59%,
1.62% ± 1.05%, and 3.17% ± 1.58%, respectively. Notably, as the
yaw angle increases positively, the sCC first increases slightly before
decreasing, with the sRE following a synchronous pattern of first
decreasing and then increasing. Figure 7 demonstrates an example
of the inverse reconstruction in the ECGI space under different
rotational angles for pitch, yaw, and roll, at a specific time instant
equal to 8.

In Figures 8, 9, the impact of rotation on the temporal dimension
of ECGI inverse solutions is described. In Figure 8, compared to the
case without rotation, under rotations of −30° for pitch, yaw, and
roll, the tCC decreased by 11.34% ± 2.40%, 12.52% ± 2.65%, and
1.10% ± 1.66%, respectively, while the tRE increased by 12.40% ±
6.66%, 6.87% ± 3.08%, and −0.67% ± 1.20%, respectively. Under
rotations of 30°, the tCC decreased by 17.00% ± 3.37%, 6.40% ±
0.78%, and 7.95% ± 1.42%, respectively, while the tRE increased by
13.45% ± 6.33%, 6.71% ± 3.95%, and 8.52% ± 3.93%, respectively.
Additionally, as the roll angle varies from 0° to −30°, the tCC exhibits
a slight initial increase followed by a decrease, with an average
magnitude of change less than 3%.

Figure 9 depicts the changes in the maximum value, minimum
value, and PT of the inverse solution of EGM under different
rotation angles. When the pitch, yaw, and roll rotation angles
are −30°, the maximum values of EGM change by 17.01% ±
5.64%, −4.30% ± 6.70%, and 11.40% ± 4.51% respectively, the
minimum values change by −12.67% ± 4.01%, −8.14% ± 5.43%,
and −2.70% ± 3.28% respectively, and the PTs shift by 1.29 ±
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FIGURE 2
The influence of translation on the sCC and sRE of the inverse solution in ECGI.

FIGURE 3
An examples of ECGI inverse reconstruction with different translation distances (time instant = 8). Estimated values of the pericardial cage potential
when the cage is translated along the X, Y, and Z axes by −30 mm, −15 mm, 15 mm, and 30 mm, respectively.

0.67 ms, 0.49 ± 0.69 ms, and 0.09 ± 0.42 ms respectively. When the
rotation angles are 30°, the maximum values of EGM change by
−28.54% ± 6.86%, 8.91% ± 5.54%, and 14.99% ± 5.99% respectively,
the minimum values change by 8.97% ± 6.09%, 3.67% ± 3.15%,
and 1.02% ± 3.09% respectively, and the PTs shift by 0.25 ±
0.99 ms, −055 ± 0.47 ms, and −0.26 ± 0.51 ms respectively. During
positive pitch rotation, the maximum value of the EGM decreases,
while the minimum value increases. When yaw and roll rotate

in the positive direction, the extreme values (both maximum and
minimum) increase. Additionally, as the pitch and yaw rotation
angles intensify, the average PT advances forwards. Conversely,
the PT remains relatively stable when subjected to roll rotations.
Overall, when the heart’s rotation angles move within a range of
−30° to 30°, the changes in the maximum and minimum values of
the inverse solution of EGM are typically less than 20%, and the
changes in PT are generally within 2 ms.
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FIGURE 4
The influence of translation on the tCC and tRE of the inverse solution in ECGI.

3.3 Summary of statistical tests

In this section, we summarize the statistical results presented
in Sections 3.1 and 3.2, as shown in Table 1. Given a 30 mm
displacement and 30° rotation of heart, greater emphasis should be
placed on the impact of heart rotation, as the alterations in CC, RE,
PTs and the peak values of EGMs are more pronounced compared
to those caused by translational motion. During translational
motion along the coordinate axes, movement along the Y-axis
(anteroposterior motion within the chest cavity) exhibits an overall
smaller influence on CC and RE compared to movement along the
XZ axes. In terms of rotational motion, roll has the least impact on
CC and RE, followed by yaw, with pitch having the greatest impact.
Upon moving within a range of −30 mm to 30 mm, the changes in
the peak values of the EGMs are generally less than 10%. Similarly,
upon rotating within a range of −30° to 30°, the changes in the
peak values of EGMs are typically less than 20%. Notably, When
moving or rotating within a range of 30 mm or 30°, the change in
PT generally does not exceed 2 ms.

4 Discussion

In this study we employed a dataset from the University of
Utah in order to quantify how cardiac positional movements affect
the reconstruction of ECGI. Utilizing the zero-order Tikhonov
regularization method, we conducted ECGI reconstructions
and evaluated the impact of six different cardiac motion
patterns, including translations and rotations, designed based on

clinical experience. Experimental results indicated that among
displacements of ±30 mm and rotations of ±30°, rotations have
a greater influence on ECGI reconstruction. For the same
displacement distance, movement along the Y-axis exert the least
impact on ECGI reconstruction. Similarly, among rotations of
the same angle, rolling has a smaller effect on the reconstruction.
Furthermore, we found that changes in the CC value are typically
less than 2% for a 10 mm displacement and less than 5% for a
10° rotation, suggesting that within a certain range, the variations in
ECGI due to cardiac geometric motion can be considered neglected.

4.1 Accuracy of the inverse problem
solution

The correlation between the inverse solution of ECGI
and intracardiac contact EGMs, whether experimentally or
simulationally measured, is poor (Figuera et al., 2016). When
considering the absence of any displacement, the inverse solution
derived from our dataset yields the following results: sCC = 0.60
± 0.11, sRE = 0.84 ± 0.07, tCC = 0.85 ± 0.02, and tRE = 0.68
± 0.06. It is evident that the temporal correlation of epicardial
potential reconstruction is stronger than the spatial correlation,
with the epicardial EGM exhibiting relatively superior fidelity in
terms of morphology. Errors in epicardial potential reconstruction
stem from a multitude of factors, including the positioning and
quantity of body surface electrodes, the precision of the heart
model, the inherently ill-conditioned nature of the inverse problem,
and external interferences (Bergquist et al., 2021a). We employed
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FIGURE 5
The effect of translation on the maximum, minimum and PT of EGM.

the Tikhonov zero-order regularization method for the inverse
calculation. While this method utilizes an L2-norm-based penalty
function, which tends to produce a smooth EGM, it is the most
widely used and straightforward to implement (Figuera et al., 2016).
However, the sensitivity of alternative regularization methods to
rigid displacements necessitates further exploration.

Moving beyond regularization methods, the ECGI inverse
problem necessitates the acquisition of MRI or CT images to
establish an accurate patient-specific anatomical model. These MRI
or CT images are captured with BSP electrodes in place, ensuring
the preservation of geometric parameters (Rodrigo et al., 2018).
However, it is not always feasible to obtain dynamic MRI together
with useful BSP recordings. Our study reveals the performance
of ECGI technology under varying cardiac motion conditions by
quantifying the impact of cardiac translation and rotation on the
accuracy of ECGI inverse solutions. Experimental data indicate
that, although cardiac motion does exert a certain influence on
inverse solution results, within a specific range (such as 10 mm
of displacement and 10° of rotation), this influence is relatively
insignificant, with typical changes in CC less than 2% and 5%,

respectively. This underscores the high stability of ECGI inverse
solutions under certain conditions.

In the study by Rodrigo et al., which aimed to correct
inaccuracies in anatomical models by maximizing reconstruction
quality, it was observed that the average positioning error of
the atrium on the XYZ axes within the mathematical model
was 1.7 ± 2.4 mm. In contrast, the average error in patient
data was 9.1 ± 11.5 mm (Rodrigo et al., 2017; Rodrigo et al.,
2018). Gisbert et al. employed an automatic optimization algorithm
to localize atrial anatomical structures, achieving a positional
deviation of 0.5 ± 0.5 cm (Gisbert et al., 2020).These findings
concurs with our results, indicating that the inverse problem
can accommodate spatial uncertainties up to 1 cm. Furthermore,
Coll-Font and Brooks’ investigation into tracking heart position
using body surface potentials (Coll-Font and Brooks, 2018),
alongside Bergquist et al.'s research on heart position uncertainty
(Bergquist et al., 2022; Bergquist et al., 2023), reinforces the notion
that appropriate spatial positioning and the construction of precise
anatomical models enhance the outcomes of the inverse solution.
Consequently, slight variations in heart position do not appreciably
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FIGURE 6
The influence of rotations on the sCC and sRE of the inverse solution in ECGI.

FIGURE 7
An example of ECGI inverse reconstruction with different rotation angles (time instant = 8).

impact clinical decision-making when the errors stemming from
heart position uncertainty are smaller than other errors inherent in
the ECGI system.

4.2 Impact of cardiac motion on the
inverse solution

Although our findings indicate that cardiac motion within a
certain range has a limited impact on the accuracy of the ECGI

inverse solution, understanding how these motions specifically
affect the inverse solution process remains crucial. We found that
movements along the Y-axis in the anterior-posterior direction of
the thorax have a relatively minor impact on the ECGI inverse
solution. This may be attributed to the dense arrangement of
electrodes in the anterior-posterior plane of the thorax, which
are in closer proximity to the heart. Consequently, movements
along the Y-axis exert less influence on the relative positioning
between the body surface electrodes and the heart, thereby reducing
the reconstruction error in potential distribution. In the study by
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FIGURE 8
The influence of rotations on the tCC and tRE of the inverse solution in ECGI.

Rodrigo et al., the positioning errors of the atrium on the XYZ axes
within the mathematical model, were found to be 1.0 ± 2.1 mm, 3.0
± 2.6 mm, and 1.0 ± 2.1 mm, respectively (Rodrigo et al., 2018).
Our research aligns with the findings of Rodrigo et al., indicating
that the ECGI system is least sensitive to errors along the Y-
axis, resulting in the poorest localization performance on the Y-
axis. Additionally, we observed consistency in the maximum and
minimum values of the inverse solution EGM when moving in
the positive direction along the coordinate axes, with these values
changing almost synchronously. As the heart position shifts towards
the upper left side within the chest cavity (i.e., the positive direction
of the coordinate axes), the PTs of the inverse solution EGMundergo
a gradual delay.

Compared to translationalmotion, rotationalmotion has amore
significant impact on theECGI inverse solution.Thismaybe because
rotations of the heart model cause more drastic changes in the
relative position between the heart and body surface electrodes
compared to translations. Among ±30° rotational movements,
rolling exhibits the least impact on the inverse solution, with the
impact on CC typically being less than half of that observed for yaw
and pitch. This may be due to the synchronous movement of the
heart model relative to the torso model during roll, resulting in a
more regular pattern of model coordinate transformation compared
to yaw and pitch. Notably, during pitch motion, as the rotation
angle increases in the positive direction, the maximum value of the
inverse-solved ECG decreases, the minimum value increases, and
the PTs shifts forwards. In contrast, as the rotation angle increases in
the positive direction for roll and yaw motions, the extreme values
of the inverse-solved EGM increase, while the PTs remain almost
unchanged. These differences may be attributed to the yaw motion

model having a 15° pitch angle and the roll motion being performed
under conditions of pitch = 15° and yaw = 15°.

It is noteworthy that almost all models are not in the optimal
position for CC in the absence of displacement. When the heart
geometry model is translated along the X, Y, and Z axes within
the range of −30 mm to 30 mm, the average improvement in the
CC of the inverse solution does not exceed 0.8%, with a maximum
value not exceeding 2.5%. Through a linear search within the three-
dimensional XYZ space, with a step size of 1 mm, we found that
the average increase in the CC of the inverse solution is 1.36%,
and the maximum increase is 2.95%. This further demonstrates
the robustness of the ECGI inverse problem to variations in heart
position, as slight perturbations in heart position do not significantly
affect the accuracy of the ECGI inverse solution.

4.3 Regional inverse solution discrepancies

We conducted a preliminary investigation on the sensitivity of
inverse solutions in different heart anatomical regions to various
motion types. Specifically, during translational motion along the X-
axis, we segmented the heart structure into left and right halves
along the midline and independently quantified the changes in sCC
and tCC within these two segments, as illustrated in Figure 10.
Our findings revealed that upon leftward displacement of the heart
(positive X-axis movement), the sCC in the left segment initially
increases and then decreases, while the tCC shows a steady decline.
In the right segment, the sCC decreases continuously, and the tCC
exhibits a slight increase followed by a gradual decline. When the
heart moves rightward (negative X-axis movement), the sCC in the
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FIGURE 9
The effect of rotations on the maximum, minimum and PT of EGM.

left segment decreases steadily, while the tCC first rises and then
falls. In the right segment, the sCC shows an initial increase followed
by a decrease, and the tCC decreases steadily. Collectively, the sCC
and tCC in the left and right segments exhibit nearly symmetrical,
mirror-like variations.

In Figure 10, compared with the no-displacement condition,
under a −15 mm X-axis displacement (rightward movement), the
sCC and tCC values in the left segment changed by −3.08% ± 1.33%
and −0.09% ± 0.45%, respectively. Conversely, in the right segment,
the sCC and tCC values changed by 0.09% ± 0.56% and −1.11% ±
1.42%, respectively. Under a 15 mm X-axis displacement (leftward
movement), the sCC and tCC in the left segment changed by 2.46%±
0.66% and −1.00% ± 1.09%, respectively, while in the right segment,
they changed by −0.91% ± 0.82% and −0.16% ± 0.43%, respectively.
It is worth noting that with the displacement of the heart, an increase
in sCC is usually accompanied by a decrease in tCC. To illustrate,
upon a slight leftward shift of the heart, the sCC in the left segment
increases while the tCC decreases; conversely, in the right segment,
the sCC decreases as the tCC increases. A similar phenomenon is
observed in the right segment during rightward movement.

During pitch rotational movement, we have divided the cardiac
structure into two distinct sections: the upper segment, which
corresponds to the base of the heart, and the lower segment, which
corresponds to the apex. Figure 11 illustrates the variations in sCC
and tCCwithin the upper and lower segments of the cardiac structure
as the heart undergoes pitch rotational movement from −30° to 30°.
In Figure 11, compared to 0° rotation, at a pitch rotation of −15°, the
sCCand tCCvalues in the upper segment changed by−9.22%±4.35%
and −1.46% ± 1.35%, respectively, while those in the lower segment
changed by 2.50% ± 2.26% and −6.48% ± 0.98%. In contrast, at a
pitch rotation of 15°, the sCC and tCC values in the upper segment
altered by 3.12% ± 0.77% and −1.95% ± 0.69%, respectively, while
those in the lower segment changed by −13.04% ± 7.57% and −4.28%
± 1.39%. A notable observation from Figure 11 is that as the pitch
rotation angle of the heart increases positively, the sCC in the upper
segment initially increases and then decreases, whereas the sCC in the
lower segment exhibits a monotonic decrease. In contrast, when the
pitch rotation angle increases negatively, the sCC in the lower segment
first increases and then decreases, while the sCC in the upper segment
shows a monotonic decrease, creating nearly mirror image trends in
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FIGURE 10
The influence of X-axis translational motion on the inverse solutions of the left and right cardiac regions.

both cases.Throughout the entire pitch rotation range, the tCC trends
inboth theupper and lower segments are similar,withbothdecreasing
as the pitch angle increases. However, it is crucial to highlight that in
most instances, the influence of pitch rotational movement on the
lower segment of the heart is considerably more pronounced than on
the upper segment,with the range ofCCchanges in the lower segment
being nearly double that observed in the upper segment.

4.4 Limitations and future work

Although our study provides a comprehensive evaluation of
the impact of cardiac translational and rotational motions on the
accuracy of ECGI inverse solution, it is not devoid of inherent
limitations. In real-world scenarios, cardiac motion is considerably
more complex. Factors such as the non-rigid deformation of
the heart, respiratory motion, and cardiac contraction may exert
more intricate and unpredictable influences on the ECGI inverse
solution (Jiang et al., 2008). Specifically, during the heartbeat
movement that encompasses the entire duration of systole, the
heart experiences ventricular shortening along its long axis,
accompanied by corresponding torque variations around this axis.
Consequently, the ventricular base and apex exhibit opposing
movements (Pullan et al., 2010). This dynamic process not only
shifts the heart’s position but also modifies its dimensions and
contour. Additionally, during the process of respiration or alterations
in body posture, the heart undergoes a rotational movement
around its anchor point, induced by the movements of the ribs
and/or diaphragm. Typically, this rotational movement persists for

a duration that extends beyond a single heartbeat cycle (Koley,
2024). These more complex motion patterns, characterized by
their dynamic and nonlinear nature, pose significant challenges to
the advancement of ECGI technology and merit further in-depth
investigation (Jiang et al., 2009).

Furthermore, the dataset for this study was derived from the
Langendorff perfusion system, which simplifies the simulation
of torso conductor volume by excluding structures such as the
lungs (Bergquist et al., 2021b). This simplification may introduce
deviations between the model and the actual human body. The
interaction between the inhomogeneity of the thoracic volume and
the uncertainty in heart position has not been thoroughly explored
in this study. However, according to relevant literature, although
inhomogeneity of the thoracic volume may exert some influence
on the reconstruction of epicardial potentials, electrograms, and
activation sequences, its impact is relatively minor and generally
negligible in clinical practice (Bear et al., 2015; Rudy, 2015). This
conclusion provides some support for the rationality of our study,
but further validation and refinement are still required in the future.

It is noteworthy that the same forward solver was employed
for generating BSP signals and performing inverse calculations in
this study. Although this approach simplifies the research process,
it may also lead to overconfidence in the inverse solution results.
To mitigate this potential risk, white noise was deliberately added
to the generated BSP signals to simulate noise interference in
real environments. This practice aligns with standard practices in
research within this field (Rodrigo et al., 2018; Gisbert et al., 2020)
and contributes to enhancing the reliability and applicability of the
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FIGURE 11
The influence of pitch rotational motion on the inverse solutions of the top and bottom cardiac regions.

research findings. Despite the inevitable limitations introduced by
the use of synthetic BSP data, the dataset provided by this study
allows for precise control over heart motion, which is often difficult
to achieve in experimental settings, thereby limiting the depth and
breadth of experimental research. To a certain extent, synthetic data
compensates for the deficiencies of experimental research.

Lastly, the variations in the inverse solution of ECGI due to
cardiac motion investigated in this study were only tested under
sinus rhythm, and their extension to arrhythmic conditions remains
unverified. Arrhythmias are diverse in types and electrical patterns,
and their impacts on ECGI inverse solution changes caused by heart
displacement may vary. While we hope that the general conclusions
of this study apply to a broader range of data, including both sinus
rhythm and various arrhythmic conditions, their reliability under
other conditions still awaits testing.

5 Conclusion

Heart motion is closely related to the performance of ECGI
reconstruction. Our research findings reveal that, among the
translational and rotational motions of the heart, rotational motion
should be prioritized due to its significantly stronger impact on the
changes in CC and RE of the ECGI inverse solution compared to
translational motion. Among the translational motions along the
coordinate axes,movement along the y-axis (anteroposteriormotion
within the chest cavity) has the least impact. In terms of rotational
motions, roll has the smallest impact, yaw follows, and pitch has

the largest. The ECGI inverse problem exhibits a certain degree of
robustness to heart position, with CC changes being less than 2%
for a 10 mm displacement and less than 5% for a 10° rotation. This
implies that within a certain range, the ECGI changes resulting from
geometric heart motion can be disregarded, and it is not necessary
to pursue extremely high precision in patient-specific thoracic-heart
geometry for practical applications.
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