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Construction and clinical
visualization application of a
predictive model for mortality
risk in sepsis patients based on
an improved machine learning
model

Ting Chen1, Xuefeng Zhang1, Qunfeng Yu2, Qin Yang2,
Lingmin Yuan2 and Fei Tong3*
1Emergency Department of Longyou County People’s Hospital, Quzhou, Zhejiang, China, 2Intensive
Care Unit of Longyou County People’s Hospital, Quzhou, Zhejiang, China, 3Department of Thoracic
Surgery, Longyou County People's Hospital, Quzhou, China

Objective: To explore the construction and clinical visualization application of
a mortality risk prediction model for sepsis patients based on an improved
machine learning model.

Methods: This retrospective study analyzed 1,050 sepsis patients admitted to
Longyou County People’s Hospital between January 2010 and August 2023.
Patients were divided into a survival group (n = 877) and a death group (n
= 173) based on their 30-day mortality status. Clinical and laboratory data
were collected and used as feature variables. A Self-Weighted Self-Evolutionary
LearningModel (SWSELM) was developed to identify independent risk factors for
sepsis mortality and to create a visualization system for clinical application.

Results:The improved algorithm significantly outperformed other algorithms on
23 standard test functions. The SWSELMmodel achieved ROC-AUC and PR-AUC
values of 0.9760 and 0.9624, respectively, on the training set, and 0.9387 and
0.9390, respectively, on the test set, both significantly higher than those of three
other prediction models. The SWSELM model identified 10 important features,
with multivariate logistic regression retaining five variables: B-type Natriuretic
Peptide Precursor (NT-proBNP), Lactate, Albumin, Oxygenation Index, andMean
Arterial Pressure (MAP) (OR = 4.889, 3.770, 3.083, 1.872, 1.297), consistent with
the top five features selected by the SWSELM model.

Conclusion: NT-proBNP, Lactate, Albumin, Oxygenation Index, and Mean
Arterial Pressure are independent risk factors for mortality in sepsis patients. This
study successfully created a self-evolutionary prediction model using machine
learning methods, demonstrating significant clinical application potential and
value for broader implementation.
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1 Introduction

Sepsis, defined as a life-threatening systemic infection, arises
from a dysregulated host response to infection that can lead to
organ dysfunction. However, the progression to life-threatening
complications hinges on early recognition and timely interventions
(Liu et al., 2022). In critical care medicine, sepsis has emerged
as a central research focus due to its substantial incidence
and mortality rates. Global epidemiological studies reveal that
more than 18 million severe sepsis cases are diagnosed annually,
with incidence rates increasing by 1.5%–8% per year (Chiu and
Legrand, 2021). Short-term mortality rates range from 15% to
30% for sepsis patients, escalating to 50% for those developing
septic shock (Oczkowski et al., 2022). Of particular clinical
significance, each hour of delayed treatment increases mortality
risk by 4%–8%, primarily due to the irreversible progression of
organ damage (Bleakley and Cole, 2020).These statistics underscore
the critical importance of early identification and prognosis
prediction in sepsis management.

Clinicians have historically employed rule-based scoring
systems including the Sequential Organ Failure Assessment (SOFA),
quick SOFA (qSOFA), and Modified Early Warning Score (MEWS)
for sepsis severity evaluation. While these systems offer valuable
clinical references, they demonstrate limited efficacy in meeting the
pressing need for early sepsis prediction.

Machine learning represents a computational technology that
develops predictive models through data pattern recognition and
feature selection. Particularly effective with large-scale datasets
containing numerous samples and variables, this approach
establishes automated analytical frameworks capable of continuous
learning and progressive improvement in predictive accuracy
for novel data. Contemporary medical applications increasingly
use machine learning models for disease prevention, diagnostic
support, treatment optimization, and prognostic evaluation
(Fleuren et al., 2020; Theodosiou and Read, 2023). Recent studies
have demonstrated successful implementation of machine learning
algorithms for sepsis mortality prediction, achieving notable
accuracy. However, current models predominantly focus on severe
sepsis and septic shock populations, potentially limiting their
generalizability to broader sepsis patient cohorts (Phillips et al.,
2018; Zhang and Hong, 2017; Osborn et al., 2014).

Building upon these foundations, our study objectives are
twofold: 1) to systematically analyze diverse mortality risk factors
in sepsis patients through machine learning approaches, and 2) to
develop an intuitive clinical visualization system. This integrated
framework aims to provide clinically actionable insights for
mortality risk prediction in septic patients, ultimately supporting
evidence-based decision making in critical care settings.

2 Methods

Our research methodology includes the following steps: data
sourcing, feature extraction, feature weighting, hyperparameter
optimization, model construction, and model evaluation.

2.1 Data sourcing

Our study design utilized a retrospective analysis, selecting
1,050 sepsis patients admitted to Longyou County People’s Hospital
from January 2010 to August 2023 as the research subjects.
Among them, there were 640 male patients and 410 female
patients. Within 30 days, there were 173 deaths, resulting in a
mortality rate of 16.48%. This study is a retrospective analysis
and is exempt from requiring patient informed consent. It has
been approved by the Ethics Committee of Longyou County
People’s Hospital, with the ethics approval number: 2,023,130.
All data were analyzed anonymously, and personal information
was completely removed. This study was conducted in accordance
with the principles of the Declaration of Helsinki and its
amendments.

2.1.1 Inclusion criteria
(1) Diagnosis of sepsis according to the “Chinese Guidelines

for the Treatment of Severe Sepsis/Septic Shock (2014)” with a
confirmed infection (Jing, 2015); (2) An increase in SOFA score
by two points or more following the infection; (3) Complete
clinical data.

2.1.2 Exclusion criteria
(1) Age <18 years; (2) Patients with terminal cancer, leukemia,

lymphoma, or immunodeficiency; (3) Patients with newly
diagnosed cerebrovascular disease within the past 3 months.

Clinical and laboratory data of the patients were collected and
organized as feature variables, totaling 27 features, numbered F1 to
F27. The features include: Oxygenation Index (F1); Procalcitonin
(F2); Prothrombin Time (F3); Gender (F4); Age (F5); Onset
Time (F6); Body Mass Index (F7); B-type Natriuretic Peptide
Precursor (NT-proBNP) (F8); Infection Site (F9); Mean Arterial
Pressure (MAP) (F10); Heart Rate at Admission (F11); Partial
Pressure of Oxygen (F12); Urine pH (F13); Lactate (F14); Partial
Thromboplastin Time (F15); C-reactive Protein (F16); pH Value
(F17); Diabetes (F18); Platelets (F19); Carbon Dioxide Content
(F20); Charlson Comorbidity Index (F21) (Qiu et al., 2023);
Respiratory Rate (F22); Albumin (F23); Oxygen Saturation (F24);
Ratio of Heart Rate to Systolic Blood Pressure (F25); Hematocrit
(F26); Creatinine (F27). Patient mortality outcomes were strictly
defined as sepsis-related deaths. We established a multidisciplinary
endpoint adjudication committee (infectious disease specialists
and intensivists) to review all deaths, classifying sepsis-related
mortality as direct organ failure or secondary complications
(e.g., MODS) explicitly triggered by sepsis based on chart
documentation.

Handling of missing data: The overall data completeness
rate was 93.43% in 1,050 sepsis patients finally included in the
analysis. There were differences in the missing rates of each
characteristic, among which urine PH value had the highest missing
rate, and the missing rates of other indicators were all <3%.
The methods of median imputation for measurement data and
mode imputation for classification data were used to impute the
missing values of the original data.
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FIGURE 1
Schematic diagram of the SWSELM Model.

2.2 Self-weighted self-evolutionary
learning model

To address the complexity of high-dimensional clinical feature
data, we propose a Self-Weighted Self-Evolutionary Learning
Model (SWSELM). This model achieves self-adaptive evolution
through dynamic feature selection and hyperparameter co-
optimization. Specifically, during training, all input features are
retained and assigned adaptive weights. Low-contribution features
(with weights below a preset threshold) are pruned, while swarm
intelligence algorithms simultaneously optimize machine learning
hyperparameters.The base learner adopts a Support VectorMachine
(SVM), with the workflow illustrated in Figure 1.

2.2.1 Parameter encoding and feature selection
As shown in Figure 2, themodel jointly encodes feature weights,

feature threshold, and SVM hyperparameters. For an initial input
of eight features and 3 SVM hyperparameters, the encoding
space includes eight feature weights, one feature threshold, and 3
hyperparameters. During training, features with weights below are
truncated (set to zero), resulting in a refined feature subset (e.g.,
four retained features) with corresponding weights and optimized
hyperparameters.

2.2.2 SVM decision boundary construction
Using the selected N features and their weights, a high-

dimensional SVM decision boundary is constructed. For a patient
sample xi, the prediction function f (xi) is defined as:

f(xi) = sign(
N

∑
j=1

wj •K(xi,xj) + b)

where wj denotes feature weights, K is the kernel mapping, and b is
the bias term.

2.2.3 Dynamic threshold optimization
With model performance (AUC) as the optimization objective,

a swarm intelligence algorithm (e.g., Particle Swarm Optimization)
iteratively searches for the optimal parameter combination,
including feature weights w, feature threshold θ, and SVM
hyperparameters α. This mechanism enables closed-loop self-
evolution of feature selection and model parameter optimization.

2.3 Improved swarm intelligence
optimization algorithm

In the SWSELM model, complex optimization problems
involving feature weights, feature thresholds, and hyperparameters
are addressed using a swarm intelligence optimization algorithm.
The Nonlinear Contraction Elite Prairie Dog Optimization
Algorithm (NCEPDO) builds upon the established PDO
framework proposed by Ezugwu et al. (2022), integrating two core
enhancements.

2.3.1 Improvement strategy: elite
opposition-based learning (EOBL)

Elite opposition-based learning (EOBL) constructs the opposite
solution of the current feasible solution to increase population
diversity. The optimal solution is then selected from both the
current and the opposite solutions to form the new generation of
individuals.

2.3.2 Improvement strategy 2: nonlinear
contraction factor

The complexity of the algorithm’s search process makes it
challenging for a linearly decreasing convergence factor (a) to adapt
to the actual search conditions, as it does not fully represent the
true convergence and optimization process. This often results in
poor coordination between global search and local exploitation.
Therefore, we adopt a nonlinear adjustment strategy, defined as:

a = ainitial − (ainitial − a final) · exp(t/tmax − 1)

where initial and final are the initial and final values of (a),
(t) is the current iteration number, and max is the maximum
number of iterations. The convergence factor (a) exhibits nonlinear
dynamic changes with increasing iterations, effectively balancing the
algorithm’s global search and local exploitation capabilities, thereby
enhancing its optimization performance.

To verify the improved algorithm’s performance, our algorithm
evaluation adopted the 23 standard benchmark functions from
the IEEE CEC-2017 test suite1, including multimodal, hybrid, and
composite functions like Schwefel (F15), Rosenbrock (F6), and
Lunacek Bi-Rastrigin (F23) to validate optimization performance
under diverse scenarios (Sharma and Raju, 2024). It should be
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FIGURE 2
Schematic diagram of optimization parameter encoding.

emphasized that each benchmark function is only used to verify the
optimization ability of the swarm intelligence algorithm, and is not
directly involved in the training process of the SWSELM model. In
this study, the fitness function was defined as a direct mapping of
the objective function values, and the optimization objective was to
minimize the fitness value. Therefore, the decrease of fitness value
indicates the improvement of algorithm performance.

2.4 Model training and evaluation

To assess the quality of the model in terms of performance,
computational resources, and interpretability, and to mitigate the
risks of underfitting and overfitting, thereby enhancing the model’s
reliability and stability, we employed five-fold cross-validation.
We randomly selected 80% of the data as the training set and
performed five-fold cross-validation, with the remaining 20% used
as the test set. This approach effectively prevents overfitting on the
training set and yields more accurate predictions on the test set.
We compared the performance of widely used and stable machine
learning models, including: Logistic Regression (LR); Support
Vector Machine (SVM); eXtreme Gradient Boosting (XGBoost).
These models were selected based on their established performance
and reliability in various predictive analytics tasks.

The network classification results were quantitatively evaluated
using metrics such as sensitivity (SEN), precision (PRE), specificity
(SPE), accuracy (ACC), error rate (ER), and F1-Score (F1).
Additionally, receiver operating characteristic-area under curve
(ROC-AUC) and precision recall-area under curve (PR-AUC)
were chosen as the primary comprehensive evaluation metrics. All
metrics range from 0 to 1, with higher values indicating better
classification performance.

Interpretability Analysis: SHapley Additive exPlanations
(SHAP), grounded in cooperative game theory, quantified feature
contributions. Two visualization tools were deployed: SHAP
Summary Plot: Depicts feature importance and impact direction
using color gradients (red: high values, blue: low values). SHAP
Importance Plot: Ranks global feature contributions by absolute
SHAP values.

2.5 Statistical analysis

Statistical analyses were conducted using IBM SPSS software
(version 25.0), with significance set at (P < 0.05). The normality
of the data was tested using the Kolmogorov-Smirnov (K-S) test.
Data were presented as mean ± standard deviation (Mean ± SD)
and evaluated using independent two-sample t-tests. Comparisons
between categorical variables were performed using the chi-
square test.

3 Results

3.1 Performance testing results of
improved swarm intelligence optimization
algorithm

The experimental findings focus exclusively on the algorithm’s
core performance metrics rather than downstream model
applications. Comprehensive evaluations across 23 standard
benchmark functions reveal that our improved algorithm’s
optimization capabilities substantially outperform Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Multi-Verse
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TABLE 1 Model performance comparison on the training set.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.8049 0.5593 0.9231 0.7914 0.6600 0.8241 0.7874

SVM 0.8824 0.5085 0.9615 0.7976 0.6452 0.8541 0.8225

XGBoost 0.9388 0.7797 0.9712 0.9018 0.8519 0.9699 0.9549

SWSELM 0.8889 0.8136 0.9423 0.8957 0.8496 0.9760 0.9624

TABLE 2 Performance comparison of different models on the test set.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.6667 0.5333 0.8400 0.7250 0.5926 0.7333 0.6197

SVM 0.7500 0.6000 0.8800 0.7750 0.6667 0.8093 0.7757

XGBoost 0.7500 1.0000 0.8000 0.8750 0.8571 0.9000 0.8750

SWSELM 0.9231 0.8000 0.9600 0.9000 0.8571 0.9387 0.9390

Optimizer (MVO), and Sparrow Search Algorithm (SSA), with
detailed comparative data provided in Supplementary Figure S1.

3.2 Prediction model construction results

Subsequent analyses focus exclusively on machine learning
model evaluations rather than benchmark function optimization.
Comparative assessment of predictive models reveals that
our SWSELM achieved exceptional performance, attaining
training set ROC-AUC/PR-AUC scores of 0.9760/0.9624 and
test set values of 0.9387/0.9390, significantly outperforming
comparative models. Complete training and testing metrics
are respectively tabulated in Tables 1, 2 and visualized in
Figures 3, 4.

The final model determined a feature threshold of 0.02, the
SWSELM model identified 10 important features, ranked by
their weights as follows: NT-proBNP(F8), Lactate (F14), Albumin
(F23), Oxygenation Index (F1), Mean Arterial Pressure (F10), Age
(F5), Prothrombin Time (F3), Procalcitonin (F2), Heart Rate at
Admission (F11), andCreatinine (F27).Theweights of these features
are detailed in Figure 5.

3.3 Validation of model features

3.3.1 Lasso feature verification
Least Absolute Shrinkage and Selection Operator (LASSO)

regression was used to screen features of the data set to verify
the effectiveness of SWSELM model for screening features. LASSO
selected variables within one standard error of the minimum MSE
(Lambda1SE) in the sparse model, and screened eight variables.

NT-proBNP(F8), Lactate (F14), Albumin (F23), Oxygenation Index
(F1),MeanArterial Pressure (F10), Procalcitonin (F2), Prothrombin
Time (F3), Age (F5), as show in Figure 6.

3.3.2 Interpretability Analysis
SHAP analysis ranked predictive feature importance as

follows:1- NT-proBNP(F8), Lactate (F14), Albumin (F23),
Oxygenation Index (F1), Mean Arterial Pressure (F10), Age
(F5), Prothrombin Time (F3), Procalcitonin (F2), Heart Rate at
Admission (F11), and Creatinine (F27), as show in Figure 7.

3.3.3 Analysis of the impact of selected features
on mortality risk in sepsis patients

The univariate analysis of the 10 features selected by the
SWSELM model showed statistically significant differences between
the two groups of patients. These 10 features were then included in
a multivariate logistic regression model, with the outcome variable
being mortality (survival = 0, death = 1). Using a stepwise selection
method, five variables were ultimately retained in the model: NT-
proBNP, Lactate, Albumin, Oxygenation Index, and Mean Arterial
Pressure (OR = 4.889, 3.770, 3.083, 1.872, 1.297). These results are
consistent with the top five features identified by the SWSELM
model as show in Tables 3, 4.

3.4 Analysis of the value of top features

Models were trained using the top 5, top 8, and
top 10 features respectively. The results, as detailed in
Supplementary Figure S2 and Supplementary Figure S3, confirmed
the predictive value of the top five features. In practical prediction
scenarios, utilizing the top five features alone can achieve
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FIGURE 3
Performance Comparison of Different Models on the Training Set. Note: (A) ROC curve; (B) Precision-Recall curve.

FIGURE 4
Performance Comparison of Different Models on the Test Set Note: (A) ROC curve; (B) Precision-Recall curve.

satisfactory results. For ease of data collection in clinical practice,
the top five features can be directly used for prediction.

3.5 Clinical translation and application -
development of a visualization system

Our feature selection process identified the top-weighted
features affectingmortality risk in sepsis patients. In clinical practice,
the complex interplay of these features makes it challenging to
intuitively assess the mortality risk of sepsis patients. Additionally,
the high entry barrier for existing artificial intelligence applications
hinders their clinical adoption. To address this issue, this study

innovatively developed a practical visualization system based on the
top five weighted features. This system offers advantages in terms of
intuitiveness, convenience, and practicality.

During the use of the visualization system, users only need
to input specific values for the five features—NT-proBNP, Lactate,
Albumin, Oxygenation Index, andMeanArterial Pressure—into the
“Baseline Information” section. The system will then automatically
calculate the mortality risk level, as shown Figure 8. The
visualization interface integrates risk stratification thresholds
(default 50%) validated through five-fold cross-validation.
Clinicians may dynamically modify decision boundaries
(±10%) based on specific clinical scenarios, with corresponding
sensitivity/specificity tradeoffs displayed in real-time.
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FIGURE 5
Feature weights for the SWSELM Model.

FIGURE 6
Plot of results from LASSO regression. Note: (A) LASSO trajectory; (B) LASSO cross-validation fit plot.

4 Discussion

Sepsis represents a systemic inflammatory response syndrome
triggered by diverse etiological factors and stands as one of the
most prevalent critical conditions in clinical practice. Characterized
by organ dysfunction and tissue damage, this life-threatening state
typically manifests following severe infections, traumatic injuries,
burns, or major surgical procedures (Mutchmore et al., 2023;
Miller, 2023; Charlson et al., 2022). Affecting populations across all
age groups, sepsis carries substantial mortality risks ranging from
30% to 60%, with multiple organ dysfunction syndrome (MODS)
constituting the primary fatal mechanism (Gauer et al., 2020;
Mirijello et al., 2020; Mushtaq and Kazi, 2022; Fleiss et al., 2023).
Consequently, early identification of critical clinical determinants

and mortality risk prediction enables healthcare teams to intensify
patient monitoring, implement timely therapeutic interventions,
ensure patient safety protocols, and ultimately reduce fatality
probabilities.

The recent expansion of artificial intelligence applications
in medical domains has drawn significant attention to sepsis
prediction model development (Yue et al., 2022; Hou et al.,
2020). Sophisticated AI algorithms capable of deep analysis and
processing of extensive clinical datasets have markedly enhanced
the precision and sensitivity of mortality risk assessment in septic
patients. Numerous investigations have successfully established
AI-driven sepsis mortality prediction frameworks employing
diverse computational approaches including support vector
machines, neural networks, and ensemble methods, providing
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FIGURE 7
Machine Learning Interpretability Visualization. Note: (A) SHAP summary plot; (B) SHAP feature importance ranking.

TABLE 3 presents the univariate analysis of the selected features on the mortality risk of sepsis patients.

Variables Survival group (n = 877) Death group (n = 173) χ2/t(F) P

Age (Year) 74.21 ± 5.25 77.35 ± 5.22 7.196 <0.001

NT-proBNP(pg/mL) (64.913) <0.001

<2000 478 (54.50) 41 (23.70)

2000–10,000 281 (32.04) 78 (45.09)

10,001–20,000 66 (7.53) 25 (14.45)

>20,000 52 (5.93) 29 (16.76)

Lactate (mmoL/L) 2.26 ± 0.35 6.54 ± 1.03 97.840 <0.001

Albumin (g/L) 28.36 ± 1.03 25.42 ± 1.05 34.202 <0.001

Prothrombin Time(s) 17.46 ± 2.36 20.68 ± 2.29 16.480 <0.001

Procalcitonin (ng/L) 14.29 ± 7.31 17.77 ± 9.18 5.469 <0.001

Heart Rate at Admission (times/min) 116.58 ± 14.67 135.86 ± 15.25 15.695 <0.001

Oxygenation Index (%) (41.883) <0.001

<150 49 (5.59) 33 (19.08)

150–300 346 (39.45) 74 (42.77)

>300 482 (54.96) 66 (38.15)

Creatinine (μmol/L) 135.84 ± 18.95 389.75 ± 22.33 156.162 <0.001

Mean Arterial Pressure (mmHg) (106.184) <0.001

<70 65 (7.41) 61 (35.26)

70–105 746 (85.06) 102 (58.96)

>105 66 (7.53) 10 (5.78)
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TABLE 4 Multivariate analysis of the impact of selected features on mortality risk in sepsis patients.

Feature β SE Wald P OR 95% CI

NT-proBNP 1.587 0.562 7.974 0.006 4.889 3.788 ∼ 5.991

Lactate 1.327 0.462 8.250 0.004 3.770 2.864 ∼ 4.675

Albumin 1.126 0.176 40.931 <0.001 3.083 2.738 ∼ 3.428

Oxygenation Index 0.627 0.216 8.426 0.004 1.872 1.449 ∼ 2.295

Mean Arterial Pressure 0.563 0.234 5.789 0.016 1.756 1.297 ∼ 2.215

Constant −2.873 0.365 61.956 <0.001 0.057 —

FIGURE 8
Interactive clinical decision-support interface displaying real-time mortality risk calculations using NT-proBNP, Lactate, Albumin, Oxygenation Index,
and MAP inputs. Note: (A) Low risk of death prediction results; (B) High risk of death prediction results.

clinicians with granular risk stratification for informed decision-
making (Peiffer-Smadja et al., 2020; Zhang WY. et al., 2023).
Nevertheless, persistent challenges regarding model interpretability
and practical clinical implementation remain unresolved. While
existing research has predominantly focused on theoretical
model development, our study bridges this translational gap
through the novel implementation of the NCEPDO algorithm
to construct the SWSELM model–a specialized analytical tool
specifically optimized for clinical sepsis management. Compared
to conventional single-algorithm machine learning approaches,
our methodology demonstrates superior alignment with real-
world clinical data patterns through enhanced feature extraction
capabilities. Furthermore, we have pioneered the development of
an integrated visualization system for direct clinical application,
a critical advancement largely unaddressed in previous research
endeavors. When compared against existing sepsis mortality
models (Hou et al., 2020; Yan et al., 2024), our SWSELM
framework demonstrates three paradigm-shifting advantages:Dual-
Domain Feature Validation: The concurrent implementation of

automated machine selection via NCEPDO optimization alongside
traditional regression confirmation resolves the interpretability
limitations inherent in conventional black-box model architectures.
Clinical Decision Velocity: Our integrated visualization system
reduces clinical decision latency from ∼30 min (required for
traditional scoring systems) to <2 min, effectively addressing
known implementation barriers in acute care settings. Generalizable
Predictive Precision: Achieving an AUC of 0.9387 in general sepsis
populations versus the 0.82-0.91 range documented in prior models
focused exclusively on severe sepsis cohorts, while requiring only
five essential biomarkers. Notably, this performance is maintained
with 93.8% specificity at 88.9% sensitivity thresholds.

Our sepsis-specific mortality definition enhances causal
inference between predictors and sepsis pathophysiology. For
example, NT-proBNP-driven myocardial suppression and lactate-
associated microcirculatory failure align with sepsis-related
MODS mechanisms. Compared to all-cause mortality metrics that
may incorporate unrelated comorbidities, this approach reduces
confounding at the cost of generalizability to healthcare systems
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without robust endpoint adjudication processes. This study utilized
an improved swarm intelligence optimization algorithm to identify
five significant features for the final model: NT-proBNP, Lactate,
Albumin, Oxygenation Index, and Mean Arterial Pressure (MAP).
The results of this study are consistent with those obtained from
traditional multivariate analyses, further validating the robustness
of the mortality prediction model for sepsis patients based on
these five predictors. The following explains why these factors are
considered independent risk factors for mortality in sepsis patients:
(1) NT-proBNP: Sepsis often leads to myocardial suppression, and
NT-proBNP is primarily synthesized and secreted by ventricular
myocytes. Its levels significantly increase when the heart is subjected
to inflammatory damage or volume overload. Elevated NT-proBNP
levels correlate with the severity and prognosis of sepsis. High
levels indicate a higher likelihood of heart failure, which can result
in inadequate perfusion of systemic organs, leading to multiple
organ dysfunction syndrome (MODS), a major cause of death in
sepsis patients (Zheng Y. et al., 2023). (2) Lactate: Sepsis causes
microcirculatory disturbances and reduced tissue perfusion. Lactate
is a byproduct of anaerobic metabolism, and its levels rise when
tissues are hypoxic, as cells rely on anaerobic glycolysis for energy
production. Persistently elevated lactate levels reflect ongoing
tissue hypoperfusion and indicate an imbalance between oxygen
supply and demand, marking severe illness. High lactate levels can
lead to metabolic acidosis, which inhibits myocardial contractility
and reduces vascular responsiveness to catecholamines, further
exacerbating tissue hypoperfusion and organ dysfunction, especially
in the heart, liver, and kidneys, thus increasing mortality risk
(Kalimouttou et al., 2023). (3) Albumin: Albumin is a crucial
plasma protein that maintains colloid osmotic pressure. In sepsis
patients, decreased albumin levels lead to reduced colloid osmotic
pressure, causing vascular fluid leakage, tissue edema, and impaired
organ function. Additionally, albumin binds to various drugs
and toxins. Reduced albumin levels in sepsis impair its binding
capacity, increasing the toxicity of endotoxins and exacerbating
the inflammatory response, which can cause more severe damage
and increase the risk of death (Fan et al., 2023). (4) Oxygenation
Index: This is an important indicator of pulmonary oxygenation
function. Sepsis can cause acute respiratory distress syndrome
(ARDS), damaging the alveolar-capillary membrane and impairing
gas exchange. A decreased oxygenation index indicates the lungs’
inability to effectively transfer oxygen from the alveoli to the blood,
leading to hypoxia. Persistent low oxygenation indices result in
systemic tissue hypoxia, impairing cellular aerobic metabolism and
causing cell dysfunction, particularly in oxygen-sensitive tissues
like the brain and myocardium. This can lead to multiple organ
failure and increase the likelihood of death (She et al., 2023).
(5) Mean Arterial Pressure (MAP): MAP is crucial for ensuring
organ perfusion. In sepsis, changes in vascular tone can lead to
vasodilation and hypotension. Persistently low MAP results in
inadequate perfusion of vital organs such as the kidneys and liver,
causing organ dysfunction, worsening the condition, and ultimately
leading to death (Zheng R. et al., 2023; Liu et al., 2023).

Additionally, based on the NCEPDO algorithm model, this
study developed a predictive tool that can be integrated into standard
work computers. Compared to the nomogram model constructed
using logistic regression by Guo et al. (2022), Taneja et al. (2021),
this online predictive tool features a more straightforward and

intuitive user interface, making it more convenient and efficient
to use. Clinicians can quickly obtain the mortality risk of sepsis
patients by simply inputting their medical history, providing
valuable reference for clinical decision-making. Patients can also
use this system to easily assess their personal risk, enhancing the
autonomy and accuracy of their health management (Zhang et al.,
2022; Ning et al., 2023; Zhang Y. et al., 2023). Previous machine
learning models often faced challenges in interpretability and
clinical application. However, the sepsis patient clinical outcome
prediction model based on the NCEPDO algorithm developed in
this study not only demonstrates excellent predictive performance
but also effectively addresses the practical limitations of machine
learning models in clinical settings. This provides a novel and
effective solution for the early prediction andmanagement of clinical
outcomes in sepsis patients (Yan et al., 2022). The integration
of SHAP analysis has significantly enhanced the interpretability
of our model by elucidating the individualized contribution of
clinical features to sepsis mortality predictions. SHAP values
reveal nuanced patterns: elevated NT-proBNP and lactate levels
consistently correlate with increased mortality risk (positive SHAP
values), whereas higher albumin levels and oxygenation indices
mitigate risk (negative SHAP values). This directional granularity
aligns with established sepsis pathophysiology and validates our
feature selection strategy for the visualization system. Importantly,
SHAP analysis provides clinical interpretability beyond global
feature importance rankings—for instance, it quantifies how
minor variations in mean arterial pressure dynamically influence
individual patient risk trajectories. This framework supports the
clinical utility of our top five features by demonstrating their
biological plausibility and contextual interactions, thereby bridging
the gap between algorithmic outputs and bedside decision-making.
Future studies could leverage SHAP-driven insights to refine
dynamic risk thresholds for early intervention strategies.

5 Summary

Our systematic analysis establishes NT-proBNP, lactate,
albumin, oxygenation index, and MAP as independent mortality
risk determinants in sepsis patients. Through NCEPDO-optimized
swarm intelligence, we developed the SWSELM prediction model
and its associated clinical visualization system.This dual-component
solution combines technical sophistication with practical usability
through intuitive interfaces and rapid decision support capabilities.

5.1 Study limitations

Despite the significant findings, this study has several limitations.
First, it is a retrospective, single-center study, with data primarily
sourced from a specific region and hospital. This may limit
the representativeness of the sample and the generalizability of
the model. Second, while the NCEPDO algorithm demonstrated
excellent performance, its complexity and computational cost are
relatively high, potentially restricting its use in resource-limited
healthcare settings. Additionally, although the model’s predictions
are accurate, its interpretability needs further improvement to
be better understood and accepted by clinicians and patients.
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Potential Algorithmic Biases Several limitations and intrinsic biases
merit emphasis: Selection/Geographical Bias: As a single-center
retrospective study from Zhejiang Province, our model incorporates
region-specific antimicrobial practices, possibly inflating predictors
tied to microbial resistance. External validation cohorts from diverse
settings are in preparation. Temporal Measurement Bias: Reliance
on admission biomarkers (NT-proBNP/Lactate) may undercapture
dynamic deterioration. We mitigated this by integrating oxygenation
trajectories through iterative cross-validation. FeatureExtractionBias:
Excluding socio-economic factors (insurance type, rural care access)
may underestimate disparities in resource-limited contexts. Future
versions will incorporate WHO Healthcare Access Indicators.

5.2 Future research prospects and
possibilities

Emerging strategies demonstrate promise in addressing these
limitations: hybrid models combining NCEPDO algorithm with
Shapley additive explanations (SHAP) can quantify feature attribution
bias. Additionally, federated learning architectures could enable
multicenter training while preserving data privacy——our team has
initiated collaborative trials with five tertiary hospitals across China.
Data Diversity and Model Generalization: Expand the scale and
diversity of the dataset, including data from different regions, races,
andhealthcare institutions, to validate themodel’s generalizability and
applicability. Algorithm Optimization and Computational Efficiency:
Further optimize theNCEPDOalgorithm to reduce its computational
cost and enhance its efficiency in real clinical environments. Model
Interpretability: Improve the interpretability of themodel anddevelop
more intuitive visualization tools to help clinicians and patients
better understand the prediction results. Clinical Trials and Practical
Application: Conduct trials in real clinical settings to evaluate the
practical effectiveness and application value of the predictive tool,
and refine the model and tool based on feedback. Multidisciplinary
Collaboration: Leverage the combined expertise of emergency
medicine, critical care, data science, and clinical informatics to
advancethedevelopmentandapplicationofpredictivemodels, thereby
improving sepsis patient management and ensuring patient safety.

Through these efforts, future research can further enhance
the accuracy, practicality, and interpretability of sepsis outcome
prediction models, providing stronger support for clinical decision-
making and patient health management.
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SUPPLEMENTARY FIGURE 2
Comparative performance metrics of top 5/8/10 features in training set showing
differential contributions to sepsis mortality prediction Note: (A) ROC curve; (B)
Precision-Recall curve.

SUPPLEMENTARY FIGURE 3
Comparative performance metrics of top 5/8/10 features in test set showing
differential contributions to sepsis mortality prediction Note: (A) ROC curve; (B)
Precision-Recall curve.
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