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The endothelium represents a crucial regulator of vascular homeostasis.
Since endothelial cells mainly rely on glycolysis rather than on oxidative
phosphorylation for their ATP generation, this allows capillaries to transport the
maximum amount of oxygen to oxygen-starved tissues, where it can be used
for energy generation. However, the occasionally high levels of oxygen and
of reactive oxygen species (ROS) in the blood vessels requires a balancing act
between pro- and anti-oxidative mechanisms in the endothelium. When this
balance is disturbed by excessive oxidative stress, as can occur in bacterial and
viral pneumonia, endothelial barrier function can be compromised. This review
will discuss some of the recently discovered barrier-protective mechanisms
during bacterial and viral pneumonia, mediated through the reduction of
oxidative stress in lung capillaries by the epithelial sodium channel (ENaC).
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Introduction

The increased levels of oxygen over time in the earth’s
atmosphere provided the crucial fuel for the evolution of complex,
multicellular organisms with high energy demands. Energy
production through aerobic respiration comes with the risk of the
generation of harmful incompletely reduced reactive oxygen species
(ROS). The three primary species include the superoxide anion
(O2

•−), hydrogen peroxide (H2O2) and the hydroxyl radical (HO•).
All of these are all oxygen-containing compounds with reactive
properties. ROS represent very potent oxidants that, when present
at high concentrations, can cause physiologic dysfunction within
the cells (Hsia et al., 2013). In order to minimize ROS toxicity,
humans have evolved the circulatory system with hemoglobin
in erythrocytes to deliver oxygen efficiently to tissues, thereby
preventing the accumulation of excessive oxygen in other areas of
the body (Ortiz-Prado et al., 2019). Pulmonary venous and capillary
endothelial cells are particularly challenged by oxidative stress, since
they are at times exposed to O2-rich environments. To maximize
O2 delivery to tissues and perivascular cells, these cells use the
glycolytic pathway (Xiao et al., 2021), rather than mitochondrial
respiration -classically used by most other eukaryotic cells-as the
main ATP-generating pathway.

Optimal gas exchange between the alveoli and the lung
capillaries requires tight barriers. The endothelial barrier, made
up of adherens junctions and tight junctions, is essential for
controlling the leakage from blood vessels into tissues andmoreover
represents the first line of defense against inflammatory or infectious
insults in the vasculature (Dejana, 2004). Dysregulated endothelial
permeability significantly contributes to morbidity and mortality.
This is particularly relevant in microvascular endothelial beds, like
in lung capillary endothelial cells in the acute respiratory distress
syndrome (ARDS) (Price and Garcia, 2024; Wick et al., 2024;
Tzotzos et al., 2020; Gonzales et al., 2015) (the definition of which
was recently updated (Matthay et al., 2024) and in microvascular
endothelial cells in the blood brain barrier as was shown in mouse
models of Alzheimer disease (Hossain et al., 2024).

The endothelial cells associated with different parts of the
vasculature appear to have somewhat different properties from
one vascular bed to another. Lung microvascular endothelial cells
(MVEC) are not characterized as well as the endothelial cells of
larger vessels, but they are adapted to be highly permeable to
promote gas exchange and movement of low molecular weight
organics and ions without normally being permeable to serum
proteins. One membrane protein, the epithelial sodium channel
(ENaC), has been described in several endothelial beds, but
until recently its presence was not demonstrated in MVEC.
Using commercially available primary cultures of human lung
microvascular endothelial cells (HL-MVEC; Lonza Biosciences),
our group recently described functional endothelial ENaC using
electrophysiological and pharmacological methods (Czikora et al.,
2017; Romero et al., 2024). Studies with endothelial ENaC-α
knockout mice indicated an important role of the endothelial
ENaC channel for capillary barrier function in models of bacterial
pneumonia (Romero et al., 2024). Although mechanisms to
counteract oxygen toxicity, including ROS-neutralizing antioxidant
enzymes like superoxide dismutase (SOD), glutathione peroxidase
and catalase have been well studied, this short review will discuss

recent discoveries regarding the interaction between the epithelial
sodium channel (ENaC) and pro-oxidative mechanisms in capillary
endothelial cells and the relevance thereof for barrier function
during bacterial and viral pneumonia.

Patho-mechanisms of impaired pulmonary
endothelial barrier function in
pneumococcal pneumonia and ARDS

As pointed out above, efficient gas exchange in the lungs requires
a functional alveolar fluid clearance (AFC) capacity by type 1 and 2
alveolar epithelial cells (AT1/2), as well as the preservation of a tight
alveolar-capillary barrier. This barrier not only facilitates diffusion
of O2 and CO2 between the alveoli and the blood capillaries, but
also controls movement of fluid, proteins and cells from the vascular
compartment and interstitial space into the alveoli (Su et al., 2024).
Adjacent endothelial cells express both adherens and tight junctions
and these transmembrane adhesive proteins promote homophilic
interactions that provide a pericellular zipper-like structure along
the cell border. Cell adhesion at adherens junctions requires vascular
endothelial cadherin (VE-cadherin), which is in turn linked to
intracellular proteins like β-catenin, plakoglobin and p120. At tight
junctions, adhesion is mediated by claudins, occludin and members
of the junctional adhesion molecule (JAM) family (Dejana, 2004).

A common characteristic feature in autopsies of patients that
succumbed to ARDS is the severely altered permeability of the
alveolar-capillary barrier (Price and Garcia, 2024). The increase in
permeability is a result of dynamic changes in cytoskeletal structure
and adherens junction disorganization, such as the detachment
of VE-cadherin from the actin cytoskeleton (Su et al., 2024;
Gonzales et al., 2014). These cytoskeletal changes are due to myosin
light chain phosphorylation and/or microtubule rearrangement.
Either of these can be induced by pro-inflammatory factors, such as
thrombin and TNF or by bacterial and viral compounds, such as LPS
(Gonzales et al., 2014; Song et al., 2023), pneumolysin (Lucas et al.,
2012a; Lucas et al., 2012b; Chen et al., 2014; Batori et al., 2022) or
the S1 subunit of the SARS-CoV2 Spike protein, which contains the
receptor binding domain for human ACE2 (Romero et al., 2023).

To improve gas exchange in patients with severe ARDS, high
ventilator pressures are often required, but these can further
aggravate barrier dysfunction and inflammation and as such
induce ventilator-induced lung injury (VILI) (Johannes et al.,
2014; Vieillard-Baron et al., 2016). Currently, barrier-strengthening
Tie2-based strategies using the Tie2 agonist vasculotide are being
evaluated in preclinical animal models combining bacterially-
induced pneumonia with high ventilation pressures (Lask et al.,
2022). Nonetheless, despite recent advances in the treatment of
ARDS, i.e., low tidal volume ventilation (Amato et al., 1998;
Brower et al., 2000), ventilation in a prone position (Gattinoni et al.,
2001) and neuromuscular blockade (Huang et al., 2017), mortality
remains high at about 40% (Wick et al., 2024). There is currently a
complete lack of pharmacologic treatments for severe ARDS which
is refractory to conventional therapy. Therefore the identification of
novel therapeutic targets inARDS associatedwith severe pneumonia
remains an area of high priority.

A major complication in the development of pharmaceuticals to
treatARDS is the existence of hyper- andhypo-inflammatory patient
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phenotypes, each with distinct transcriptional and metagenomic
features (Sinha et al., 2023; Neyton et al., 2024). A cohort of critically
ill sepsis patients with hyperinflammatory ARDS had significantly
increased levels of glycolyticmetabolites such as lactate and pyruvate
compared with patients with hypo-inflammatory ARDS, suggesting
the involvement of excessive glycolysis in the pathology of hyper-
inflammatory ARDS (Alipanah-Lechner et al., 2023). Moreover,
following a transition from the hyper-to the hypo-inflammatory
state survival of ARDS patients improved (van Amstel et al., 2024).
A major challenge in developing novel pharmacological agents to
treat ARDS is the recent observation of the divergent reactions
to corticosteroid treatment in hyper-versus hypo-inflammatory
phenotypes, reducing mortality in the former, but increasing it in
the latter patient group (Sinha et al., 2021).

Major comorbidities that occur with ARDS are bacterial
and viral pneumonia (Ha et al., 2024; Vaughn et al., 2024).
One of the main etiological agents of mortality in children
under 5 years of age worldwide and of community-acquired
pneumonia (CAP) in the elderly is the facultative anaerobe, Gram-
positive bacterium, Streptococcus pneumoniae. Mortality rates in
individuals with CAP vary according to the treatment setting,
with less than 1% in outpatient care, up to 18% in hospital
wards and even reaching 47% in the intensive care unit (ICU)
(Jain et al., 2015; Cavallazzi et al., 2020).

Pathological specimens from ARDS patients reveal diffuse
alveolar damage. Moreover, animal studies of bacterial pneumonia-
associated ARDS have demonstrated both alveolar epithelial and
lung endothelial injury with accumulation of protein-rich fluid in
the alveolar space (Zhang et al., 2024). The ability of pneumococci
to promote lung disease in the human host depends not only
on microbial virulence factors, such as the pore-forming toxin
pneumolysin (Witzenrath et al., 2006) and H2O2 (Mraheil et al.,
2021), but also on the age and on genetic and environmental
factors. All of these affect the concerted ability of the immune
system to clear bacteria on the one hand and the susceptibility
to develop subsequent tissue damage on the other hand (Ochoa-
Gondar et al., 2023).

Regulation of vascular ROS production

Upon stimulation by inflammatory mediators such as TNF,
otherwise quiescent endothelial cells become activated to produce
significantly increased levels of NADPH oxidase-generated ROS
(Gertzberg et al., 2004) with increased glycolysis mediated by
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3)
(Cao et al., 2019). ROS can in turn combine with nitric oxide
(NO) to generate barrier-disruptive peroxynitrite (Neumann et al.,
2006). Reduction of endothelial nitric oxide synthase (eNOS)-
mediated NO generation was shown to promote pulmonary
microvessel leakage in eNOS−/− mice (Predescu et al., 2005),
suggesting a barrier-protective effect of eNOS-derived NO in the
pulmonary microvasculature (Di Lorenzo et al., 2013). Increased
ROS generation was shown to impair the expression and activity
of eNOS (Neumann et al., 2004) and to increase the activity of
arginase 1, an enzyme competing with eNOS for the common
substrate arginine (Romero et al., 2008; Chandra et al., 2012). TNF
appears to be critical for arginase 1 induction, since TNF−/− mice

had significantly reduced endothelial arginase activity following
ischemia and reperfusion (Gao et al., 2007). All of these events
involve increased endothelial oxidative stress and can disrupt
the vascular integrity by reducing adherens and tight junction
protein expression to eventually induce endothelial cell death.
Moreover, ROS can increase expression of adhesion molecules
in endothelium and as such foster transendothelial migration
of circulating leukocytes (Wang and Doerschuk, 2000). Severely
restricted blood flow, as can occur in TNF-induced multiple
organ failure or in the lungs following lung transplantation,
activates the mechano-sensing machinery in the endothelium that
generates NADPH oxidase-mediated ROS to subsequently drive
neutrophil influx (Noel et al., 2013).

Endothelial cells express several ROS-generating enzymes,
including the NADPH oxidases 1, 2, 4 and 5 (NOX-1, -2, -
4 and -5). Of these, NOX-2, in particular, has been shown
to contribute to endothelial ROS generation in inflammatory
conditions associated with infection and ischemia (Drummond and
Sobey, 2014; Violi et al., 2015). Notably, the presence of soluble
NOX2-derived peptide (sNOX2-dp), a marker of NOX2 activation,
is increased in the circulation of patients with pneumococcal
pneumonia (Violi et al., 2015; Violi et al., 2020) and in those with
peripheral artery disease (Loffredo et al., 2013). However, NOX2-
derived ROS generation can also confer beneficial activities in
endothelium, since it stimulates angiogenesis in a mouse model of
myocardial infarction (Youn et al., 2019).

Pneumococcal infection can cause extensive ROS generation
in pulmonary microvascular endothelium (Li et al., 2018). The
pore-forming toxin pneumolysin is the most important virulence
factor produced by S. pneumoniae (Anderson and Feldman,
2017). It has been proposed as the main inducer of ROS
generation in mammalian cells (Martner et al., 2008). Upon
pore formation following the binding to cholesterol-containing
membrane surfaces, pneumolysin induces a rapid influx of Ca2+,
which can activate protein kinase C-α (Lucas et al., 2012a) and
this in turn potently activates NOX2 (Schröder et al., 2017;
Shafique et al., 2017). NOX2 activation requires the formation of
a complex consisting of two surface membrane proteins: p22phox

and gp91phox with the four cytosolic proteins p47phox, p67phox,
p40phox and the small GTPase Rac. The cytosolic subunits need to
be phosphorylated by kinases like PKC in order to be recruited
to the surface membrane (Schröder et al., 2017) (Figure 1). The
role of NOX2 in pneumolysin-induced barrier dysfunction is also
supported by the observation that a specific peptide inhibitor of
NOX2 -gp91dstat-significantly blunts hyperpermeability induced
by the toxin in human lung microvascular endothelial cell (HL-
MVEC) monolayers, as measured by electrical cell substrate
impedance sensing (Romero et al., 2024).

Another source of increased endothelial ROS generation
are defective mitochondria. Apart from activating NOX2,
pneumolysin also induces mitochondrial dysfunction which
increases mitochondrial ROS generation in human lung MVEC
(Romero et al., 2024; Shafique et al., 2017). It should be noted that
a cross talk between mitochondrial ROS and NOX-derived ROS
was recently suggested and that this intracellular communication
could represent a ROS amplification mechanism in distinct
subcellular compartments, relevant for activation of redox signaling
(Shafique et al., 2017; Fukai and Ushio-Fukai, 2020).
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FIGURE 1
Upon autolysis, antibiotics treatment or upon induction by H2O2, S. pneumoniae (Sp.) releases the cholesterol-binding toxin pneumolysin, which,
following pore formation, induces Ca2+ influx in infected cells (box 1). Increased intracellular Ca2+ activates PKC-α (box 2), which in turn phosphorylates
NADPH oxidase 2 (NOX2) cytoplasmic subunits (box 3), thereby promoting their recruitment to the surface membrane, required for full activation of
the enzyme. Increased NOX2 activity (box 4) promotes excessive generation of ROS in lung endothelial cells, which, together with the PKC-α
activation, impairs ENaC activity (box 5). ENaC, activated by TIP peptide (box 6) can act as a repressor of NOX2 expression potentially upon binding to
the gp91phox subunit (box 7), thus inhibiting assembly of the NOX2 complex or it can inhibit PKC-α-mediated phosphorylation of the subunits and thus
NOX2 activation (box 8). Based on our findings, we hypothesize that during pneumococcal pneumonia, direct activation of ENaC by the TIP peptide
reduces pneumococci-induced endothelial NOX2 activation and as such improves capillary barrier function, without affecting bactericidal activity of
neutrophils, which do not express ENaC.

H2O2 as a virulence factor of pneumococci

Apart from superoxide generated by host cells upon
pneumococcal-induced NOX2 activation, S. pneumoniae, which
lacks catalase and common regulators of peroxide stress resistance,
can by itself generate and release millimolar levels of H2O2 as a
virulence factor (Mraheil et al., 2021). These H2O2 levels are high
enough to kill or inhibit the growth of other common inhabitants
of the respiratory tract, such as Haemophilus influenzae and
Staphylococcus aureus, presumably as an evolutionary strategy to
promote S. pneumoniae colonization (Regev-Yochay et al., 2006).

The main source of H2O2 generation in pneumococci is
the enzyme pyruvate oxidase, which catalyzes the conversion
of pyruvate to the phosphoryl donor, acetyl phosphate (Ac-P),
while releasing CO2 and H2O2 as by-products (Mraheil et al.,
2021). Another enzyme, lactate oxidase (LctO), positively impacts
pyruvate flux through pyruvate oxidase, since it converts lactate to
pyruvate. Importantly, actions of H2O2 overlap and complement
those of pneumolysin in modulating the host immune responses
and promoting organ injury (Pericone et al., 2000). As such,
the release of pneumolysin, which normally occurs in the lungs
by autolysis or after antibiotic-mediated lysis is defective in
pneumococcal mutants that lack the pyruvate oxidase gene, whereas
it is restored upon complementation of the enzyme. Since catalase
supplementation, but not exogenous H2O2, prevents the release
of pneumolysin in some pneumococcal strains, indicating the
involvement of intracellular, rather than secreted H2O2 in this

process (Bazant et al., 2023). Infection of H441 cells with wild
type pneumococci was demonstrated to alter the kinome of
the cells. This occurs at least partially through H2O2-mediated
downregulation of Protein kinase B (Akt1) and activation of
lymphocyte-specific tyrosine protein kinase (Lck) via H2O2-
mediated phosphorylation (Bazant et al., 2024).

Dual role of NOX2 in pneumococcal
pneumonia

While there has been a focus on the pathogens causing
pneumonia in recent years, there is an urgent need for research
from the perspective of the host, especially in order to develop
strategies to protect lung barrier function and alveolar fluid
clearance. The problem is that ROS, such as H2O2 and superoxide
play an important but highly complex role in pneumococcal
pneumonia-associated ARDS. On the one hand, ROS generation
is a conserved strategy of host phagocytic cells -primarily
neutrophils, monocytes and macrophages-to facilitate clearance
of bacteria at the infection site. Bacteria can be engulfed and
enclosed in phagosomes, into which superoxide is released by
activated NOX2. The resulting superoxide O2

− then dismutates
to H2O2 through the action of superoxide dismutase (SOD)
in macrophages. H2O2 can then further be converted by
myeloperoxidase (MPO) in neutrophils to hypochlorous acid, a
highly microbicidal species (Winterbourn et al., 2016).
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On the other hand, ROS generated in alveolar epithelial
and capillary endothelial cells can impair alveolar liquid
clearance mechanisms and contribute to dysfunction of the
capillary endothelial barrier, respectively. In view of the dual
role of NOX2 in pneumonia, strategies that globally reduce
NOX2 activity bear the risk of increasing susceptibility to
infections (Diebold et al., 2015). Novel therapies that can reduce
deleterious oxidative stress in the alveolar epithelium and capillary
endothelium, without significantly affecting anti-bacterial ROS
generation in phagocytes seem therapeutically promising in
pneumonia and ARDS.

Effects of ROS on sodium transport in
alveolar epithelial cells

Of all organs in the human body, the lungs are exposed to
the highest levels of free O2, mainly originating from inspired
air, with concomitant increased ROS production. Shortly after
birth, the newborn lung must adapt from an embryonic fluid-
secreting tissue to a fluid-absorbing organ, in order to allow for
breathing normal ambient air. In particular, AT1/2 are exposed
to the relatively high levels of free O2 in inspired air, which can
lead to the generation of additional ROS. As such, physiological
concentrations of H2O2 in the alveolar space in man are in the
1–10 μM range (Corradi et al., 2008).

Most ion transporters evolved from simpler channel-forming
peptides following intragenic duplication events into more
complex multi-domain transporters with diverse functions.
The epithelial sodium channel (ENaC), consisting in its native
configuration of three subunits: α, β and γ, is an example of
such a multifunctional ion channel, since, apart from controlling
blood pressure, it also modulates alveolar fluid clearance
(AFC), by regulating vectorial Na+ transport in AT1/2 cells
to control alveolar fluid balance and thereby assure normal
gas exchange in the lungs (Matalon and O'Brodovich, 1999;
Hummler et al., 1997).

Perinatal exposure of resident AT1/2 cells to O2-derived
ROS was proposed to deliver a signal for initiating the uptake
of Na+ by ENaC. This idea is supported by the observation
that an increase in oxygen tension of up to 100 mmHg can
augment Na+ transport within 6 h in fetal distal lung epithelial
(FDLE) cells (Baines et al., 2001).

The overall Na+ transport capacity of ENaC is determined by
the product of the channel’s surface density (N) and the mean open
probability of each individual channel (Po); thus, by the product
NPo. Na+ is then secreted in the interstitial space by the basolateral
Na+-K+-ATPase. This vectorial Na+ transport is necessary to
promote fluid clearance (AFC) from the newborn and the adult
lung. The crucial role of ENaC in this process is underscored by the
observation that mice lacking the pore-forming α subunit of ENaC
die of alveolar flooding at birth (Hummler et al., 1996). Impairment
of AFC capacity correlates with morbidity and mortality in patients
with the acute respiratory distress syndrome (ARDS) (Ware and
Matthay, 2001).

The increase in sodium transport postnatally is at least partially
due to both an increase in ENaC open probability and in surface
protein expression stimulated by ambient oxygen production of

low levels of ROS. H2O2 activates PI3-kinases, which in turn
generate the anionic phospholipids, such as phosphatidylinositol-
3,4,5-trisphosphate (PIP3), which increases ENaC open probability
and AFC (Kooijman et al., 2011; Pochynyuk et al., 2006; Yue et al.,
2002). Long-term exposure to elevated O2 tension or moderate
levels of ROS can increase activity of ENaC subunit gene promoters,
since these contain redox-sensitive NF-κB and AP-1 response
elements and can moreover promote total ENaC protein expression
(Yue et al., 2002; Rafii et al., 1998; Thome et al., 2003). Apart from
a direct sensitivity of ENaC in AT1/2 cells to O2, ROS generated
by increased O2 tension, such as superoxide anion (O2

−) also
has the capacity to regulate ENaC as shown by the observation
that in cellular models of alveolar fluid uptake addition of the
cell-permeable O2

− scavenger TEMPOL significantly decreases
ENaC activity (Bremner et al., 2002).

Endothelial ENaC represses oxidative stress
in capillaries during bacterial and viral
pneumonia

Like AT1/2 cells, also human lung microvascular endothelial
cells (HL-MVEC) express all three ENaC subunits (albeit
at a significantly lower protein expression levels) (Yu et al.,
2007). HL-MVEC generate electrophysiologically-identified
cation channels with a conductance of 5 picoSiemens, and
a current voltage relationship characteristic of functional
ENaC channels (Romero et al., 2024). However, the role of ENaC
and even the composition of sodium transporting channels in
endothelium is not completely understood.

As discussed above, a low basal level of NOX2-mediated ROS
generation is necessary for proper ENaC activity in AT1/2 cells
(Takemura et al., 2010). HL-MVEC treated with specific ENaC-
α siRNA or mouse lung ECs isolated from tamoxifen-inducible
endothelial ENaC-α KO mice (produced by cross-breeding
conditional Scnnalox/lox mice (Hummler et al., 2002)with tamoxifen-
inducible VE-cadherin–CRE/ert2 driver mice (Wang et al., 2010)
have a significantly higher protein expression level of the gp91phox

NOX2 subunit than human lung MVEC transfected with scrambled
siRNA or mouse lung ECs from control CRE driver mice or.
Mouse lung endothelial cells from endothelial ENaC-α KO mice
generated much higher levels of superoxide than cells from control
animals upon stimulation with PMA (Romero et al., 2024). These
findings indicate that ENaC-α inhibits NOX2 expression in lung
endothelial cells from both mice and humans. Although further
studies are required, recent findings from co-immunoprecipitation
experiments in mouse lungs substantiate earlier findings of a direct
binding between gp91phox and ENaC-α (Romero et al., 2024). Such
an interaction might also occur in lung endothelial cells and could
potentially interfere with NOX subunit assembly and successful
NOX2 complex formation. An alternative mechanism by which
activated endothelial ENaC could blunt NOX2 activity is through
the inhibition of enzymes phosphorylating cytoplasmic subunits,
necessary for their recruitment to the surface membrane and
for complex assembly of the functional enzyme (Schröder et al.,
2017). One such enzyme which is able to activate NOX2 is
protein kinase C-α (PKC-α), the activity of which is increased by
pneumolysin (Lucas et al., 2012b).
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While these observations suggest that ENaC-α is necessary
for normal endothelial cell function and serves to keep NOX2
activity at bay, the results do not necessarily show that hetero-
multimeric ENaC is required. Classical ENaC in epithelial
tissues consist of α, β, and γ subunits, but in renal endothelial
cells there is some evidence that ENaC-α may form alternative
combinations without one or more of the regulatory β or γ
subunits (Mutchler et al., 2021; Trac et al., 2017). These non-
classical channels can therefore also potentially alter endothelial
function. To complicate the issue further, in human endothelial
cells there is a fourth ENaC subunit, δ, which can substitute for
ENaC-α to form sodium permeable ion channels (Ji et al., 2012).
Whether any of these alternative constructs can alter endothelial
function as native ENaC does, is however unclear to date. However,
this does mean that results implicating ENaC in endothelial cells
must be interpreted carefully especially when pharmacological
agents are used to observe cellular responses to specific
molecules.

In order to further investigate the effect of specific ENaC
activation on endothelial NOX2 activity, we have used the TNF-
derived TIP peptide (a.k.a. AP301, Solnatide), generated by our
group (Lucas et al., 1994). This 17 residue cyclic synthetic
peptide with the sequence CGQRETPEGAEAKPWYC, mimics
the lectin-like domain of human TNF (Lucas et al., 1994;
Elia et al., 2003) and increases ENaC activity upon binding to
a helical structure in the C-terminal domain of the α subunit
(Czikora et al., 2014; Lucas et al., 2016; Martin-Malpartida et al.,
2022). Another direct peptide ENaC activator is compound S3969,
which interacts with a specific binding pocket in the channel’s
β-subunit (Lu et al., 2008; Sure et al., 2024). TIP peptide can
increase the open probability as well as the surface expression
of ENaC in human lung MVEC and in alveolar epithelial
cells, even following treatment of the cells with pneumolysin
(Romero et al., 2024; Lucas et al., 2016). Pneumolysin rapidly
reduces ENaC open probability and moreover reduces surface
expression of the crucial α subunit, possibly by decreasing lysine
residue acetylation, which in turn increases its ubiquitination and
degradation (Romero et al., 2024; Butler et al., 2015). Moreover,
pneumolysin-induced mitochondrial ROS generation -which exerts
cross-talk with NOX2-derived ROS- is blunted by TIP peptide
in HL-MVEC (Romero et al., 2024).

It should be stressed that the TIP peptide is a specific and
direct activator of ENaC, unlike other used indirect activators,
such as aldosterone, the latter of which can also exert ENaC-
independent effects, which may chronically affect vascular function
through the paracrine release of histamine (Schjerning et al.,
2013). The barrier-disruptive actions of pneumolysin on HL-
MVEC barrier function involve NOX2 activation, since we
showed that the specific inhibitor gp91dstat was protective
(Romero et al., 2024). We found a similar protective activity
towards pneumolysin-induced hyperpermeability in HL-MVEC
monolayers with the TIP peptide, as such supporting our
published hypothesis that activation of endothelial ENaC represses
NOX2 expression and activity and at least partially as such
strengthens capillary barriers in pneumococcal pneumonia
(Czikora et al., 2017; Romero et al., 2024).

Although a barrier strengthening effect of ENaC-α in LPS-
treated capillary endothelium was also reported in other studies

(Sternak et al., 2018), other groups, often using aldosterone, have
reported deleterious vascular stiffening actions of ENaC in studies
ln large vessel endothelial cells (Jia et al., 2023; Zhang et al.,
2022). TIP peptide inhibits PMA-induced phosphorylation of
the cytoplasmic NOX2 subunit p47phox and it partially blunts
PMA-induced ROS generation in COSp22phox cells, which express
ENaC-α and NOX2, but not other NOX enzymes. By contrast,
TIP peptide does not blunt PMA-induced ROS generation in
primary bone marrow-derived mouse PMNs, which do not
express ENaC-α (Romero et al., 2024). Taken together, these data
demonstrate that ENaC, and especially its α subunit represents a
novel repressor of PMA-induced NOX2 activity in microvascular
endothelium, but not in PMNs, especially when activated by the
TIP peptide (Figure 1).

In a mouse model of pneumococcal pneumonia-induced lung
injury, a moderate dose of pneumolysin (1.5 μg/kg) or a low
inoculum of D39 pneumococci (2 × 106 CFU) induces significantly
higher capillary leak (measured as Evans Blue permeability from
the vasculature into the alveoli) in tamoxifen-inducible endothelial
ENaC-α KO mice as compared to control CRE driver mice.
However, co-instillation of 2.5 mg/kg of TIP peptide significantly
blunts capillary leak induced by a high inoculum of S. pneumoniae
(107 CFU), without significantly affecting bacterial load in lung
homogenates (Romero et al., 2024). These results demonstrate an
important barrier-protective function for endothelial ENaC-α in
murine pneumococcal pneumonia (Figure 1).

TIP peptide also blunts ROS generation and barrier dysfunction
in HL-MVEC induced by the S1 subunit of the SARS-CoV2
spike protein (Romero et al., 2023), as such indicating that
endothelial ENaC can also suppress endothelial oxidative stress
in COVID-19 and possibly in long COVID, where the spike
protein, which can be detected months later even after the
virus is no longer present, was proposed to be involved in the
pathology (Iba et al., 2024).

Clinical trials evaluating the TIP peptide in
patients with lung transplantation and
ARDS

In a phase 1 clinical trial in healthy volunteers, inhalation of
the ENaC-activator TIP peptide (a.k.a AP301, Solnatide) caused
no noticeable side effects (Schwameis et al., 2014). A phase 2a
double-blind trial was done in lung transplantation patients, the
design of which was based on a preclinical study in rats with
lung iso-transplantation showing potent anti-oxidative actions and
lung function-promoting of the TIP peptide (Hamacher et al.,
2010). Ischemia-reperfusion following lung transplantation was
suggested to induce endothelial oxidative stress involving NOX2
activation following mechano-signaling (Chatterjee et al., 2015).
The trial demonstrated a significant reduction in days on the
ventilator in patients inhaling the peptide twice daily over 7 days,
as compared to placebo (Aigner et al., 2017; Ware, 2017). A similar
treatment pattern with the test compound in patients with ARDS
revealed a significant reduction in extravascular lung water in ARDS
patients with a sequential organ failure assessment (SOFA) score
>11 (Krenn et al., 2017). Currently, a multi-center double-blind
dose ascending phase 2b clinical trial is ongoing in a group of
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non-COVID and COVID ARDS patients receiving the TIP
peptide (a.k.a. Solnatide) during invasive ventilation, organized by
the Vienna-based Biotech company Apeptico. Results from this
trial should provide further information regarding the peptide’s
therapeutic potential (Schmid et al., 2021; Schmid et al., 2022).

Discussion

Our data from mouse studies and cell studies with human
lung MVEC have demonstrated that the epithelial sodium channel,
and especially its α subunit, apart from playing a crucial role
in vectorial Na+ transport and fluid clearance in the alveolar
space, also represents a novel repressor of oxidative stress and a
guardian of lung capillary barrier function during experimental
pneumococcal and SARS-CoV2-induced pneumonia. These lung-
protective mechanisms can be activated by a direct ENaC activator,
the TNF-derived TIP peptide, in models of pneumococcal and
SARS-CoV2-induced pneumonia. As a limitation of our studies, we
should note that although we demonstrated ENaC expression and
activity in human lung microvascular endothelial cells, expression
of the channel in mouse lung capillaries has not been visualized
so far. This may be complicated by low ENaC expression levels
as well as by the existence of different capillary sub-phenotypes.
Since capillary endothelial cells make up the majority of lung
endothelial cells and since mice lacking endothelial ENaC alpha
display significantly increased capillary leak as compared to control
animals in pneumococcal pneumonia, this points to an important
role of the channel in lung capillaries, although the involvement of
other microvascular beds cannot be excluded. The blood-perfused
isolated human lung (Ross et al., 2019) may represent a more
translational model system for further evaluation of the observed
effects of endothelial ENaC in pneumonia and ARDS in man.

Although other groups have demonstrated a protective effect
of ENaC-α on capillary barrier function in the presence of LPS
and on vasodilation capacity of large vessels (Sternak et al., 2018;
Tarjus et al., 2017), more research is required to explain the reported
deleterious role of endothelial ENaC in vascular stiffening (Jia et al.,
2023; Zhang et al., 2022; Kusche-Vihrog et al., 2014). Whether these
divergent observations regarding the role of ENaC in endothelial
function can be explained by differences between capillary and
large vessel endothelial cells, the use of direct (e.g., TIP peptide,
S3969) versus indirect (e.g., aldosterone) activators of ENaC, by the
existence of alternative ENaC-like channels in endothelium or by
differences in the disease models used remains to be investigated.

Although increases in the Renin-Angiotensin System (RAS)
can lead to increased absorption of Na+ through ENaC in the
distal nephron, the TIP peptide -a direct ENaC activator-did not
increase blood pressure in a mouse model of glomerulonephritis
(Madaio et al., 2019). One possible explanation for this is that the
TIP peptide, which mimics the lectin-like domain of TNF, can bind
to uromodulin in the loops of Henle (Hession et al., 1987) before
reaching the distal nephron (Madaio et al., 2019).

Phase 2 clinical trials with inhaled TIP peptide
in lung transplantation (Hamacher et al., 2010) and
ARDS patients (Krenn et al., 2017) have shown encouraging
outcomes on lung function, indicating that activation of ENaC may
be a promising approach in these pathologies. Negative effects of

the treatment on vascular function or blood pressure have not been
observed in these trials, although this may be linked to the rather
modest number of subjects tested so far or to the limited leakage of
the test compound into the blood circulation.
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