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Introduction: Heart disease remains a leading cause of mortality globally,
and early detection is critical for effective treatment and management.
However, current diagnostic techniques often suffer from poor accuracy due to
misintegration of heterogeneous health data, limiting their clinical usefulness.

Methods: To address this limitation, we propose a privacy-preserving framework
based on multimodal data analysis and federated learning. Our approach
integrates cardiac images, ECG signals, patient records, and nutrition data using
an attention-based feature fusion model. To preserve patient data privacy and
ensure scalability, we employ federated learningwith locally trainedDeepNeural
Networks optimized using Stochastic Gradient Descent (SGD-DNN). The fused
feature vectors are input into the SGD-DNN for cardiac disease classification.

Results: The proposed framework demonstrates high accuracy in cardiac
disease detection across multiple datasets: 97.76% on Database 1, 98.43% on
Database 2, and 99.12% on Database 3. These results indicate the robustness
and generalizability of the model.

Discussion: Our framework enables early diagnosis and personalized lifestyle
recommendations whilemaintaining strict data confidentiality. The combination
of federated learning and multimodal feature fusion offers a scalable, privacy-
centric solution for heart disease management, with strong potential for real-
world clinical implementation.

KEYWORDS

cardiac diseases detection, federated learning, attention-based feature fusion, SGD-
DNN, deep neural network

1 Introduction

Heart disease or cardiovascular disease (CVD) refers to conditions, which involve
heart disease (HD), coronary artery disease (CAD), heart attack, and heart failure. Timely
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intervention and an accurate diagnosis of heart disease are a must
as identification at early stages can avoid such severe complications
and bring the patients back to a good life (Alqahtani et al., 2022).
It is very challenging to diagnose heart disease because the disease
is complicated and manifests itself in different ways in different
patients (Kavitha et al., 2021; Abubaker and Babayiğit, 2022).
Further, conventional diagnostic techniques can be laden with
human error, whichmay lead to either false positive or false negative
results. False early detection results in unnecessary treatments or
missed opportunities for vital care (Saboor et al., 2022).

Theprevalence of heart disease is still alarmingly high and affects
millions of people worldwide. The World Health Organization
claims that CVD are the leading cause of death in the world, with
almost 18 million people dying from them every year (Sekar et al.,
2022). In this scenario, age, gender, genetic factors, and lifestyle
factors have been significant contributors to the increasing number
of patients, with the risk in men being generally at a younger age
when compared towomen,whose risk is substantially increased after
menopause (El-Shafiey et al., 2022; Eltrass et al., 2021). Individuals
aged above 65 suffer extensively. Since so many people worldwide
suffer from heart disease, its early detection is important in
managing the illnesswell. Identifying heart disease at its onset allows
health providers to take preventive measures, initiate treatment
plans, and perhaps save lives (Eltrass et al., 2021). Current deep-
learning approaches in identifying cardiac diseases like CNN are
usually affected by dataset skewness, which reduces accuracy for less
frequent diseases (Fradi et al., 2022). CNN-LSTM systems enhance
temporal modelling but suffer from noisy or low-quality labels.
Reinforcement learning can alleviate the data imbalance issue but it
consumes a lot of computational resources and the choice of reward
functions is rather sensitive (Hossain et al., 2023; Almulihi et al.,
2022).Thesemethods require further improvement in terms of noise
management and computational overhead. The suggested work is
aimed at eradicating these drawbacks for improved and accurate
prediction of heart diseases.

The advent of deep learning and federated learning heralds a
promising solution in advancing improvements in the diagnosis and
treatment of HD. Deep learning, which is a subset of AI shows
remarkably high success in recognizing patterns inmedical complex
data, such as electrocardiograms or images with far greater accuracy
than conventional techniques (Nancy et al., 2022; Yaqoob et al.,
2022). In addition, federated learning can enable collaborative,
privacy-preserving model training across distributed healthcare
systems, so sensitive patient data remains secure and is used for
the benefit of collective insights. By combining deep learning’s
diagnostics with federated learning’s decentralized approach, the
health industry can develop more accurate, personalized, and
efficient heart disease detection systems that can increase diagnosis
accuracy and improve patient care outcomes (Otoum et al., 2024;
Li et al., 2023; Al-Issa and Alqudah, 2022). A novel approach
is proposed by combining DL and FL to overcome the existing
drawbacks of current techniques, such as data imbalance, privacy
concerns, and computational inefficiencies, resulting in a more
robust and efficient heart disease detection system.

The major contribution of this research work include:

• The integration of federated learning ensures secure,
decentralized model training across multiple devices while

preserving data privacy, making the approach scalable and
efficient for real-world healthcare applications.

• The use of diverse multimodal datasets, including cardiac
images, ECG signals, patient records, and nutrition data, allows
for a comprehensive analysis of cardiac diseases, improving the
model’s ability to make accurate predictions.

• The adopt an attention-based feature fusion model for
effectively integrating and prioritizing critical information
from various data sources, enhancing the overall diagnostic
performance and reducing redundancy

• To implement SGD-DNN Model Training for improving
the model’s accuracy and adaptability to node-specific data,
refining predictions for diverse patient profiles.

• To suggest lifestyle recommendation by DRL for patients
identified as positive cases, promoting better health outcomes
through targeted, individualized care strategies

1.1 The organization of the article

Section 2 represents the literature review based on cardiac
disease detection, followed up in section 3 with the stated
methodology. Section 4 contains the result and discussion and
finally the work is concluded by conclusion and future scope.

2 Related works

In 2021, Khan et al., 2021 suggested a generalized approach
for processing of ECG images of all types for identifying cardiac
disorders. Cardiovascular diseases are detected using a Deep Neural
Network architecture called Single Shot Detection (SSD) MobileNet
v2. The proposed system focuses on identifying four major cardiac
abnormalities like myocardial infarction, abnormal heart beat,
history of previous MI and normal class.

In 2021, Mehmood et al. (2021) introduced a method known as
CardioHelp that estimates the likelihood of CVD in a patient using
the CNN deep learning (DL) algorithm. The suggested method is
related to the temporal data modeling by CNN for the prediction of
the heart failure (HF) at its initial stage.

In 2022, Wang et al. (2022) introduced a new wireless ECG patch
alongside a deep learning systemusingCNNandLSTM.To overcome
the limitations in identifying different types of heartbeat, it presents a
semi-supervisedmethodtousetheconfidence-level-basedtrainingfor
the badly labeled data samples to increase the classification accuracy.

In 2023, Ali et al. (2023) presented LU-Net, a deep encoder-
decoder architecture for removing noise from heart sound signals
recorded using digital stethoscopes in noisy conditions. When fine-
tuned on a benchmarkPCGdataset, LU-Net is capable of attenuating
ambient and physiological noises and demonstrates higher SNR
and classification accuracy than the U-Net and FCN models. This
approach substantially improved the diagnostic performance in the
low resource environment and in the presence of noise.

In 2023, Matten et al. (Yaqoob et al., 2023) presented a hybrid
model for HD prediction. At the client end it uses Modified Artificial
Bee Colony Optimization with Support Vector Machine (MABC-
SVM) for the purposes of feature selection as well as classification.
For privacy at the server end, it employs what is known as Federated
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MatchedAveraging.Theproposed framework is tested on a combined
cardiovascular disease dataset and shows better prediction of the
model, less classification error, and fewer training iterations compared
to conventional federated learning (FL) methods.

In 2023, Amir et al. (Khan et al., 2023) The research puts forward
an Asynchronous Federated DL Approach for Cardiac Prediction
(AFLCP) to combine aHDdatasetwithdeepneural networks (DNNs)
through a FL approach. The method asynchronously updates DNN
parameters and uses a temporallyweighted average update to enhance
theaccuracyandconvergenceof thecentralmodel.Theperformanceof
AFLCP is tested on two datasets using different DNN structures and
is shown to outperform baseline approaches based on the required
communication cost and model quality.

In 2022, Khozeimeh et al. (2022) proposed an approach for
identification of CAD using CMR images. This is done through the
integration of DL with random forest through the feature extraction
of convolutional neural networks (CNNs). The method is named
RF-CNN-F, which transforms image data into numeric features
for classification; the accuracy is 99.18% while the accuracy of
the CNN is 93.92% on average. This approach is intended to be
generalizable across any image dataset, and is demonstrated here
to improve CAD detection.

In 2023, Sudha and Kumar (2023) presented CNNs in
conjunction with LSTM networks for the prediction of HD. This
method is designed to obtain better results compared to classical
machine learning (ML) algorithms. The CNN and LSTM model was
trained on a HD dataset and obtained an accuracy of 89% and was
cross-checked by using k-fold cross-validation.The findings showed
that this combined approach is superior to different ML techniques
such as SVM, Naïve Bayes, Decision Tree.

In2024,Gayathrietal. (2024)suggestedanapproachforenhancing
the prediction of HD through integrating data augmentation into
reinforcement learning (RL). This fusion methodology improves the
predictive models by adding data and uses RL for decision making in
sequences, with a success rate of 94%. The approach helped to solve
the problems of working with high-dimensional cardiac data and
increase the effectiveness of patient treatment and diagnosis.

In 2024, Mirzaee et al. (Kasmaee et al., 2024) suggested an
enhanceddeepmodelknownasELRL-MDthat incorporatesensemble
learning and RL for diagnosis of myocarditis from cardiac magnetic
resonance (CMR) images. The model incorporates pre-training by
the artificial bee colony (ABC) algorithm to improve learning and a
set of CNNs to extract and combine features for diagnosis. It employs
RL to solve the problem of data imbalance in the dataset as diagnosis
is formulated as a decision-making problem. The Table 1 denotes the
comparison of the existing techniques of cardiac disease detection.

In 2019, Javeed et al. (2019) developed an algorithm for the
RandomSearchAlgorithm(RSA)-basedfeatureselectioncoupledwith
optimized Random Forest model to improve heart disease detection
accuracy to about 93.33% with lesser features. Another example of
nature-inspiredoptimizationbytrainingMultilayerPerceptron(MLP)
withMulti-verseOptimizer (MVO) to showcasewhat such techniques
can do has already been illustrated by Jalali et al. (2019), also in
2019. Dhanka and Maini (2021), in 2021, and Latha and Jeeva (2019)
Latha and Jeeva in 2019 used Random Forest and ensemble methods,
respectively, but to lower accuracies than other approaches.HAQet al.
(2019) and Li et al. (2020) focused on various machine learning and

deep-learning classifiers, respectively, in the year 2019 and 2020, with
the outcome achieving high accuracy using BPNN and SVM-based
approaches.All thesestudiesgenerallysharethemajordemeritofbeing
basedonsingledatasets,whichdonotgeneralize into thewiderpicture
and ignoredataprivacy,which is critical inhealthcare.Asmuchas they
are most likely to be based regarding the IoT and cloud architectures
for health monitoring, Kumar and Gandhi (2018), and Ahmed et al.
(2018) emphasized in 2018 without really sleeping at the address of
personalization.The reasonsmotivating our federated learning-based
multimodal development include lackof dataprivacy anddependence
on only single datasets, making better use of the capability that
multimodal data integration brings. It is based on federated learning;
hence, data is decentralized for better privacy, while the attention-
based feature fusion combines in the best possible way in the image,
ECGsignals, patient records, andnutritionvis-a-vis diseasedetection.

For early detection of severe left ventricle hypertrophy (SLVH)
and dilated left ventricle (DLV),Wang et al. (2024) proposed amodel
of multimodal fusion driven by VAE, which fuses structured data
collected in CXR with chest X-ray images. Although this model
showed superior accuracy to existing methods, it was only possible
to validate it using datasets from one institutional source, thus
putting it into question generalizability. In 2024, Yousuf et al. (2024)
presented a 2D-CNN methodology relying on Gramian angular
field (GAF) conversion to detect inferior myocardial infarction (MI)
from lead II ECG signals. While its classification accuracy was
great, it could not give a thorough diagnosis of the heart due to its
dependency on one ECG lead. In 2024, Pu et al. (2024) developed
a hybrid neural network for detecting normal cardiac cycles in fetal
ultrasound videos. His work improved the recognition of anatomical
structures but is limited as it requires high-quality fetal ultrasound
data, making it impractical for use in common real-world situations.

Furthermore, in 2024, Vinay et al. (2024) adopted a Bi-LSTM-
based GAN for analyzing heart sound signals meant for CVD
detection. They synthesized pseudo-real data that were of superb
quality, but their reliance on these old GAN systems may usually
introduceunstable training.Amiri et al. (2025)proposedanoptimized
deep active learning (ODAL) frameworkon arrhythmiadetection that
improved sensitivity and specificity over the former classifiers in 2025.
They did not explain how to relate and integrate multimodal data
sources for a more holistic diagnosis. The above methods have their
setbacks mostly in limited dataset dependency, suboptimal fusion of
multimodal data, and very high false-positive or negative rates. To
cater for these setbacks, an integrated framework will collect and
fuse multimodal health data including cardiac images, ECG signals,
patient records, and nutrition data, so as to improve the accuracy
of diagnosis. An attention-based feature fusion model will be used
to extract relevant cross-modal features such that improved benefits
are derived from the information. It brings in federated learning
to promote data privacy yet maintains scalability across distributed
sources. For more predictive accuracy, a deep neural SGD-DNN
trained locallymodelwill further boost this.Unlike anyother previous
works, this frame mind does not aim at accurate disease prediction
only but also offers lifestyle recommendations for positive cases, thus
improvingpreventivecare.Multiplemetricsofperformanceevaluation
confirmed theeffectivenessof themodel, achievingveryhighaccuracy
rates: 97.76% in Database 1, 98.43% in Database 2, and 99.12% in
Database 3.
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2.1 Problem statement

TABLE 1 Comparison of the existing techniques of cardiac disease detection.

Authors, Year Techniques Databases Advantages Limitations Outcomes

Khan et al. (2021) SSD MobileNet v2, Deep
Neural Networks

11,148 standard 12-lead
ECG images

High accuracy, domain
expert-annotated data

Limited to 4 major
cardiac abnormalities

Accuracy: 98%

Mehmood et al. (2021) CNN Heart disease dataset High accuracy, good
performance for
temporal data modeling

No direct comparison
with advanced deep
learning methods

Accuracy: 97%

Wang et al. (2022) CNN, LSTM,
Semi-supervised method

Newly obtained ECG
dataset

Improved accuracy with
confidence-level-based
training

Existing models fail on
new dataset

Accuracy: 90.2%

Ali et al. (2023) Deep
Encoder-Decoder-based
Denoising (LU-Net)

Benchmark PCG dataset,
PASCAL heart sound
dataset

Effective noise
suppression, improved
SNR

Requires clean heart
sound recordings

RMSE: 0.097

Yaqoob et al. (2023) MABC-SVM, Federated
Learning

Combined
cardiovascular disease
dataset

Privacy preservation,
reduced training latency

Higher complexity due
to federated learning

Accuracy: 93.8%

Khan et al. (2023) Asynchronous Federated
Deep Learning, DNNs

Heart disease dataset Improved accuracy and
convergence, reduced
communication cost

High complexity,
federated system

Accuracy: 87.8%
Precision: 87.7%

Khozeimeh et al. (2022) Random Forest, CNN
Features

CMR dataset High accuracy,
non-invasive

Needs numeric
conversion for CNN
features

Accuracy: 99.18%

Sudha and Kumar (2023) CNN, LSTM Heart disease dataset High accuracy, hybrid
system

Comparison limited to
basic machine learning
models

Accuracy: 89%

Gayathri et al. (2024) Data Augmentation,
Reinforcement Learning

Cardiac disease dataset Improved predictive
accuracy, better handling
of complex data

Complex method,
requires more
computational resources

Accuracy: 94%

Kasmaee et al. (2024) Ensemble Learning,
Reinforcement Learning
(RL), CNN

Z-Alizadeh Sani
myocarditis CMR
dataset

High efficacy, addresses
dataset imbalance

Dependent on
pre-training and RL
setup

F-measure: 88.2%,
Geometric mean: 90.6%

3 Federated learning with cardioNet +
-based cardio-disease detection and
lifestyle recommendation

FL is a ML framework in which multiple nodes collaboratively
contribute to the training of a more robust and efficient global
model for heart disease detection while maintaining decentralized
data storage. Figure 1 illustrates an overview of the deployed FL
architecture with local training via cardioNet + framework. In this
study, publicly available datasets containing heart disease-related
medical data, such as cardiac images (MRI), ECGs and patient
records (EHRs), Meta-data (nutrition data) were used to simulate
a network of collaborative nodes that collectively enhance the global
model’s diagnostic performance.

The proposed methodology is presented in the following five
fundamental stages, as depicted in Figure 1, to train and develop
a reliable and secure global heart disease detection model while
maintaining data confidentiality.

3.1 Phase 1: model initialization

In the first stage, a preliminary heart disease detection model
is established on a central server. This model is then disseminated
to several local nodes (for instance hospitals or clinics, or any
healthcare facilities) in the network, each of which has its local data
for training. This makes sure that all the nodes start from the same
level or from the same point.

3.2 Phase 2: personalized training

Every local node is trained on the initial model and its
local dataset which can be heart-related data, such as ECG,
images, patient records and Nutrition Data. The use of this
localized approach ensures that the training process includes
regional patterns and variation while avoiding the use of privileged
information.
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FIGURE 1
Proposed methodology.

The obtained raw data, such as cardiac images, ECG
signals, patient records and nutrition data, is pre-processed to
improve data quality and data coherence. Subsequent to data
preprocessing, the data is used to diagnose and identify the
presence of cardiac abnormalities. The Figure 2 represents the
proposed framework of CardioNet+.

3.2.1 Data preprocessing:
3.2.1.1 Cardiac image preprocessing and segmentation

• Denoising using median filtering: Median filtering is used
to filter out noise while at the same time preserving
edges in images of the cardiac patient. For a pixel
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FIGURE 2
Framework of CardioNet+.

I(x,y) in the image, the denoised value is given by
Equation 1. The pre-procced cardiac images are represented
in Figure 3.

I′(x,y) =median{I(i, j):(i, j) ∈N (x,y)} (1)

where N (x,y) represents the neighborhood of pixel (x,y)

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1563185
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Alasmari et al. 10.3389/fphys.2025.1563185

FIGURE 3
Pre-procced cardiac images.
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• Segmentation using Mask R-CNN: Mask R-CNN divides
the cardiac image into ROIs to analyze the image further.
The segmentation process involves a two-step optimization:
Bounding box regression and mask prediction. The loss
function is given by Equation 2:

L = Lcls +Lbbox +Lmask (2)

where Lcls is the classification loss, Lbbox is the bounding box
regression loss, and Lmask is the binary mask loss.

3.2.1.2 ECG pre-processing

• Bandpass Filters: For the ECG signals noise and baseline drift
are removed through filtering. The bandpass filter can be
defined as Equation 3:

H( f) =
{
{
{

1 f1 ≤ f ≤ f2
0 otherwise

(3)

where f1 and f2 are the lower and upper cutoff frequencies,
respectively.

• Independent Component Analysis (ICA): ICA splits mixed
signals into independent sources, which is widely applied to
artifact elimination in ECG. In the case of amixed signalX, ICA
assumes it to be as Equation 4.

X = AS (4)

where A is the mixing matrix, and S represents the independent
components. ICA estimates S by maximizing statistical
independence.

3.2.1.3 Patient record preprocessing

• Min-Max scaling: Patient records are normalized to bring
all features into a consistent range [0,1]. The mathematical
expression for Min-Max scaling is shown in Equation 5:

H′ =
H−Hmin

Hmax −Hmin
(5)

whereH is the original value,  Hmin is the minimum value, and  Hmax
is the maximum value of the feature. This ensures that all features
contribute equally to the model.

3.2.1.4 Nutrition data preprocessing

• K-means clustering for grouping patients: These patients are
grouped by means of dietary patterns using K-means, in a way
that optimizes the variance within each cluster. This can be
given mathematically as per Equation 6.

J =
k

∑
i=1
∑
x∈Ci

∥ x = μi∥
2 (6)

where Ci represents the i-th cluster, μi is the centroid of cluster
Ci, and ∥ x = μi∥

2 is the Euclidean distance between a data point
x and the cluster centroid. Patients can be grouped according to
their nutritional profile and the specific diets that they consume
and thus, specific recommendations made to augment heart disease
management.

3.2.2 Feature extraction
3.2.2.1 Cardia image features
3.2.2.1.1 ResNet50 for extracting spatial features ResNet50 has
shown hierarchical feature extraction capabilities and was first
trained on the large ImageNet dataset. ResNet50 is a deep CNN
architecture that is used in extracting spatial features from the
cardiac images for heart disease classification. The ResNet50 model
does not have the vanishing gradient problem and deepens the
network by using skip connections through residual learning.
During this process,multiple convolutional layers, pooling, and fully
connected layers are included in the process of ResNet50 network
operations. The extracted feature vector is obtained at the last layer
to represent the core features of a cardiac image, and the produced
output vector in that network could lead to classification while
further processing provides higher-level spatial features. The initial
layers of ResNet50 extract low-level spatial features (edges, textures)
common to various domains, including medical imaging. Because
some rich spatial features are already in its awareness, fine-tuning
can be accomplished fairly easily and computationally efficiently
with fewer epochs and less training data.

F = ResNet50(I)

Here, F is the feature vector, and I is the input cardiac image.

3.2.2.2 ECG signal features
3.2.2.2.1 Fourier transform to capture dominant frequencies In
this work, the Fast Fourier Transform (FFT) is applied to examine
the frequency domain of the ECG signal. It converts the ECG
signal obtained in the time domain into its frequency domain so
as to capture dominant frequencies related to the heart disease like
arrhythmias.

The Fourier Transform of a time-domain signal x(t)
is given by Equation 7:

X( f) = ∫
∞

−∞
x(t)e−j2πftdt (7)

whereX( f) is the frequency spectrumof the signal, f is the frequency
and x(t) is the ECG signal in the time domain.Moreover, by studying
the frequency components, it is possible to distinguish certain
patterns that are characteristic of heart diseases.

3.2.2.3 Patient data features
3.2.2.3.1 Statistical features (mean, variance, and standard
deviation). Various statistical characteristics are important for
assessing the general state of health of a patient. These features
describe the mean and spread of the data and can be utilized to
detect the presence of HD.

For a given feature vectorX = {x1,x2,…,xn}which contains data
of the patient (e.g., blood pressure, cholesterol levels) the following
statistical features are computed:

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2025.1563185
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Alasmari et al. 10.3389/fphys.2025.1563185

• Mean: The mean gives the general value of the feature, which is
defined by Equation 8.

μ = 1
n

n

∑
i=1

xi (8)

• Variance: Variance is a measure of how far apart data points lie
from the mean value, which is given by Equation 9.

σ2 = 1
n

n

∑
i=1
(xi − μ)

2 (9)

• Standard Deviation: Standard deviation means the extent
of spread of the data or the variability of the data as
provided in Equation 10.

σ = √σ2 (10)

These statistical features are useful in establishing the patterns
of the data that are characteristic of heart disease because they show
the amount of spread or agreement of vital health factors.

3.2.2.4 Nutrition data features
3.2.2.4.1 Feature engineering (calorie intake, nutrient
consumption patterns) Information regarding nutrition can be
useful in a patient’s medical profile especially as a predictor of heart
disease factors like cholesterol and blood pressure levels. Feature
engineering in this case is the process of extracting meaningful
nutrition related features from raw dietary data.

3.2.2.4.2 Calorie intake. The total calories of a patient can be
determined by adding the calories taken per meal or per day. This
can be an important feature for understanding the patient’s eating
behaviors and possible danger of cardiovascular disease. The calorie
intake can be computed utilizing Equation 11.

Total Calorie Intake =
n

∑
i=1

caloriesi (11)

3.2.2.4.3 Nutrient consumption patterns. Thus, if there is a
possibility to analyze nutrient consumption, meaningful features
can be derived from fats, carbohydrates, and proteins intake. For
example, the degree of saturation of fats to total fats ormacronutrient
distribution ratio can be used to evaluate the quality of the patient’s
diet. These patterns can be calculated as Equation 12, 13:

Fat to Total Fat Ratio = Saturated Fat
TotalFat

(12)

Protein to Carbohydrate Ratio = Protein Intake
Carbohydrate Intake

(13)

These features give a quantitative description of patient’s
nutrition and can be used for better prediction and classification of
heart diseases risks according to patients’ diet.

3.2.3 Attention based feature fusion
The features extracted from cardiac images, ECG signals, patient

records, and nutrition data are seamlessly integrated using an

attention-based feature fusion mechanism. This makes it possible to
capture only the most informative features from each modality and
improve the final decision-making by combining them.

All modalities’ features are concatenated together to form the
unified representation vector z. Attention Mechanism assigned
weights to such features to allow the model to selectively emphasize
important information.

z = Concat(Cardiac,ECG,Patient Record,Nutrition Features)

3.2.3.1 Incorporating attention
For increasing z, an Attention Score is calculated for each

modality to facilitate modulation and weighted combination. For a
feature set Fi the attention weight αi is defined as Equation 14:

αi =
exp(Score(Fi))

∑n
j=1

exp(Score(Fj))
(14)

Score(Fi) =WT
aFi + ba

Which computes the relevance of modality i with trainable
parameters Wa and ba . The αi denotes the normalized
attention weight for modality i. The final fusion vector z fused 
is given by Equation 15:

z fused =
n

∑
i=1

αiFi (15)

Multimodal models improved through attention-based
fusion dynamically weights the critical features for improving
attention to relevant information. It has boosted interpretability
through identification of influential modalities and robustness
through effective integration of diverse data for more accurate
and reliable detections. The attention-based feature fusion is
explained in Figure 4.

3.2.4 Model training - stochastic gradient
descent (SGD) with deep neural network for local
model fine-tuning on the node-side

The training of a model in federated learning heavily relies on
efficient local fine-tuning to fine-tune the global model towards
each node’s specific data distribution. Stochastic Gradient Descent
is an optimization algorithm that has to be applied at this phase; it
proceedswith iteratively adjusting the parameters of themodel using
the gradient of the loss function calculated from mini-batches of the
local data. On the node-side, a Deep Neural Network (DNN) is used
as themodel for learning of complex patterns and relationships from
multimodal data including cardiac images, ECG signals, patient
records, and nutrition data.

In the federated learning setup, each node employs a Deep
Neural Network (DNN) to fine-tune the global model locally
using its own dataset. The optimization process is carried out
using Stochastic Gradient Descent (SGD), which iteratively adjusts
the network parameters to minimize the loss function. The
architecture of the DNN is crucial for effectively capturing complex
patterns from multimodal data, including cardiac images, ECG
signals, patient records, and nutrition data. The proposed DNN
architecture consists of multiple layers, specifically designed to
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FIGURE 4
Attention-based feature fusion.

ensure optimal feature extraction, robustness, and generalization
across different data distributions at each node. The DNN is
composed of five hidden layers flanked by an input layer on one
side and an output layer on the other. The number of neurons
varies from layer to layer to extract hierarchical features at different
levels of abstraction. The complete architecture can be described
as follows:

3.2.4.1 Input layer
The input layer receives multimodal data with possible image-

based features (likeMRI and ECG signals) and structured numerical
data (like patient records and clinical variables). The input
dimensions depend on feature engineering and preprocessing steps.

3.2.4.2 Hidden layers:

a. First Hidden Layer: Fully connected layer with 512
neurons, activated using Rectified Linear Unit (ReLU)
function capturing high-dimensional abstract features from
the input data

b. Second Hidden Layer: Fully connected layer with 256
neurons, again activated through ReLU, incorporated to
make the representation of the feature nonlinear and thus
potentially richer.

c. Third hidden layer: Fully connected layer with 128 neurons,
but here batch normalization is added for stabilization of the
learning process and improved generalization.

d. Fourth hidden layer: Fully connected layer with 64 neurons
where dropout (rate = 0.3) is used to prevent overfitting by
randomly turning off neurons during training.

e. Fifth Hidden Layer: Fully connected with 32 neurons and
is thereby considered a bottleneck layer directed at the best
features sorted out before the last classification.

3.2.4.3 Output layer
The last layer of the architecture consists of a fully-

connected layer that applies softmax to obtain flush classification,
in which the number of output neurons equals the classes
within the target variable (e.g., heart disease classes for
classification).

3.2.4.4 SGD optimization and gradient computation
The SGD algorithm aims at adjusting the DNN parameters to

make the loss function obtain a minimum value. For each mini-
batch xi and its corresponding label yi , the parameter updates are
computed as Equation 16:

θ← θ− η∇θL( f(xi,θ),yi) (16)
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Where, θ represents the model parameter, η indicates the
learning rate, ∇θL for the gradient of the loss function with respect
to θ, the loss function is denoted byL and f(xi,θ) signifies themodel
detection for input xi.

3.2.4.5 Gradient computation for mini-batches
To enhance computational speed, gradients are computed over

mini-batches B rather than over individual samples as Equation 17:

∇θL(B;θ) =
1
|B|
∑
i∈B

∇θL( f(xi,θ),yi) (17)

3.2.4.6 Regularization for generalization
To avoid overfitting and increasemodel’s ability to generalize, L2

is incorporated into the loss function as Equation 18:

Lreg = L+
λ
2
∥ θ2 ∥ (18)

Here, λ denotes the regularization coefficient, ∥ θ2 ∥ signifies the
squared norm of themodel parameters.The updated parameter rule
with regularization becomes as Equation 19.

θ← θ− η(∇θL(B;θ) + λθ) (19)

3.2.4.7 Momentum for accelerated convergence
To add more robustness and to increase the rate of convergence,

momentum is integrated into SGD, which is defined as Equation 20.

vt+1 = γvt + (∇θL(B;θ) (20)

θt+1 = θt − vt+1

Here, vt denotes the velocity term and γ for the
momentum factor.

Through SGD, the localmodel continues to adjust its parameters
and thus learn patterns within the node’s data. This localized
adaptation is important for enhancing the detection accuracy
especially in environments where the data characteristics differ from
one node to the other.

3.2.4.8 Federated learning integration
In a synchronized manner, each local node trains the model

based on its own dataset and updates the parameters. The updated
local models are then aggregated globally using techniques such
as Federated Averaging (FedAvg) to create a more generalized
global model. Through federated learning, patient-sensitive data is
guaranteed to stay on local devices, thereby enhancing privacy, while
also ensuring that the classification performance remains at a high
level. In the present localized adaptation process, the SGD-DNN
model can effectively extract complex patterns from each node’s
non-IID dataset, hence improving detection capabilities, mostly in
non-IID scenarios where such characteristics in data vary across
nodes. Together, deep learning and SGD-based optimization grant
strong adaptability and scalability to federated learning systems.The
parameter and their values of SGD-DNNmodel is shown in Table 2.

3.2.5 Analysis on SGD with momentum over
AdamW

Optimization is of critical importance for all the working aspects
of deep learning models, such as convergence speed, stability,

TABLE 2 SGD-DNN parameters and values.

Parameter Symbol Value/Description

Weight Initialization - Xavier/He Normal initialization

Regularization Coefficient λ 0.001 (L2 regularization)

Optimization Algorithm - Stochastic Gradient Descent
(SGD) with Momentum

Number of Hidden Layers - 5

Neurons in Hidden Layer 5 - 32

Neurons in Hidden Layer 4 - 64

Neurons in Hidden Layer 3 - 128

Neurons in Hidden Layer 2 - 256

Neurons in Hidden Layer 1 - 512

Momentum Factor γ 0.9 (for momentum-based SGD)

Loss Function L Cross-Entropy Loss

Learning Rate η 0.01 (adjustable based on
convergence)

Global Model Aggregation - Federated Averaging (FedAvg)

Dropout Rate - 0.3 (for regularization in hidden
layers)

Batch Normalization - Applied to Hidden Layer 3

Activation Function - ReLU (for hidden layers),
Softmax (for output layer)

and generalization capability. AdamW and its variants, owing to
their adaptive learning rates and weight decay enhancements, have
emerged as firm favorites over time. However, it is the Stochastic
Gradient Descent (SGD) momentum variant that is one of the most
exploited and successfully used in various machine learning tasks,
including our proposed model. To validate our whole argument,
we empirically performed an extensive performance comparison
between SGD with momentum and AdamW concerning several
evaluation metrics, such as accuracy, precision, recall, F1-score,
and speed of convergence. The results acquired are manifested
in Table 3.

SGD with Momentum surpasses AdamW in the accuracy
figures, with a 99.50% recorded accuracy against the former’s
99.30%, indicating the superior generalizing power of the model.
The F1-score has a similar trajectory in both models (99.50%
versus 99.30%), indicating that SGD is more balanced in precision
and recall. In fewer epochs, SGD has converged, 45 as opposed
to 52 for AdamW, establishing SGD as computationally much
more economical. Such phenomena indicate that SGD with
momentum is a most promising approach to learning. The efficacy
of these results was evaluated statistically using a paired t-test and
Wilcoxon Signed-Rank Test. The results acquired are manifested in
Table 4 and Table 5, respectively.
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TABLE 3 Performance comparison between SGD with momentum and AdamW.

Optimizer Accuracy Precision Recall F1-Score Training Time (Epochs)

SGD with Momentum 99.50% 99.60% 99.50% 99.50% 45 epochs

AdamW 99.30% 99.40% 99.30% 99.30% 52 epochs

TABLE 4 Paired t-test Results.

Comparison t-statistic p-value Significance

SGD vs. AdamW 4.85 p < 0.001 Significant

TABLE 5 Wilcoxon signed-rank test results.

Comparison Z-score p-value Significance

SGD vs. AdamW 5.21 p < 0.001 Significant

The very small statistically significant p-values (<0.001)
confirmed the statistical differences into SGD momentum
outperforming AdamW. These findings made it possible to
conclude that adaptive optimizing methods are less suitable for
the model and rather had the following qualities that made
it preferable:

• Improved generalization: Lower chance of overfitting compared
with adaptive optimizers like AdamW.

• Faster convergence: requires fewer epochs for optimal
performance.

• More stable updates: no sudden jumps, oscillation of weights.

For future researchers, hybrid optimizers taking advantage
of both SGD and AdamW, e.g., Lookahead-SGD or AdaBelief,
may be further avenues for increasing performance. SGD with
momentum is the superior optimizer theoretically and empirically
based on our analysis. The results obtained from performance
metrics, statistical significance tests, and loss convergence curves
serve as strong justifications for the choice made. Advanced
optimizers could be researched in the future to improve
efficiency further.

3.2.6 Nutrition recommendation via DRL
The system collects the outcome of the detected heart disease

through the developedDLmodel and then recommends appropriate
nutrition based on the detected results. The patient’s response to the
previous dietary suggestions includes changes in health parameters
or self-perceived health status. The DRL framework is designed to
find out the appropriate nutrition based on the detected outcomes.
The DRL agent represents the recommendation system to choose
the diet. It interacts with the environment, particularly the patient’s
health status and response, to deciding on nutrition plans. This
process involves the application of neural networks to predict the
value of different diet actions. The DRL system is intended to

reflect on the patient’s response and the patient’s health condition.
That makes the recommendations personally beneficial in the long
run since they are tailored to the individual. With the help of
DRL, the nutrition recommendation system offers patient-specific
recommendations, that are dynamic and evolving as the patient’s
health condition changes, which is useful in the treatment ofHDand
the patient’s overall wellbeing. The nutrition-recommended results
of the sample are presented in Figure 5.

The Deep Q-Network (DQN) is a value-based Deep
Reinforcement Learning (DRL) algorithm suitable for personalized
recommendation systems, which forms the cornerstone of this
proposal. It maximizes cumulative rewards derived from user
interactions to learn an optimal recommendation policy. The DQN
differs from traditional recommendation methods which are static
in nature and does adapt to changing user preferences across time.
A system using Deep Q-Networks (DQN) for optimizing health
outcomes will improve on past patients' feedback and change
consequences for their updated diets. The DQN-based system
for cardiac disease recommendation operates in a reinforcement
learning framework where the agent (AI model) suggests dietary
plans, and the patient’s response serves as feedback to refine
future recommendations. The system consists of the following
components:

3.2.6.1 Components

• State Representation: The patient’s current health profile,
including biometric parameters (e.g., blood pressure,
cholesterol, BMI), dietary habits, and self-reported wellbeing.

• Action Space: A set of possible dietary recommendations
(e.g., increase fiber intake, reduce sodium, include omega-3
fatty acids).

• Reward Function: Defined based on improvements in patient
health indicators and adherence to recommendations.

• Q-Network: A deep neural network that learns to predict the
expected future reward for each dietary action.

• Experience Replay: A buffer that stores previous interactions to
stabilize learning and prevent overfitting.

3.2.6.2 Patient response as feedback for learning
After receiving a dietary recommendation, the patient’s response

is monitored through:

• Changes in health parameters: Reduction in blood pressure,
cholesterol levels, or BMI after following a suggested diet.

• Self-perceived health improvements: Patients may report
increased energy, better sleep, or reduced symptoms like
chest pain.
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FIGURE 5
Nutrition recommended results.

• Adherence score: Captures how well the patient follows the
recommendations, influencing future suggestions.

This feedback is used to update the Q-values in the DQN,
ensuring that recommendations evolve based on individual
patient progress.

3.2.6.3 Transformer integration for sequential learning
Since dietary habits and health trends evolve over time,

a transformer-based module (LSTM-based attention) can be
integrated with the DQN. This enables:

• Capturing long-term trends in patient responses.
• Improving sequential decision-making for dietary adjustments.
• Personalizing recommendations based on past dietary

adherence.

3.2.6.4 Training and evaluation
The model is trained using historical patient data and

validated using real-world feedback. The evaluation metrics
include:

• Health improvement score: Measures the impact of dietary
changes on key health parameters.

• Recommendation adherence: Tracks how consistently patients
follow AI-generated dietary plans.

• Patient satisfaction index: Evaluates user-reported wellbeing
after dietary modifications.

The data for cardiac recommendation has been generated
from Kaggle Diet Recommendations Dataset (https://www.
kaggle.com/datasets/ziya07/diet-recommendations-dataset),
Personalized Medical Diet Recommendations Dataset (https://

www.kaggle.com/datasets/ziya07/personalized-medical-diet-
recommendations-dataset), respectively.

3.3 Phase 3: secure parameter sharing via
differential privacy

Local training is performed by each node, and at the end of the
process, each of them sends updates of themodel’s parameters.These
updates are securely transferred to the central server while at the
same time the raw patient data is kept within the local nodes. During
this phase, the highest level of encryption is used to ensure that the
information is not distorted or intercepted.

Differential Privacy does this by introducing carefully calibrated
noise into the updates on the parameters before they are shared.
Let ΔW denote the raw model parameter updates generated in local
training. To protect these updates, noise sampled from a Gaussian
distribution N (0,σ2) is added, as Equation 21.

∆W′ = ∆W+N (0,σ2) (21)

Here, σ2 is variance of the noise and it can be calculated
from the privacy budget ϵ. A smaller ϵ value gives better privacy
protection but can cause a minor degradation in the usefulness of
the aggregated model.

The noisy updates ∆W′ are passed on to the central server.
For additional safety, these can be encrypted as well with use
of homomorphic encryption or secure multiparty computation
methods. This implies that even though the updates pass through,
these remain unintelligible to outsiders.

Differential Privacy does not only prevent inference attacks
where the adversary tries to infer sensitive information from
changes in parameters but also supports scalability in large
healthcare systems. For instance, if the size of the original
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dataset is D and local data subsets are Dk, DP ensures that
as Equation 22.

P(M(D)∈ S) ≤ eϵ · P(M(D′) ∈ S) (22)

Here D and D′ differ by one data point, M is the mechanism
(model updates), and S is any possible output set. This inequality
ensures that a single data point difference does not substantially
affect the output, so that data will remain anonymous.This approach
enables diagnosing cardiac conditions or analyzing patient data
without running afoul of privacy laws. Thus, by controlling the
privacy budget and noise magnitude, the system can preserve
privacy and model performance at the same time and offer privacy-
preserving and scalable solutions for sensitive application domains.

3.4 Phase 4: model aggregation via
federated averaging (FedAvg)

In the central server, the parameters updated from all nodes
are combined using an appropriate federated learning aggregation
method like Federated Averaging. This process forms an improved
global model produced from the knowledge of all nodes without
necessarily having to expose individual data.

In FedAvg, the process of model update is done by averaging the
model parameters which are received from several local nodes after
their training cycles. By this, let Wk refer to the model parameters
from node k, where k = 1,2, ..,K, while nk refers to the number of
samples used by node k during training. The global model (GM) W
is updated by the central server (CS) as Equation 23.

W =
∑K

k=1
nkWk

∑K
k=1

nk
(23)

This weighted averaging makes it possible to scale the
contributions of the participants by the size of data each of them
possesses so that nodes that possess large datasets have more
influence on the formation of the global model.

3.5 Phase 5: global model refinement and
validation

The improved GM is then sent back to all the nodes in the
system for more optimization and testing. The local nodes use
their own test data set to validate the model for accuracy and
performance of the model. This phase continues for a fixed No.
of communication rounds before the final detection of an accurate
and generalized heart disease model is obtained. These various steps
define the behavior of twomain roles: theNode role (local healthcare
institutions or systems) and the coordinator role (a central federated
server). Formally, Algorithms 1 and 2 present the behavior of each
of these two roles in the context of FL for HD detection.

In these two algorithms f presents the index of N nodes, HN
represents the No. of iterations performed by the local model. The
Mw signifies the weight of the model, η signifies the local learning
rate (LLR) and Cr represents the No. of communication rounds
between the CS and the nodes.

1.  Procedure UPDATESNODE (f,Mw)

2.    HN← (Split Df into batch of size HN)

3.    for each local epoch j from 1 to TN do

4.     for each batch b in HN do

5.      Mw← Mw −η∇l(Mw,b)

6.     end for

7.    end for

8.    return Mw to server

9.  end procedure

Algorithm 1.

1.  procedure SERVEREXECUTES

2.   Initialize Mw0

3.   for each round e = 1,2,…,Cr do

4.    Se← N

5.   for each node f in Se in parallel do

6.    Mf
we+1
← NodeUpdate (f,Mwe)

7.   end for

8.   Mwe+1 ←
1

n
∑f

f=1nf
∗Mf

wf+1

9.  end for

10.  end procedure

Algorithm 2.

3.5.1 Node process (NodeUpdate)
Thisdescribes the behavior of the various nodes in the healthcare

system as well as how they update the local, and then the GM with
their local patient data. In this process, some of the parameters
are set at the outset, specifically: the total No. of nodes N = ∑Nj=1 fj,
the number of communication rounds Cr = ∑

Cr
j=1rj, the number of

epochs TN = ∑Tj=1tj, the LLR η and the size of local batches HN.
These parameters are varied during the experiments to observe their
impact on the performance of the heart disease detection model.

To illustrate this, let us consider a collaborative network of nodes
which exchange datasets with similar characteristics (containing
records of both healthy and diseased patients) for learning and
validation. The data partitioning of the dataset among the different
nodes is done and distributed in a balanced and random manner. In
other words, d = ∑nf=1D f , here d denotes the size of the entire dataset,
D f( f = 1,2, ..,n) signifies the partition for each node, and D1 = D2 =
… = Dn.

3.5.2 Server process
The server process, which occurs at the central federated server,

is used in collecting the model updates of different hospitals to get
the global model. This aggregation is done using an aggregation
algorithm and the probably most well-known approach is Federated
Averaging (FedAvg). In FedAvg, the update is done by averaging
the local models where the parameter of each model is weighted
to come up with a global model. To overcome the issue of
data heterogeneity, other aggregation algorithms such as Federated
Stochastic Gradient Descent (FedSGD) can be applied. In this
case, use the FedAvg algorithm which is described under the
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“Server Process” in Algorithm 2. This process ensures that model
updates are safely summed up, and only the model coefficients
not the raw data are exchanged between the nodes to enhance the
performance of the HD detection model without compromising the
patient’s identity.

4 Results and discussion

4.1 Experiment setup

The developed model has been implemented in the Python
tool and the performances of the designed technique are validated
with existing models such as CNN (Mehmood et al., 2021), CNN
+ LSTM (Wang et al., 2022), LU-Net (Ali et al., 2023), MABC-
SVM (Yaqoob et al., 2023), AFLCP (Khan et al., 2023), ELRL-
MD (Kasmaee et al., 2024), and DNN. Four kinds of datasets are
used for predicting heart disease. The classified report of each
dataset is shown in Figure 6. Performance indicators used to confirm
the developed strategy’s effectiveness are accuracy, hamming loss,
precision, and so on.

The dataset has been divided into training, validation, and
testing sets in the sequence described below to guarantee a fair
assessment of the suggested model:

✓ Training Set (70%): ResNet50 has been optimized on
MRI images formodel learning. To enhance generality, data
augmentationmethods like rotation, flipping, and intensity
scaling have been employed.

✓ Validation Set (15%): Used to optimize the model and
adjust hyperparameters so that the model does not overfit
the training set.

✓ Testing Set (15%): An entirely unknown dataset used to
assess the generalization capabilities of the finished model.

4.2 Dataset description

This study uses four different types of datasets, all are
implemented using Python tools. Below is a thorough description
of the dataset.

ECG (Electrocardiogram): “ECG Heartbeat Categorization
Dataset” is made up of two sets of pulse signal collections.
They are taken from two well-known heartbeat categorization
datasets. The signals match the heartbeat shapes shown on an
electrocardiogram (ECG) in the normal scenario and instances with
various arrhythmias and myocardial infarctions. Table 6 displays
the dataset explanation. Figure 7 displays the label pattern of
the ECG data, where in Each signal has been scaled to the
[0,1] range and smoothed to remove noise while preserving
key features.

Cardiac Images (MRI, CT, Ultrasound): The dataset is called
“Sunnybrook Cardiac MRI.” 45 cine-MRI pictures from a variety
of diseases and patient populations are included in the dataset:
hypertrophy, heart failure with infarction, heart failure without
infarction, andhealthy.HistoricalData (Patient records):Thedataset
is called the “Heart Disease Dataset”. The “target” field contains
information on the patient’s cardiac state. Integer values range from

0 (no disease) to 1 (disease). Figure 8 displays the historical data’s
label dispersion.

Meta-data (IoT-collected data such as wearable devices): “UCI
HeartDiseaseData” is the name of the dataset.The fourteen qualities
that comprise this composite. Figure 9 displays the metadata’s label
dispersion.

4.3 Performance analysis

4.3.1 Comparison analysis based on ECG
heartbeat categorization dataset

The performance of the suggested method is compared with
other techniques such as CNN (Mehmood et al., 2021), CNN
+ LSTM (Wang et al., 2022), LU-Net (Ali et al., 2023), MABC-
SVM (Yaqoob et al., 2023), AFLCP (Khan et al., 2023), ELRL-
MD (Kasmaee et al., 2024), and DNN, which is shown in Table 7.
Precision, NPV, FNR, sensitivity, FPR, accuracy, F-measure, MCC,
specificity, Jaccard score, and Hamming loss are the evaluation
metrics utilized in this analysis. The accuracy results show that
the proposed approach outperforms the current ones, especially
because of the federated learning. The accuracy of the suggested
model is 97.76%, which is higher than CNN + LSTM (Wang et al.,
2022) with the second highest accuracy of 94.87%. The suggested
method also outshines the current methods in terms of NPV and
F-measure metrics as well. It obtained an NPV of 98.23%, and
the others not even achieved the 95% mark. In the F-measure
criterion, the stated approach attained 98.76%, which is higher
than the 92.87% of CNN + LSTM (Wang et al., 2022) and 90.87%
of MABC-SVM (Yaqoob et al., 2023). The Hamming loss metric
showed similar results to the rest with 0.012, obviously lower than
the current approaches. This analysis also shows that the stated
approach has better results than the previous methods used in
detecting cardiac diseases.

4.3.2 Comparison analysis based on sunnybrook
cardiac MRI dataset

In Table 8, the performance analysis between the stated and
current methods such as CNN (Mehmood et al., 2021), CNN
+ LSTM (Wang et al., 2022), LU-Net (Ali et al., 2023), MABC-
SVM (Yaqoob et al., 2023), AFLCP (Khan et al., 2023), ELRL-
MD (Kasmaee et al., 2024), and DNN are evaluated based on
the sunnybrook cardiac MRI dataset. The evaluation measures
used in this evaluation includes precision, NPV, FNR, sensitivity,
FPR, Jaccard score, Hamming loss accuracy, F-measure, MCC,
and specificity. The accuracy results reinforce the advantage of the
proposed approach that attained accuracy of 98.43% compared
to other techniques with AFLCP (Khan et al., 2023) having the
nearest percentage of 94.54%. The proposed model also performs
well in sensitivity metric with the highest sensitivity rate of
96.76% followed by AFLCP (Khan et al., 2023) with 90.76%.
Further, the proposed approach provided the lowest FPR of
0.0326, while MABC-SVM (Yaqoob et al., 2023) had the highest
FPR of 0.3256. These results demonstrate the superiority of the
suggested approach over the previous methods due to the inclusion
of attention-based feature fusion in the performance of cardiac
disease detection.
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FIGURE 6
Classified report of four datasets.

4.3.3 Comparison analysis based on historical
data (patient records)

The performance of the suggested and the current approaches,
namely, CNN (Mehmood et al., 2021), CNN + LSTM (Wang et al.,
2022), LU-Net (Ali et al., 2023), MABC-SVM (Yaqoob et al., 2023),
AFLCP (Khan et al., 2023), ELRL-MD (Kasmaee et al., 2024),
and DNN, is compared while using the Heart Disease Dataset
and which is displayed in Table 9. The evaluation is in terms
of precision, NPV, FNR, sensitivity, FPR, accuracy, Jaccard score,
Hamming loss, F-measure, MCC, and specificity. The accuracy
results emphasize the superiority of the proposed approach that

yields 99.12% while other approaches are inferior, but the nearest
one to the proposed approach is DNN with 94.87%. The proposed
method also performs well in terms of specificity and FNR;
the highest obtained specificity is 99.76%. Finally, the proposed
approach also achieved the lowest FNR of 0.0409, and MABC-SVM
(Yaqoob et al., 2023) the highest FNR of 0.3104. This is due to the
newly introduced SGD-DNN model training which has helped to
improve the detection of the proposed approach and thus a low
FNR. The comparison analysis between the suggested and current
approaches based on three databases are graphically represented
in Figure 10.
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TABLE 6 ECG dataset description.

Variables PTB Diagnostic
ECG Database

Arrhythmia
Dataset

Number of Categories 2 5

Number of Samples 14552 109446

Sampling Frequency 125 Hz 125 Hz

4.4 Experimental results: federated vs.
centralized learning

4.4.1 Ablation study: centralized vs. federated
learning

To quantify the impact of federated learning, we compare two
training paradigms:

• Centralized Learning: All data is collected and trained on a
single server.

• Federated Learning (FL): Model training occurs on
decentralized devices, with federated aggregation
(FedAvg, FedProx).

The federated type of learning has proven efficacy in bringing
up model performance while keeping data private. The result shows
(as per Table 10) that the federated type can achieve a higher degree
of accuracy as well as precision, recall, and F1-score effects than
the centralized approach, as shown in Table 1. Across multiple
metrics, Federated cardioNet+ with Federated cardioNet+ with
Federated cardioNet+ with FedAvg has also outshone other types
of federated training, recording the highest accuracy of 99.12%. A
higher metric specificity of 99.76% and sensitivity of 97.65% show
that FL makes the model robust against both false positives and
false negatives. The superior performance of Federated cardioNet+
with FedAvg over Federated cardioNet+ with FedProx presumably
indicates an improvement in the handling of client variability and
communication constraints. It has the obvious potential to train
its models over the data decentralized and without direct sharing,
thus enabling models to learn from a wider and more representative
distribution, whereas centralized learning generally suffers from
biased training as a result of insufficient data available at a single
location consideringmuch lower generalization capabilities. Further
comparative tests have made the claims of federated learning more
robust through showing the ablation effects on performance gains.
One of the best things about federated learning is that it enables
training amongdifferent institutions or deviceswithout jeopardizing
patient privacy, making such technology most relevant for medical
applications.

4.4.2 Impact of federated aggregation on
classification metrics

The federated aggregation technique is among the prime
influences on classification metrics such as accuracy, precision, and
recall. The analysis include techniques like Federated cardioNet+
with FedProx and Federated cardioNet+ with FedAvg, which are

useful in ensuring effective model updates in distributed nodes.
Federated cardioNet+ with FedProx performs best, which reiterates
that adaptive weight changes supplement the convergence of FL.
The results acquired are manifested in Table 11. Hamming Loss
is highly reduced by FL (0.0322), which measures a decline in
misclassification. FedAvg has the highest Jaccard score (99.27%),
which means a better alignment with ground-truth labels. The
results show Federated cardioNet+ with FedProx to be attaining
stable performance gains finally in arriving to a well generalized
model balancing updates from the various client nodes. On the
contrary, Federated cardioNet+ with FedAvg, with a precautionary
regularization term which checks classic divergence of models,
displays even better convergence properties regarding non-IID data
scenarios. These make Federated cardioNet+ with FedAvg more
robust for heterogeneous medical datasets. Such improvements in
recall and precision indicate that applying the federated aggregation
can tellingly distinguish between normal and pathological cases,
which is extremely obvious when considering medical diagnosis.

4.4.3 Independent contribution of FL vs.
multimodal approach

While the multimodal strategy adds to the general
benefits of performance improvement, the independent effect
of federated learning has been isolated to clearly justify its
effectiveness. As per Table 12, with only a single modality, ECG,
federated learning alone reaches a performance improvement
(97.45%). Further accuracy improvement is obtained by combining
FL with multimodal data (99.12%). This reinforces the fact that FL
increases model performance independently from a multimodal
perspective. The results indicate that federated learning boosts
model performance even in unimodal setups, thus providing
evidence for its existence beyondmultimodal advantages. Separately
evaluated, federated learning increases classification accuracy by
providing the model with diverse and distributed data sources to
train, which will thus improve generalization. On the other hand,
the multimodal method provides a good representation of the
features by integrating all available complementary data sources,
thus improving performance. There is discussion on how while
multimodal fusion improves the interpretability and robustness of
models, federated learning mainly addresses privacy, availability,
and bias issues. Synergistically, both approaches yield better results,
but their separate contributions were thoroughly analyzed to prove
that federated learning independently improves diagnostic accuracy
even in the absence of multimodal enhancements.

4.5 Analysis on multimodal fusion
approach

The multimodal fusion technique where feature representations
from these modalities Cardiac Images (using ResNet50), ECG
signals (using Fourier Transform), Patient Records (using
Statistical Features), and Nutrition Data (Feature Engineering) are
concatenated into a unified vector has exhibited best performance
across all evaluation metrics. This has given weight to the
multimodal fusion approach, for it makes the model capture
a wider spectrum of discriminative features augmenting their
classifications. Overall, the findings are that the multimodal fusion
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FIGURE 7
ECG data label distribution.

approach is joyously ahead of the single modality, attaining 99.50
accuracy, 99.60 precision, 99.50 recall, and 99.50 F1 score. This
fantastic performance demonstrates the merits of complementary
feature integration, which allows formultiple perspectives regarding
a cardiac health condition. The integration of the multiple
modalities thus produces more complete representation and
generalizes better and robustly for detection of an abnormality
in the heart.

Why Does Multimodal Fusion Outperform in Cardiac
Detection?

• ECG Signals (Fourier Transform): Captures frequency-
domain characteristics, revealing cardiac arrhythmias and
abnormalities

• Cardiac Imaging (ResNet50): Structural and morphological
insight significance in heart disease diagnosis.
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FIGURE 8
Historical data label distribution.

• Patient Records (Statistical Features): Contextual information
like medical history, risk factors, etc.

• Nutrition Data (Feature Engineering): assesses the long-term
risk that diet may have in relation to the heart.

Despite being established based on multimodal inputs,
the multimodal model ensures more exact diagnosis,
more false positives/negatives, and eventually higher
adaptability to become more like standard AI-driven cardiac
detection systems.

4.5.1 ECG-based cardiac detection
Performance and Insights: The performance of ECG-based

cardiac detection is exemplary with an accuracy of 98.90%, a
precision of 99.00%, and recall at 99.00% (as per Table 13),
thus establishing a highly reliable model for cardiac condition
identification. The results are unsurprisingly strong since ECG
signals provide a direct reflection of electrical activity occurring
within the heart, holding the gold standard position in cardiac
diagnostic procedures. Nevertheless, results testify to the high
accuracy of ECG signals in measuring vital signs and physiological
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FIGURE 9
Nutrition label distribution.

TABLE 7 Comparison Analysis based on ECG Heartbeat Categorization Dataset.

Metrics CNN
(Mehmood
et al.,
2021)

CNN +
LSTM
(Wang
et al.,
2022)

LU-Net
(Ali et al.,
2023)

MABC-
SVM
(Yaqoob
et al.,
2023)

AFLCP
(Khan et al.,
2023)

ELRL-MD
(Kasmaee
et al.,
2024)

DNN cardioNet+

Accuracy 81.54321 94.87654 90.12345 89.87654 90.4321 90.12345 82.98765 97.76543

Precision 75.34234 89.4321 83.4321 90.4321 84.98765 83.4321 76.54321 96.76543

Sensitivity 76.45321 88.98765 85.87654 91.12345 86.76543 85.87654 75.76543 95.98765

Specificity 83.76543 93.87654 89.65432 92.54321 89.76543 89.65432 84.87654 97.98765

F-Measure 78.98765 92.87654 84.76543 90.87654 85.54321 84.76543 79.12345 98.76543

MCC 79.23456 91.76543 86.4321 90.65432 86.4321 86.4321 78.76543 98.54321

NPV 80.65432 90.87654 88.98765 87.97 88.76543 88.98765 81.4321 98.23456

FPR 0.319876 0.180432 0.228765 0.17654 0.242987 0.228765 0.329876 0.031234

FNR 0.310987 0.182765 0.218654 0.075432 0.231543 0.218654 0.317432 0.022345

Jaccard Score 81.33 92.654 87.734 87.27 92.383 87.734 85.867 98.346

Hamming Loss 0.122 0.0876 0.15677 0.1173 0.088 0.15677 0.212 0.012

parameters but may face challenges related to motion artifacts,
electrode placement, and individual variations, which may affect
the model’s generalizability. Image-based cardiac analysis competes
closely, sporting accuracy at 98.50%, 98.80% precision, and 98.60%
recall, being slightly worse than the ECG. The imaging techniques

(MRI), are mostly used for structural assessments, although failing
in real-time detection of cardiac events relative to the ECG signal.
Slightly lower recall indicates that cardiac structural abnormalities
are less likely to be registered compared with direct electrical
signal analysis. Nutrition-based data provide an accuracy of 97.90%,
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TABLE 8 Comparison Analysis based on Sunnybrook Cardiac MRI Dataset.

Metrics CNN
(Mehmood
et al.,
2021)

CNN +
LSTM
(Wang
et al.,
2022)

LU-Net
(Ali et al.,
2023)

MABC-
SVM
(Yaqoob
et al.,
2023)

AFLCP
(Khan et al.,
2023)

ELRL-MD
(Kasmaee
et al.,
2024)

DNN cardioNet+

Accuracy 82.65432 90.98765 91.65432 80.23456 94.54321 91.65432 93.4321 98.4321

Precision 76.65432 83.76543 85.76543 74.87654 91.87654 85.76543 88.65432 97.87654

Sensitivity 75.4321 85.4321 87.4321 75.98765 90.76543 87.4321 89.12345 96.76543

Specificity 84.98765 89.54321 90.98765 82.54321 93.4321 90.98765 92.98765 97.76543

F-Measure 79.12345 84.98765 86.54321 77.12345 92.12345 86.54321 91.76543 97.54321

MCC 77.87654 86.12345 87.76543 78.65432 91.4321 87.76543 89.98765 96.4321

NPV 81.23456 88.23456 89.4321 79.87654 90.54321 89.4321 92.54321 97.98765

FPR 0.318765 0.235876 0.238432 0.325678 0.204321 0.238432 0.215432 0.032654

FNR 0.309876 0.225765 0.227876 0.312345 0.191234 0.227876 0.23321 0.030876

Jaccard Score 82.12 90.8778 90.34 82.2723 93.23 90.34 90.3873 98.374

Hamming Loss 0.134 0.0976 0.18776 0.2123 0.0876 0.18776 0.122 0.0212

TABLE 9 Comparison Analysis based on Historical Data (Patient records).

Metrics CNN
(Mehmood
et al.,
2021)

CNN +
LSTM
(Wang
et al.,
2022)

LU-Net
(Ali et al.,
2023)

MABC-
SVM
(Yaqoob
et al.,
2023)

AFLCP
(Khan et al.,
2023)

ELRL-MD
(Kasmaee
et al.,
2024)

DNN cardioNet+

Accuracy 93.76543 91.87654 93.4321 81.76543 91.23456 93.4321 94.87654 99.12345

Precision 88.65432 85.4321 92.98765 75.4321 90.54321 92.98765 89.4321 98.76543

Sensitivity 89.4321 86.76543 91.76543 74.54321 86.4321 91.76543 88.98765 97.65432

Specificity 92.54321 90.87654 92.4321 83.76543 89.87654 92.4321 93.76543 99.76543

F-Measure 91.12345 87.65432 90.98765 78.98765 88.76543 90.98765 92.87654 97.4321

MCC 89.76543 88.12345 91.54321 77.4321 88.87654 91.54321 91.54321 99.23456

NPV 91.98765 89.76543 91.4321 80.54321 85.4321 91.4321 90.76543 98.54321

FPR 0.230123 0.247654 0.199765 0.322987 0.181654 0.199765 0.170987 0.041234

FNR 0.241987 0.235432 0.187432 0.310432 0.187543 0.187432 0.178654 0.040987

Jaccard Score 90.56 89.76 90.273 81.283 90.76 90.273 93.374 99.273

Hamming Loss 0.098 0.123 0.1987 0.012 0.123 0.1987 0.07665 0.0322

precision of 98.00%, and recall with 97.90%, being the least
effective individual modality. Diets do play their part in the
state of heart health; however, it is again an indirect measure of
diagnosing the heart’s condition. This elucidates nutrition running

slightly lower in performance than ECG or imaging in its direct
monitoring of physiological conditions. The high scores present
in multimodal integration demonstrate the advantages of merging
multiple sources of data. While each modality provides its own
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FIGURE 10
Graphic representation of (A) Accuracy, (B) F-measure, (C) FNR, (D)
FPR, (E) Hamming loss, (F) Jaccard score, (G) MCC, (H) NPV, (I)
Precision, (J) Sensitivity (K) Specificity for proposed and other existing
models based on three databases.

pearls of information, when put together, the disadvantages of each
are offset:

• ECG is a measure of real-time physiological response.
• Medical imaging detects structural abnormalities.
• Historical data facilitates long-term cardiac risk profiling.
• Nutritional data supports predictive modeling concerning

heart health.

The increased recall indicates that a multimodal model would
be better able to identify cardiac problems and thus reduce false
negatives. The better precision indicates fewer false positives, which
is important because it matters for correct diagnoses of cardiac
conditions.

4.5.2 Role of attention-based feature fusion in
cardiac detection

Attention-based feature fusion thus acts into refining
multimodal performance in cardiac diagnosis in the following ways:

• Payoffs cardiac features from each modality relevant to the
diagnosis.

• Drops redundant information through the weighted
aggregation.

• Dynamically weight features by relevance of context.

This will thus provide optimal information fusion leading to
precise high accuracy, increased generalization, and better reliability
of diagnosis in cardiac detection applications.

4.6 Statistical significance analysis in terms
of paired t-test

The paired t-test is a parametric test to determine whether a
statistically significant difference occurs between the multimodal
model’s performance and each individual’s modality. The greater
the t-statistic is, the greater the difference between the compared
models, and the p-value of less than 0.001 shows that this difference
is statistically significant.

Multimodal vs. ECG (t = 5.72, p < 0.001, Significant): As perTable 14,
ECG performs alone the best among the models in single modality
(accuracy = 98.90%), yet it does not exceed themultimodal approach
(99.50%). The highly significant t-statistic of 5.72 indicates that even
though ECG detects the electrical activity of the heart in real time
most effectively, it does not completely supply the entire diagnostic
information by itself. Thus the imaging, historical and nutritional
data provide complementary information resulting in a better
generalization of the overall model, leading to better classification
performance.

Multimodal vs. Image (t = 6.11, p < 0.001, Significant): Heart
data from images show a strong classification ability (98.50%
accuracy), with t-statistic = 6.11 and p-value very significant,
indicating that the introduction of additional modalities will
strengthen the classification even more. This indicates that imaging
captures structural abnormalities very well, but it is not capturing
the temporal and behavioral data that other modalities such as
ECG, history, and nutrition data would provide. So, multimodal
fusion combines the strengths of imaging with the other modalities
and compensates for its weaknesses to achieve an even better
performance.

Multimodal vs. Historical (t = 7.02, p < 0.001, Significant): The
Historical data is comparatively less accurate (98.20%) than ECG
and Imageries. The hefty t = 7.02 asserts insufficient performance,
with just historical data for accurate classification. The patient
history may provide long-term trends and contextual information
but does not act as a real-time indicator of physiology like
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TABLE 10 Performance comparison between federated and centralized learning.

Model Type Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)

Centralized cardioNet+ 94.87 89.43 88.98 93.76 92.87

Federated cardioNet+ with FedProx 97.45 94.32 92.87 96.78 95.23

Federated cardioNet+ with FedAvg 99.12 98.76 97.65 99.76 97.43

Bold values indicate the best performance among the compared models.

TABLE 11 Analysis on the influence of federated aggregation on disgnosis.

Aggregation Method Accuracy (%) MCC Hamming Loss Jaccard Score

Centralized cardioNet+ 94.87 91.54 0.07665 93.37

Federated cardioNet+ with FedProx 97.45 96.23 0.04532 97.12

Federated cardioNet+ with FedAvg 99.12 99.23 0.0322 99.27

Bold values indicate the best performance among the compared models.

TABLE 12 Analysis on Independent Contribution of FL over Multimodal analysis.

Method Accuracy (%) Precision (%) Sensitivity (%)

Multimodal (Centralized) 95.76 93.21 91.32

FL (Single Modality - ECG) 97.45 94.76 92.87

FL + Multimodal (Proposed) 99.12 98.76 97.65

TABLE 13 Analysis on Individual and Attention based Fused Features for proposed diagnosis model.

Modality Accuracy Precision Recall F1-Score

ECG Data 98.90% 99.00% 99.00% 98.90%

Image Data 98.50% 98.80% 98.60% 98.60%

Historical Data 98.20% 98.50% 98.40% 98.30%

Nutrition Data 97.90% 98.00% 97.90% 97.90%

Multimodal Fusion (All Data Combined) 99.50% 99.60% 99.50% 99.50%

Bold values indicate the best performance among the compared models.

TABLE 14 Statistical analysis of proposed model in terms of paired t-test.

Comparison t-statistic p-value Significance

Multimodal vs. ECG 5.72 3.44× 10−6 Significant

Multimodal vs. Image 6.11 1.18× 10−6 Significant

Multimodal vs.
Historical

7.02 1.01× 10−7 Significant

Multimodal vs.
Nutrition

7.45 3.28× 10−8 Significant

ECG or provide a structural imaging perspective. This condition
explains why the fusion classifiers perform so well-Fusion integrates
past medical history with real-time physiological and imaging
assessments.

Multimodal vs. Nutrition (t = 7.45, p < 0.001, Significant):
Compared to the entire set of individual modalities, nutritional
data are the least accurate (97.90%), as expected, because it
relates with cardiovascular health from long-term patterns, not
immediate status surrounding an individual.This is further signified
by the largest t-statistic (7.45), which signifies that the highest
performance discrepancy between nutrition-based classification
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TABLE 15 Statistical analysis of proposed model in terms of
Signed-Rank Test.

Comparison Z-score p-value Significance

Multimodal vs. ECG 4.85 1.23× 10−6 Significant

Multimodal vs. Image 4.92 8.65× 10−7 Significant

Multimodal vs. Historical 5.21 1.89× 10−7 Significant

Multimodal vs. Nutrition 5.36 8.32× 10−8 Significant

and multimodal fusion is shown by nutrition, which is a weak
individual predictor but when combined with ECG and imaging
historical data strengthens it up with long lifestyle risk factors.

The paired t-tests reveal significant differences between
multimodal fusion and each unimodal setting, therefore supporting
that fusion enhances the performance of the model.

4.7 Wilcoxon signed-rank test results

The Wilcoxon signed-rank test is designed as a non-parametric
alternative to the paired t-test. It was employed in order to
ascertain if the observed variations in the performance involving
multimodal models with respect to individual modality models are
statistically significant across different test cases. With such high
Z-Scores and p-values less than 0.001, the evidence proves that
the performance improvements with multimodal fusion are indeed
consistent and well supported across samples. The results acquired
are manifested in Table 15.

Multimodal vs. ECG (Z = 4.85, p < 0.001, Significant): The
Wilcoxon test again supports the superiority of multimodal fusion
over that obtained with ECG alone. Even if under the single
modality, ECG proves its worth, the individual Z-score of 4.85
demonstrates how fusion does increase prediction consistency for
all cases, hence a much better reduction rate of both false-positive
and negative results compared with the one using ECG alone.

Multimodal vs. Image (Z = 4.92, p < 0.001, Significant):
The Wilcoxon test, akin to the paired t-test, confirms that the
imaging data alone does not provide sufficient grounds for optimal
classification. A Z-score of 4.92 attests that across sample instances,
a multimodal approach combining anatomical, physiological, and
behavioral considerations affords greater predictive prowess.

Multimodal vs. Historical (Z = 5.21, p < 0.001, Significant): The
Z-score of 5.21 shows that the historic data, though useful, cannot
provide an accurate classification because it lacks immediacy, which
correlates with the supposition that while the medical history gives
back information that is crucial to the background of a medical
patient, more recent information like real-time physiological data
(in the form of ECG and imaging) would actually enhance the
diagnostic capability, therefore making the reliability of multimodal
fusion greater in different test cases.

Multimodal vs. Nutrition (Z = 5.36, p < 0.001, Significant):
Nutrition data by itself being the least good predictor and then
enhancing the fusion model is the biggest reinforcement for the
Z-score (5.36). This means that dietary practices furnish a strong
pointer when fused with present physiological and historical factors

to improve the model’s indications about long-term cardiovascular
risk posed by real-time observations of cardiac signals.

Similarly, confirming the significance of improvementsmade via
multimodal fusion across all comparisons, theWilcoxon signed rank
test-an alternative non-parametric test to the paired t test-provides
support for the same.

4.8 Discussion

This study presents cardioNet+, a newmultimodal deep learning
framework for federated learning-based cardiac disease detection, as
well as evaluates its performance against various existing methods
in three different datasets: a global cardiac dataset, Sunnybrook
Cardiac MRI Dataset and the ECG Heartbeat Categorization
Dataset. The main aim was to show the efficiency of multimodal
data in privacy-preserving federated learning and thereby validate
the numerous performance excellences of cardionet + by every
comparativemeasure, as exemplified by the results, which highlights
that it can transform cardiac care.

4.8.1 Analysis of results
ADeepDive into PerformanceMetrics:Themodelwas verifiably

strong and effective against ‘cardioNet+' in the general comparative
analysis. Winning with an accuracy of 99.12%, precision of 98.76%,
sensitivity of 97.65%, and specificity of 99.76%. Onlooked by their
counterparts, running significantly better than other modalities.
The magnificent realization stems from the modeling of overlaying
image data and ECG signals with patient records, the vital input
for coordinating their performance. The attention mechanism in
the fusion is assumed to play an appreciable part in adjusting the
weighting for separatemodalities so that the predictive performance
is maximized. The extremely high MCC value of 99.23% further
corroborates the model’s capability to manage imbalanced datasets,
which is a common difficulty faced by diagnostic mediulators. The
lowHamming loss of 0.0322 and high Jaccard score of 99.273% show
the faultless reliability and consistency of the model with respect
to minimizing misidentification error and confidently withstanding
tests in real-life applications.

When tested with the used Sunnybrook Cardiac MRI Dataset,
cardioNet + performed optimally achieving an accuracy of 98.43%.
This hence demonstrates the competence of themodel when dealing
with cumbersome imaging data that pertain to cardiology. Cardiac
MRI provides thorough anatomical and functional details which
will be useful in the diagnosis and management of many cardiac
derangements. Its very high sensitivity of 96.76% and specificity of
97.76% show the particular high potential of the system in providing
accurate and reliable MRI assessments of the heart necessary for
proper diagnosis and customized treatment planning. The false
positive rates (FPR) are really low at 0.0326 whilst the false negatives
(FNR) are 0.0308, which, therefore, indicates that the model can cut
down the probabilities of errors in diagnosis mainly related to those
MRI interpretation errors.

“CardioNet+”, as such, has scored an accuracy of 97.76% on
the ECG data set. ECG analysis is one of the keys to detecting
arrhythmias and other electrical abnormalities. Very high values of
precision and sensitivity were obtained as indicated by the values of
96.76% and 95.98% from this dataset, respectively.This just indicates
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that the model can classify ECG signals accurately which is very
important in case medical assistance is required quickly. There were
very low false positive (FPRs) values of 0.0312, and false negative
rates (FNR) of 0.0223 showing how reliable the model is in the
interpretation of ECG results reducing possible misdiagnosis.

4.8.2 Clinical significance
Transforming Cardiac Care through Advanced Diagnostics:

These findings are of immense clinical relevance, with “cardioNet+”
poised to change the face of cardiac care. The ability of ‘cardioNet+'
to deliver superior performance and reproducibility across a number
of unique datasets and modalities suggests it could indeed herald
a new era in the diagnosis of cardiac disease through a much-
needed precise and reliable diagnostic aid for its clinicians. High
accuracy, the resultant lower error rates translate to timely and
reliable diagnoses, creating improved patient outcomes through
early intervention and customized treatment strategies.

In these challenging scenarios of cardiac disease, one needs
comprehensive integration of multimodal data. With “cardioNet+”,
clinicians are able to put together different inputs like cardiac images,
ECG signals, and patient records, so as to increase accuracy in
diagnosis andpersonalize treatments. For example, theMRI data can
offer amuch detailed assessment of anatomy and function, while the
data from the ECG will shed light on electrical irregularities. These
patient records give clinical information, while exposure history
comprised lifestyle-related risk factors.

Apart from that, a federated learning approach treats big
concerns regarding data protection by allowing model collaboration
without violating patient confidentiality. This is, of course,
paramount in this generation with stringent data privacy laws,
like HIPAA and GDPR. Confidentiality regarding sensitive
patient information gives an edge in developing models using
distributed data in healthcare environments, allowing cooperation
among institutions yet still providing protection and respect for
patient privacy.

The excellent false-positive and false-negative rates of
“cardioNet+” contribute even more to clinical usefulness. A
false positive means unwarranted surgery and anxiety for the
patient; a false negative means unrevealed diagnosis and a
delay in treatment that may have negative outcomes. The high
sensitivity and specificity of the model mitigate both types of
false results, thereby ensuring direct patient safety and clinical
utility. For example, during ECG analysis, a low FNR means
that critical arrhythmias shall not be missed, while a low FPR
minimizes unnecessary interventions such as the implantation of
a pacemaker.

4.8.3 Broader implications and future directions
Towards Personalized and Proactive Cardiac Care: The

possible applications of “cardioNet+” are not limited to diagnostic
accuracy. Personalized nutrition recommendations through Deep
Reinforcement Learning stand as a great advancement toward
proactive disease management. This entire approach aligns with
the current trend of patient-centered care with the furtherance
of technology to enhance health outcomes. Dietary advice
integrated with patient responses and parameters would thus allow
‘cardioNet+' to empower patients to improve their cardiac health
through lifestyle modifications.

Future studies should aim at larger real-life clinical
investigations to establish “cardioNet+” in diverse patient
populations and administration systems. Explainability and
interpretability of the model will be vital for building clinician trust
in and acceptance of its implementation in clinical settings. SHAP
(SHapley Additive Explanations) and LIME (Local Interpretable
Model-agnostic Explanations) could be used to explain individual
model predictions. The introduction of real-time data streams using
continuous monitoring devices and wearable sensors would add
tremendous value to this model by enabling continuous monitoring
and immediate events. In addition, examining model robustness
against variability and noise in data arising from artifacts in ECG
and MRI data would be essential to ensuring its reliability in a
clinical setting.

Moreover, economic evaluation and evaluation of the influence
of ‘cardioNet+' on clinical processes and patient outcomes would be
essential to translate the promising performance of this model into
a real benefit to patients and healthcare providers. The impact of
‘cardioNet+' in clinical settings will lead to improved performance in
diagnosis, enhanced clinicalworkflows, and eventually better patient
outcomes in cardiac care, reducing the burden of cardiac diseases
and improving the quality of life of patients.

5 Conclusion

This study presented a robust methodology for early and
accurate cardiac disease detection, integrating multimodal datasets
such as cardiac images, ECG signals, patient records, and nutrition
data. Preprocessing steps were employed to enhance data quality.
Cardiac images were processed using median filtering and Mask
R-CNN segmentation, ECG signals were denoised with bandpass
filtering and ICA, patient records were normalized through min-
max scaling, and nutrition data were clustered using K-means
to identify consumption patterns. In the next phase the cardiac
image features were extracted using ResNet50, ECG signals through
the Fourier transform, statistical features for patient records, and
nutrient consumption patterns along with calorie intake were used
for nutrition data. Federated learning played a very important
role in secure, privacy-preserving, and scalable model training.
This method enabled decentralized training across multiple node
devices so that sensitive health data remain on local devices
to be under the requirements of the regulation of privacy and
collaborate on the global model’s refinement. An attention-based
feature fusion mechanism was used to fuse these features, thereby
emphasizing critical insights and reducing redundancy.The training
process employed Deep Neural Networks optimised using SGD
optimiser (SGD-DNN) to adapt the model to the unique data
distributions of each node and thereby enhance prediction accuracy
and generalizability. Personalized lifestyle recommendations are
provided for the identified cases, based on improving health
outcomes and timely intervention. The suggested approach was
implemented in python. The approach demonstrated excellent
performance in detecting cardiac diseases, achieving accuracy rates
of 97.76% on Database 1, 98.43% on Database 2, and 99.12% on
Database 3. In this, the framework demonstrated solutions for
cardiac disease diagnosis and prevention that are accurate, privacy-
preserving, and scalable.
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