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S-nitrosylation of cardiac
myocyte proteins may underlie
sex differences in cardiac disease
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and Donald M. Bers1*
1Department of Pharmacology, University of California, Davis, Davis, CA, United States, 2Department
of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand

Nitric oxide (NO) plays several critical roles in cardiovascular physiology.
This molecule regulates cardiac function by modifying Ca2+-handling proteins
through a process known as S-nitrosylation. These targets include L-type
Calcium Channels (LTCC), Ryanodine Receptors (RyR2), Protein Kinase G (PKG),
Phospholamban (PLB), sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a)
and Ca2+/Calmodulin-dependent protein kinase II (CaMKII). S-nitrosylation is a
covalent attachment of an NOmoiety to the thiol side chain of a cysteine residue
within a protein. This process can modify excitation-contraction coupling in
cardiomyocytes and may mediate some forms of cardioprotection. Several
studies have shown that S-nitrosylation may also be involved in the progression
of cardiovascular diseases. Most importantly, recent studies have focused on
the molecular mechanisms underlying cardiovascular diseases (CVD). Emerging
evidence suggests that sex-specific differences in cardiac protein S-nitrosylation
exist, and may partially explain disparities in cardiovascular health in males
and females. Females have been found to have higher cardiac protein
S-nitrosylation levels compared to men, and this is attributed to enhanced NO
production through estrogen. Emerging data suggests that S-nitrosylation of
specific proteins such as CaMKII has a dual role of promoting and preventing
arrhythmias, it is not clear whether the cardioprotective effect of S-nitrosylation
of specific cardiac proteins is sex-dependent. A deeper understanding of the
mechanisms regulating the role of protein S-nitrosylation and the impact
of sex differences on S-nitrosylation will open new avenues for therapeutic
interventions in cardiac diseases.

KEYWORDS

cardiovascular diseases, cardiac proteins, S-nitrosylation, calcium handling, sex
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1 Introduction

Post translational modifications (PTMs) are known to regulate the functioning of
cardiac proteins. For instance, O-GlcNAcylation is a PTM that has been described
as a sweet-bitter one due to its protective or destructive effect depending on
the duration and targets protein O-GlcNAcylation (Chatham and Marchase, 2010;
Jensen et al., 2013a; Kristiansen et al., 2019; Ng et al., 2021; Okolo et al., 2023;
Pælestik et al., 2017; Rao et al., 2004). Similarly, oxidation is a known player in
cell health and signaling, where oxidative stress results from an imbalance between
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production from metabolism and accumulation of reactive oxygen
species (ROS) in cells (Münzel et al., 2017; Pizzino et al., 2017).
The impact of oxidation on cardiac ryanodine receptors (RyR2), the
gatekeeper for bulk calcium ion (Ca2+) release in the heart, has been
described as biphasic (Belevych et al., 2009; Terentyev et al., 2008;
Waddell et al., 2016). At the single-channel level, oxidation RyR2 is
known to either activate or inhibit the channel, all depending on the
level of oxidation (Waddell et al., 2016). S-nitrosylation has also been
identified in the modulation of the activity of cardiac proteins such
as RyR2, sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a),
Ca2+/Calmodulin-dependent protein kinase (CaMKII) and L-
type calcium channels (LTCC) involved in excitation-contraction
coupling (ECC). Another widely known PTM of cardiac proteins
that drives cardiac function is phosphorylation. Interestingly, there
are over 500 known protein kinases in the human kinome, where
a good number of these kinases have been directly implicated
in cancer, inflammatory, cardiovascular and metabolic disease
progression (Ather et al., 2013; Chen et al., 2022; Cohen, 2001).

One current research focus has been on elucidating the
molecular mechanisms that disrupt cardiac ECC, leading to
arrhythmias and heart failure. The key players identified in
cardiac functioning whose regulation or dysregulation could tip
the scales from health to disease. Two of such drivers include
PTMs (e.g., phosphorylation,O-GlcNAcylation, S-nitrosylation and
oxidation) and sex differences. Further detail on the roles of these
drivers in defining cardiac function, and the inter-relationship
between them, will be discussed in this brief review. The term,
cardioprotection will be used below and refers to all acute or chronic
effects and strategies that aid in preservation of the heart against
damaging stresses (Kübler and Haass, 1996). This can be achieved
through several adaptive physiological and compensatory strategies
or by therapeutic approaches.

With these inmind, this review aims to discuss howNO interacts
with CaMKII in the heart and its effect on cardiovascular function
as well as offer insights on the interplay between S-nitrosylation and
sex differences.

1.1 Key players in cardiac functioning and
cardioprotection

Before diving into molecular mechanisms affecting cardiac
function, it is expedient to note that other factors such as genetic,
epigenetics, hormonal, neurohumoral, circadian, environmental,
molecular, cellular, sex differences and pathological influences, also
feed into the cardiovascular regulation loop (Chang et al., 2021;
Grandi et al., 2023; Hall et al., 2000; Peliciari-Garcia et al., 2018;
Tao et al., 2023; Zhang et al., 2020). In fact, it is known that the PTM
of proteins is an important factor responsible formodulating protein
function, stability, and localization (Hirano et al., 2016; Lee et al.,
2023). Evidence has emerged on the nature of many protein PTMs
(phosphorylation, O-GlcNAcylation, S-nitrosylation, etc.) in tissues
and organs such as the heart (Zhang et al., 2020; Young, 2023;
Zhang and Jain, 2021). These highlight the intricate relationships
between different factors that regulate cardiac function, suggesting
a complex role of cardiac proteins in the heart. For instance,
the mitochondria has been identified as a central regulator of
cellular redox balance and considered a primary source of reactive

oxygen species (ROS) in the heart (Shi and Qiu, 2020). The
bioactivity and quality control of mitochondrial function are
tightly regulated by reversible S-nitrosylation and denitrosylation of
mitochondrial proteins (Ozawa et al., 2013). In response to changes
inmitochondrial respiration and redox state,mitochondrial proteins
can undergo S-nitrosylation, which serves to protect reactive
thiol groups from irreversible oxidation and limits excessive ROS
production (Piantadosi, 2012; Fernando et al., 2019). This redox-
sensitive modification contributes to cellular defense by preserving
mitochondrial integrity, preventing membrane permeabilization,
and inhibiting apoptosis (Fernando et al., 2019; Whiteman et al.,
2006). Given that mitochondrial dysfunction is a key contributor to
cardiac disease, mitochondrial protein S-nitrosylation represents
an important cardioprotective mechanism in conditions of
oxidative stress.

Abnormalities in protein structure and function in any part
of the cardiovascular system can impair cardiac function leading
to CVDs such as arrhythmias, congenital heart diseases, coronary
artery diseases, heart failure and stroke (Chakraborty et al., 2019;
Jiang et al., 2004). The involvements of PTMs in exacerbating
cardiovascular dysfunction and injuries have been widely studied
(Okolo et al., 2023; Chakraborty et al., 2019; Asamudo and
Erickson, 2019; Erickson et al., 2008; Erickson et al., 2013).
Also known are the roles and influence of some PTMs as
cardioprotective factors during disease or injury states such as
(a) the reduction of infarct size by ischemic pre-conditioning
and cushioning against ischemia/reperfusion (I/R) injury with O-
GlcNAcylation, (b) leveraging S-nitrosylation to shield the heart
from ischemic reperfusion injury and arrhythmias, and (c) as
prospective tools for cardiac regeneration therapy (Jensen et al.,
2013b; Li et al., 2022; Shiva et al., 2007).

1.2 Sex differences in cardiac function

While the component proteins of the heart determine its
regulation, sex differences have emerged as another player in
cardiovascular health, pre-disposition to and survival from
certain diseases (Peters et al., 2019). Sexual dimorphism of the
cardiovascular system begins from puberty when circulating
sex hormones are stimulated to be produced from the gonads
(Cabral et al., 1988). In males, this causes a 15%–30% expansion of
heart mass, and expansion not seen in females (Cabral et al., 1988),
resulting in a significantly smaller ventricle size and functional
end diastolic dimensions in females (Parks and Howlett, 2013).
Despite this anatomical difference, it is well established that basal
cardiac function in females is hyperdynamic in comparison tomales.
Cardiac magnetic resonance imaging (MRI) and ventriculography
studies have established female hearts to have a significantly higher
heart rate, ejection fraction, relaxation rate and a significantly lower
end-diastolic volume and end systolic volume (Parks and Howlett,
2013; Chung et al., 2006). The Dallas Heart study established there
to be no significant difference in ejection fraction between males
and females for a given end systolic volume. However, for any given
end diastolic volume, females facilitated a significantly higher stroke
volume and thus significantly higher ejection fraction in comparison
to males (Chung et al., 2006). Due to the greater ventricle mass,
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males are able to facilitate a greater increase in ejection fraction
than females in exercise conditions (Parks and Howlett, 2013).

Literature abounds on the links between cardiac function and
sex-specific hormones which have receptors on cardiomyocytes
(Curl et al., 2009; Murphy, 2011). Gonadectomy studies have
established testosterone as determinant of the sexual dimorphic
differences in cardiac function from a transcriptional level.
Testosterone increases expression of Ca2+ channels and transporters
to facilitate cardiac function characteristics of amale heart.However,
gonadectomy resulted in hypo-contractility which was rescued by
testosterone supplementation (Curl et al., 2009; Golden et al.,
2003). This may explain the stronger response to exercise in
males when compared to females. Female ovariectomy studies
have established that estrogen has an important role in reducing
SR Ca2+ stores and dampening Ca2+ transients (Fares et al.,
2012). Furthermore, the sensitivity of cardiac myofilaments to Ca2+

increases significantly in ovariectomy rats, an effect rescued upon
estrogen supplementation (Wattanapermpool et al., 2000). It is
worth mentioning that progesterone is also able to attenuate Ca2+

sensitivity of myofilaments in the cardiomyocytes of female mice,
but not male mice (Feridooni et al., 2017).

Echocardiography studies have established diastolic function of
young females to be better than age matched males. However, with
increasing age, males have worsening systolic function that is not
observed in females (Grandi et al., 1992). The age-associated decline
in testosterone in males and estrogen in females has been said to
be associated with the corresponding age groups of increased risk
of CVD prevalence (Kaushik et al., 2010). In males, the decline
in testosterone occurs from age 50. However, it is suggested that
this may occur years prior and impact cardiovascular function at
an insignificantly lower level (Kaushik et al., 2010). In females,
the decline in estrogen caused by menopause is well established to
correlate with an increase in CVD mortality as discussed previously.
However, there is no clear evidence of when the impact on cardiac
function begins and whether it is related to insignificant decreases
in circulating estrogen. There may also be changes further down
the sex hormone transduction pathways of the cardiomyocytes
that contribute earlier. That is, subcellular channels and enzymes
that may become dysfunctional years prior and contribute more
measurably to dysfunction when circulating sex hormones have
significantly declined. This kind of subcellular dysfunction could
explain why hormone replacement fails to rectify the problem,
as the transduction pathway has developed external pathological
triggers for signal transduction to occur in the absence of sex
hormones. In CVD, it is well established that the autonomic nervous
system increases sympathetic stimulation of the heart regardless
of whether there is need for it. As sex hormone signaling work
synergistically with sympathetic β-adrenergic signaling in the heart,
it is plausible that a similar dysfunction is occurring in sex hormone
transduction pathways.

1.3 Sex differences in cardiovascular
disease prevalence

CVD is currently the highest ranked cause of death in globally
and was historically considered a ‘disease of men’. However, CVD
prevalence is currently higher in females when compared to males

(Appelman et al., 2015).Thenet global burden ofCVD is attributable
to risk factors such as hypertension, smoking, obesity, diabetes,
and hypercholesterolemia. Notably, associated mortality of CVD in
males is higher than in females in all age groups, with difference
particularly visible in the 40–44 age group (Mikkola et al., 2013).
Unlike males, the associated mortality of CVD in females only
increases from the 55–59 age group onwards, which is considered
clinically as post-menopausal (Mikkola et al., 2013).

A significant contribution of this is caused by heart failure
(Kobak et al., 2022; Martin et al., 2025). Two subcategories of
heart failure (HF) may reflect sex determined CVD morbidity
and associated mortality trends. HF with reduced ejection fraction
(HFrEF) is a primarily a ventricular dysfunction, associated mostly
by systolic dysfunction following myocardial damage. On the other
hand, HF with preserved ejection fraction (HFpEF) is a multi-
organ syndrome associated with diastolic dysfunction and affects
more females than males (Kobak et al., 2022; Dunlay et al., 2017;
Pepine et al., 2020). Prevalence increases significantly from age 55 in
both sexes but becomes predominant in post-menopausal females
(Pepine et al., 2020; Sotomi et al., 2021). However, HFpEF is now
becoming the dominant form of HF associated with the worsening
global diabetes and obesity epidemics. The decline of estrogen
after menopause may hasten loss of cardioprotective mechanisms
signaled by estrogen (Kobak et al., 2022; Pepine et al., 2020;
Alex et al., 2018; Shuaishuai et al., 2023). This loss of estrogen
is thought to be associated with the higher prevalence of females
with obesity, diabetes, hypertension, autoimmune disease, and
heightened immune function (Kobak et al., 2022; Pepine et al.,
2020). Thus, it has become imperative that CVD risk factors
specific to females become elucidated clearly to reduce the post-
menopausal mortality risk (Appelman et al., 2015; Mikkola et al.,
2013). Investigating this will not only improve diagnosis of females
with CVD but also improve clinical outcomes.

The changes in estrogen signaling are not the only key
contributors to CVD prevalence. Sex differences have been
suggested to underlie key biochemistry and physiology aspects of
cardiac function, and that dysfunction could occur prior to age-
related decline of sex hormones (Casin and Kohr, 2020). 10%
of females over the age of 80 have HFpEF as aging has been
established to facilitate molecular and cellular changes involves
in the pathophysiology (Kobak et al., 2022; Pepine et al., 2020;
Sotomi et al., 2021; Shuaishuai et al., 2023). Redox imbalance
caused by reduced antioxidant capacity and significant increase
in ROS and RNS (reactive nitrogen species) production is one
of the mechanisms that facilitate the aging of the heart (Martín-
Fernández and Gredilla, 2016; Pagan et al., 2022). The epigenetic
involvement of ROS/RNS-induced aging is associated with excessive
S-nitrosylation of cardiomyocyte mitochondrial proteins (Hu and
Ren, 2016; Schulman and Hare, 2012). A previous study reported
a higher number of S-nitrosylated proteins in the mitochondria of
female cardiomyocytes compared to males (Shao et al., 2016). It
was suggested that this may be a key cardioprotective mechanism
against irreversible oxidative damage. The same study also reported
GSNO-R expression to not be significantly different to male
cardiomyocytes. However, the GSNO-R activity in the female whole
heart homogenates was significantly higher than the males. This
was in accordance with another study (Brown-Steinke et al., 2010)
that reported increased GSNO-R activity in female mice lungs
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compared tomales, but no difference in expression. In the context of
aging, these studies suggest that estrogen signaling in female hearts
may be increasing GSNO-R activity to protect mitochondria from
ROS/RNS induced premature aging.

Taken together with the cardioprotection of estrogen signaling,
it is plausible that the cardiac antioxidant systems associated
with biological males are vulnerable to becoming overwhelmed,
predisposing them to premature aging of the heart.This is supported
by a recent review (Qian et al., 2024) highlighting three key
mechanisms that allow estrogen signaling, via the membrane
bound GPR30 estrogen receptor, to prevent systolic and diastolic
dysfunction. 1) Estrogen signaling increases the transcription of
antioxidant defense against elevatedROS/RNS, 2) estrogen signaling
prevents the pro-fibrotic and pro-apoptotic cascades and promotes
physiological hypertrophy, and 3) estrogen signaling promotes
increased atrial natriuretic peptide production to inhibit the Renin-
Angiotensin-Aldosterone System cascade directly. Furthermore,
estrogen signaling regulates BH4, a vital enzyme cofactor required
for the synthesis of nitric oxide, to prevent the uncoupled
eNOS (NOX) RNS production that characterizes atherosclerosis
pathophysiology (Arias-Loza et al., 2013).

In the absence of estrogen signaling to upregulate antioxidant
systems, biological male redox balance is prone to becoming
overwhelmed much earlier in life. This may explain why biological
males developCVDmuch earlier in females as the features of cardiac
aging would arise after estrogen signaling reduces.Thus, the gradual
loss of estrogen regulation of antioxidant systems upon menopause
is likely to reduce the protection of female hearts from premature
aging and therefore promote cardiovascular dysfunction.

Further research into these biochemical and physiological sex
differences could inform sex-specific diagnostics to prevent the
progression of CVDs. This would not only be imperative to combat
the worldwide burden of CVD morbidity and associated mortality
but also contribute to improving quality of life by influencing
the development of therapeutic interventions that take sex into
consideration (Casin and Kohr, 2020).

1.4 Protein S-nitrosylation and cardiac
function

Nitric oxide (NO) is synthesized from L-arginine by nitric
oxide synthase (NOS). NOS has three main isoforms; Neuronal
NOS (nNOS or NOS1), endothelial NOS (eNOS or NOS3) and
inducible nNOS (NOS2; induced in heart after inflammation and
is constitutively active). NO is known for its role in vasodilation
of the vasculature via the stimulation of soluble guanylyl cyclase
(Chen et al., 2008; Moncada et al., 2006) and its control of
mitochondrial oxygen consumption by the inhibition of cytochrome
c oxidase (Chen et al., 2008; Cooper, 2002; Shiva et al., 2001).
NO has proven benefit to cardiovascular health given that it
can curb inflammation and oxidative stress under physiological
conditions (Sharma et al., 2007), whereas inflammation promotes
development of atherosclerosis (Ebenebe et al., 2020; Libby et al.,
2002). Conversely, NO inhibits platelet aggregation, thereby limiting
blood clot formation that can occlude blood vessels, a precursor to
heart attacks and strokes (Nong et al., 1997). The inherent function
of NO in cardiovascular biology is the promotion of blood flow

and limiting CVD risk such as atherosclerosis and thrombosis at
bay (Chen et al., 2008; Moncada et al., 2006). Consequently, a
shortfall in NO synthesis is linked to CVDs (Tidball and Wehling-
Henricks, 2014).

In addition to the multifaceted roles of NO, it can post-
translationally modify and modulate cardiac proteins including
kinases via S-nitrosylation (Broillet, 1999; Sun and Murphy,
2010; Foster et al., 2009). S-nitrosylation, a major effector of
NO signaling, involves the addition of a NO group to the
cysteine thiol (-SH) residues in proteins and the balance of
S-nitrosylation is controlled by enzymes that metabolize S-
nitrosothiols, for instance, S-nitrosoglutathione reductase (GSNO-
R), which catalyzes the reduction of S-nitrosoglutathione (GSNO)
(Irie et al., 2015). This modification causes conformational changes
in proteins, can increase or decrease catalytic activity and induce
complex formation. Protein S-nitrosylation has been regarded
as transient signaling mechanism. S-nitrosothiols are labile and
can transition to form disulfides by reacting with thiols. Even
though there are exceptions where nitrosothiols that form on
proteins do not exhibit the predicted high degree of reactivity.
The stabilization of nitrosothiols in this case is conferred by
the shielding of the nitrosothiol from cytosolic reducing agents
through conformational changes (Paige et al., 2008). These
disulfides are more stable and dominate over S-nitrosothiols
after exogenous or endogenous nitrosative signaling. The overlap
between S-nitrosylation and disulfides underscores a regulatory
mechanism wherein S-nitrosylation transiently modulates protein
function, potentially acting as a protective modification against
irreversible oxidation, before transitioning to a disulfide state
(Wolhuter et al., 2018; Lim et al., 2008).

Direct regulation of Ca2+-handling proteins can occur
through S-nitrosylation with resultant effects being protein-,
duration/degree- or site-dependent (Irie et al., 2015; Alim et al.,
2022; Lima et al., 2010). In cardiomyocytes, S-nitrosylation regulates
ECC by mediating the activity of Ca2+-handling proteins (Figure 1).

S-nitrosylation of RyR2 can increase RyR2 activity and hypo-
nitrosylation of RyR2 increases Ca2+ leak and arrhythmogenesis
in cardiomyocytes, suggesting the critical role of NO in cardiac
contractility (Vielma et al., 2016; Gonzalez et al., 2007; Wang et al.,
2010; Marx et al., 2001; Gonzalez et al., 2007). In heart failure, there
is reducedNObioavailability in turn there is an increase in oxidative
stress, this redox modifications of RyR2 impairs the S-nitrosylation
of the cysteine residues (Nikolaienko et al., 2018). This deficiency
in RyR2 S-nitrosylation leads to diastolic Ca2+ leak (Gonzalez et al.,
2010). Loss of NO availability which is associated with nitroso-
redox imbalance promotes arrhythmic phenotype through increase
in ROS. There is also an observed crosstalk between S-nitrosylation
and phosphorylation as observed in the downregulation of RyR2
phosphorylation at S2814 (Burger et al., 2009; Cutler et al., 2012).

In LTCCs, S-nitrosylation via NOS modulates Ca2+ influx,
particularly in response to β-adrenergic stimulation. During
sympathetic activation as observed in I/R, β-adrenergic signaling
enhances LTCC activity via protein kinase A (PKA)-mediated
phosphorylation, leading to increased Ca2+ entry and enhanced
cardiac contractility. However, S-nitrosylation of LTCC acts as
a countereffect by decreasing channel activity, limiting SR Ca2+

at the beginning of ischemia, thereby reducing Ca2+ overload
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FIGURE 1
Overview of protein S-nitrosylation of Ca2+-handling proteins in the
cardiomyocyte. RyR2 (ryanodine receptor 2) is located on the
sarcoplasmic reticulum (SR) membrane near the L-type calcium
channel (LTCC) through which Ca2+ enters and triggers further Ca2+

release from the SR into the cytosol via RyR2. The rise in Ca2+ leads to
activation of Ca2+/Calmodulin-dependent protein kinase II (CaMKII)
which can phosphorylate LTCC and RyR2 to promote Ca2+ release.
Transient increase in Ca2+ initiates contraction at the myofilaments.
When Ca2+ is removed from the cytosol, relaxation occurs. The
Sarcoendoplasmic Reticulum Ca2+-ATPase (SERCA) then pumps Ca2+

back into the SR to restore Ca2+ stores. On the SR, neuronal nitric
oxide synthase (nNOS) promotes S-nitrosylation of RyR2 and
enhances Ca2+ release, while S-nitrosylation of CaMKII reduces its
activity in the absence of β-adrenergic receptor stimulation.
Endothelial Nitric Oxide Synthase (eNOS) regulates the S-nitrosylation
of LTCC leading to reduction in channel activity and Ca2+ entry, which
is a protective mechanism against ischemia/reperfusion injury.
Myofilament protein, cTnC can also undergo S-nitrosylation,
potentially influencing myocardial Ca2+ sensitivity via modulation of
cross-bridge cycling. Meanwhile S-nitrosylation of phospholamban
(PLN) diminishes the inhibitory effect on SERCA, increasing Ca2+

uptake into the SR.

in early reperfusion and subsequently preventing I/R injury
(Vielma et al., 2016; Sun et al., 2006).

S-nitrosylation of SERCA2a in cardiomyocytes after treatment
with a NO donor, S-nitrosoglutathione (GSNO) enhances SR Ca2+

uptake into the SR and reduces Ca2+ overload during I/R (Sun et al.,
2007). Meanwhile, S-nitrosylation of PLB diminishes its inhibitory
effect on SERCA2a, leading to enhanced Ca2+ uptake into the SR.
Thismodification facilitates efficient Ca2+ cycling and contributes to
improved cardiac contractility (Irie et al., 2015; Vielma et al., 2016).
Thus, there may be an interplay between PLB S-nitrosylation and
SERCA2a activity, whichmay explain a critical mechanism bywhich
NO signaling modulates cardiac function.

β-adrenergic stimulation has also been shown to induce S-
nitrosylation ofmyofilament proteins (Irie et al., 2015). For instance,
S-nitrosylation of cardiac troponin C at C84 in wild-type (WT)
cardiomyocytes decreased myocardial Ca2+ sensitivity compared
to GSNOR-tg cardiomyocytes. Notably, phosphorylation of cardiac

troponin I (cTnI) at Ser22/23, a key determinant of Ca2+ sensitivity,
was similarly enhanced by isoproterenol (ISO) in both WT and
GSNOR-tg hearts. These findings indicate that S-nitrosylation may
play a role in mediating the ISO-induced reduction in myofilament
Ca2+ sensitivity, parallel to cTnI phosphorylation.

One kinase that has been implicated in cardiac diseases is
CaMKII. Experiments have further demonstrated that the inhibition
of CaMKII restores contractility and relaxation in the isolated hearts
of type 2 diabetic rat models (Daniels et al., 2018), suppresses
arrhythmic events in type 1 diabetic mouse myocytes (Hegyi et al.,
2021), and promotes post-ischemic recovery in isolated hearts
(Bell et al., 2014; Yao et al., 2022).

CaMKII can regulate cardiac proteins and function by its
direct phosphorylation of proteins such as RyR2, PLN and LTCC
(Camors and Valdivia, 2014; Wehrens et al., 2004; Witcher et al.,
1991; Zhang et al., 2003), but its activity can be modulated
by the S-nitrosylation (Alim et al., 2022; Curran et al., 2014;
Gutierrez et al., 2013; Coultrap and Bayer, 2014; Pereira et al.,
2015; Erickson et al., 2015; Power et al., 2023). Recent evidence
has shown that during stress response, there is an increase in
NO production which can activate one of the cardiac-specific
isoforms of CaMKII, δ, through S-nitrosylation and activation of
this kinase via this mechanism can have protective or detrimental
effects on cardiac function depending on the cysteine residue
that is modified. In the heart, CaMKIIδ can be S-nitrosylated
via two cysteine residues that alter function, Cys 273 and Cys
290. The Cys 273 site inhibits activation by Calcium/Calmodulin
(Ca/CaM), while the Cys 290 site enhances autonomous activity.
Studies have shown that treating cardiomyocytes with a NO donor
before CaMKIIδ activation causes S-nitrosylation of the Cys 273 site
and that prevents the increase in Ca2+ spark frequency due to β-
adrenergic receptor (β-AR) activation. Conversely, when activation
occurs before treatment with a NO donor, S-nitrosylation of the Cys
290 site promoted CaMKIIδ activity (Erickson et al., 2015) (Figure
2). Other studies have also shown that CaMKII contributes to pro-
arrhythmic signaling in cardiomyocytes through S-nitrosylation
even in the absence of β-adrenergic stress (Curran et al., 2014;
Gutierrez et al., 2013). In addition, we have also demonstrated that
CaMKIIδ S-nitrosylation can prevent or promote arrhythmias in
isolated hearts depending on the order of β-adrenergic stimulation
and NO treatment (Power et al., 2023). These findings further
solidify the evidence that S-nitrosylation of CaMKIIδ plays a dual
role in cardiac function. According to (Erickson et al., 2015), this
dual role was attributed to the conformational change that occurs
during S-nitrosylation before and after CaMKII activation. They
hypothesized that the possible steric occlusion of the CaM binding
site on the regulatory domain when the Cys 273 site is S-nitrosylated
prevents CaM binding, thereby reducing CaMKII activity.

There is an interplay between PTMs, especially S-nitrosylation
and oxidation since a balance between the two PTMs play a role
in cardiovascular signaling. CaMKII oxidation (Erickson et al.,
2008) has been found to contribute to cardiac dysfunction due
to increase in ROS, especially in heart failure, arrhythmias and
ischemic heart disease. Previous study observed that the C290
S-nitrosylation site also modulates oxidation-dependent CaMKII
activity in the heart, therefore in pathological signaling such as I-R
where there is increase in ROS, both oxidation and S-nitrosylation
could be competing for this site. It is possible that this site alters
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FIGURE 2
Overview of CaMKII S-nitrosylation sites and dual regulation of CaMKII activity in the heart. (A) Elevated [Ca2+] with CaM before increase in NO level
allows access to C290 in the regulatory domain and S-nitrosylation of the C290 residue of CaMKII. This activates autonomous activity of the kinase
even after [Ca2+] decreases and CaM dissociates. (B) Increase in NO levels before Ca2+/CaM results allows S-nitrosylation of the C273 residue that
limits the ability of Ca2+/CaM to activate CaMKII. CaMKII, Ca2+/Calmodulin-dependent protein kinase II; NO, nitric oxide; CaM, Calmodulin.

the structural conformation of CaMKIIδ in a way that influences its
redox sensitivity (Erickson et al., 2015).

While there is conflict on the exact role of S-nitrosylation
on some cardiac proteins, the evidence of its deficiency being
implicated in disease speaks strongly of its position as a stakeholder
in cardiovascular health. One clear instance is where S-nitrosylation
of protein kinase G (PKG) drives increased PKG activity, in turn,
leading to reduced afterload due to vasodilation (Mangmool et al.,
2023). In the heart, S-nitrosylation has been shown to work in
tandem with phosphorylation to regulate and tune many cardiac
Ca2+-handling proteins, thereby expanding its role in cardiac Ca2+

homeostasis (Irie et al., 2015). S-nitrosylation of cardiac CaMKII has
been demonstrated to boost cardiac contractility acutely following
a mechanical afterload (e.g., aortic valvular resistance and elevated
arterial pressure) (Alim et al., 2022; Power et al., 2023; Reil et al.,
2020). However, excessive S-nitrosylation of some cardiac proteins
could be harmful to cardiac function depending on the degree
of modification and duration. This then places S‐nitrosylation
of cardiac proteins in a context where they may be specifically
leveraged as a novel therapeutic to enhance myocardial function.

1.5 Sex differences in S-nitrosylation
signaling

Sex hormones play a key role in NOS expression in the heart,
which has previously been used as an explanation of sex differences
in CVD-associated mortality (Hodgin et al., 2002). Estrogen has
been shown to increase both eNOS and nNOS expression in murine
studies which was concluded to be cardioprotective (Chen et al.,
2003; Haynes et al., 2003; Shao et al., 2017). However, testosterone
has only been shown to increase eNOS in vascular smooth muscle
which rationalizes males being prone to hypertension at a younger

age than females (Yu et al., 2010). In a human heart sample study,
female samples were reported to have more NO in comparison to
male samples (Schuh et al., 2017).

The effect of protein S-nitrosylation has been observed to be
sex-dependent at the level of Ca2+ channels downstream to β1-AR
and CaMKIIδ. A study on LTCC S-nitrosylation in mouse hearts
reported that ISO induced female mouse hearts had significantly
greater S-nitrosylated L-type Ca2+ channels than males (Sun et al.,
2006). Furthermore, as estrogen has been established to decrease
L-type Ca2+ channel expression and current (Ma et al., 2009), this
increase in S-nitrosylation suggests that estrogen-NOsignaling plays
a key role in modulating the Ca2+ transients in conditions of acute
β-adrenergic stress. The reduction in S-nitrosylation of male L-
type Ca2+ channels therefore shows that lower levels/absence of
estrogen would support greater Ca2+ transients to facilitate better
cardiac function as the functional result of a superior β-adrenergic
transduction pathway in young males when compared to young
females (Parks and Howlett, 2013; Sun et al., 2006; Ma et al., 2009).
It is also possible that higher ICa,L may facilitate excessive Ca2+ flux
seen in heart failure (Gorski et al., 2015).

To further explain the role of estrogen in cardiac function, there
are two key nuclear estrogen receptors (ER) in the body. The alpha
subtype (ER-α) is associated with the pathophysiology of breast
cancer. Whereas the beta subtype (ER-β) is associated with cardiac
protection observed in females of childbearing age (Lin et al., 2009).
A study (Lin et al., 2009) elucidated an interaction between ER-
β and NO that contributed to cardiac protection. They reported
that stimulation of ER-β increases NO production and facilitates
two protective outcomes; 1) S-nitrosylation of cardiac enzymes
to change their activity by inducing a structural conformational
change, and 2) S-nitrosylation of cystine residues to protect them
from being damaged by oxidation. These two protective outcomes
are supported by several studies (Sun et al., 2006; Lin et al., 2009)
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and is in accordance with a study (Shao et al., 2016) reporting
that S-nitrosylation of cardiac proteins occurs in a sex dependent
manner. They reported the number of S-nitrosylated proteins to be
higher at baseline in female mice hearts compared to males and
thiswas associatedwith significantly increased eNOS expression and
eNOS phosphorylation in females compared tomales. Furthermore,
increased S-nitrosylation of the mitochondrial compartments of
female cardiomyocytes was observed and concluded to be in
support of the second protective outcome against oxidative stress
as suggested in a previous study (Lin et al., 2009). Together, these
studies implicate a possible signaling mechanism that protects
female hearts from developing CVD before menopause. We suggest
this mechanism may be associated with female sex hormones
signaling through ER-β to increase NOS expression and NO
production, and thus S-nitrosylate cardiac enzymes to regulate their
activity in the cardiac cycle, and S-nitrosylate available cysteines to
protect them from the permanent damage of oxidative stress.

Taken together with CVD prevalence in males occurring earlier
than females, this is consistent with NO production and signaling
being cardioprotective and augmented via estrogen. Furthermore, a
study reported that isoproterenol-induced female mouse heart had
significantly greater S-nitrosylated proteins than males (Shao et al.,
2016; Sun et al., 2006).Thiswas shown to be specifically significant in
S-nitrosylation of the LTCCs. As earlier mentioned that estrogen has
been established to decrease LTCC expression and current (Ma et al.,
2009), this increase in S-nitrosylation suggests NO signaling plays
a key role in upregulating the Ca2+ transients in conditions of
acute β-adrenergic stress, when under the influence of estrogen.
This would support greater Ca2+ transient dynamic range of cardiac
function increase as the result of β-adrenergic transduction pathway
(Sun et al., 2006; Ma et al., 2009).

1.6 Is there a potential sex difference in
CaMKII S-nitrosylation?

As CaMKIIδ is a key cardiac enzyme dually regulated by
S-nitrosylation (Erickson et al., 2015), it is interesting to note that
estrogen has also been established to both inhibit CaMKIIδ activity
indirectly by inhibiting upstream receptor β1-AR anddirectly inhibit
autonomous activation of CaMKIIδ (Ma et al., 2009). The two
protective outcomes outlined previously (Lin et al., 2009) do fit
regulation characteristics of CaMKIIδ during S-nitrosylation. 1)
S-nitrosylation of the C273 site reduces activity by stabilizing
autoinhibition and S-nitrosylation of the C290 increases activity by
inducing autonomous activity; and 2) S-nitrosylation of C273 would
protect it from being damaged by oxidation and no longer able to
induce autoinhibition and prevent pathological autonomous activity
(Erickson et al., 2015; Ma et al., 2009).

It is currently unknown if CaMKII S-nitrosylation differs
in males and females, considering that females have been
shown to have a higher higher NO availability following β-AR
stimulation (Sun et al., 2006). With estrogen enhancing NO
signaling to increase Ca2+ signaling, it is possible that the presence
or absence of estrogen influences the level of CaMKII activity.
Thus, we can postulate that S-nitrosylation of CaMKII facilitates
an increase in phosphorylation of Ca2+-handling channels in
a sexually dimorphic manner. Since S-nitrosylation of CaMKII

influences autonomous activity, it is plausible that this modification
is modulated by estrogen signaling in females. The absence of
estrogen signaling in males may therefore reduce the amount
of baseline CaMKII that is unavailable for activation (less S-
nitrosylation at C273) allowing greater CaMKII signaling in the
β-adrenergic transduction pathway (and conversely less in females).
In response to acute stress, this is observed as a stronger functional
increase in cardiac function. However, in chronic β-adrenergic
conditions, itmay be pivotal in the development of persistent cardiac
dysfunction at an earlier age in males.

2 Conclusion

Ca2+ remains a key regulator of cardiac function, and
cardiac proteins play crucial roles in maintain Ca2+ homeostasis.
In pathological conditions such as arrhythmias and heart
failure, dysregulation of Ca2+ cycling can occur due to PTMs
such as phosphorylation, O-GlcNAcylation, oxidation and S-
nitrosylation. Here, we have discussed the role of S-nitrosylation in
cardiovascular functioning, dysfunction, and protection. Overall,
protein S-nitrosylation and sex differences can be leveraged as
potential novel biomarkers for early diagnosis of disease onset
and progression. Furthermore, their therapeutic potential can
be exploited in the context of individual health conditions,
possibly placing them in the landscape of personalized medicine.
Such sex differences and S-nitrosylation may be manipulated to
the point of enhancing the safety and efficacy of some known
cardioprotective strategies. It is already known that some PTMs
may facilitate pre-and post-conditioning protection, hence, moving
this towards patient care might be worth exploring (Dezfulian et al.,
2013). Succinctly put, sex differences and protein S-nitrosylation,
amongst other players, may reveal untapped and unexplored
pathways and mechanisms for cardioprotection which may not
yet be fully understood. It is currently unknown if sex influences
S-nitrosylation of CaMKII in persistent cardiac dysfunction.
However, as estrogen has been established to both inhibit CaMKII
activity and autonomous activity (Ma et al., 2009), as well as
increase nNOS expression and NO production (Sun et al., 2006;
Ma et al., 2009; Chen et al., 2003; Ma et al., 2009), we postulated
that estrogen signaling may be involved in baseline regulation of
S-nitrosylation at the C273 vs. C290 sites of CaMKII, providing
protection in females against overactivation of CaMKII. The lack of
estrogen-dominated signaling in males may shift the homeostatic
S-nitrosylation toward C290 vs. C273 sites of CaMKIIδ, thereby
promoting CaMKII autonomous activation. This would implicate
C290 S-nitrosylation to also be more upregulated because of a
lack of estrogen signaling during β1-adrenergic signaling and thus
more persistent cardiac dysfunction at an earlier age in males than
females. Investigation of this novel dynamic provides a promising
window into the underlying biochemistry and physiology which
may contribute to the sex-specific disparities in CVD morbidities
and mortality.

One major challenge in decoding the physiological and
pathological relevance of protein S-nitrosylation in the heart has
been the lack of real-time and specific detection methods. Useful
approaches, such as the biotin-switch technique (BST) (Jaffrey and
Snyder, 2001; Forrester et al., 2007; Kohr et al., 2011), have been
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instrumental in identifying nitrosylated targets, but are limited
by low specificity, low efficiency and high false positive rates
(Liang et al., 2024). Another commonly adopted method is the
use of mass spectrometry to identify the specific sites of SNO
modification and it enhances detection sensitivity by detecting
peptide segments (Kohr et al., 2011; Derakhshan et al., 2007;
López‐Sánchez et al., 2014; Thompson et al., 2013). There are
limitations in the use of this method such as the accuracy of
mass spectrometry instruments, potential recognition errors from
low-abundance peptide segments and the requirement for large
protein samples. However, recent technological innovations have
significantly advanced the field. For example, two-dimensional
nitrosylated protein fingerprinting using poly (methylmethacrylate)
(PMMA) microchip platforms offers enhanced resolution and
quality output, enabling the separation and detection of distinct S-
nitrosylated isoforms in human colon epithelial adenocarcinoma
cells (HT-29) and AD transgenic mice brain tissues (Wang,
2012). More recently, mass spectrometry-compatible strategies
such as iodoTMT switch assay (Qu et al., 2014), SNOTRAP
(Yang et al., 2023), and other chemoselective ligation-based assays
have revolutionized the detection of protein S-nitrosylation by
providing site-specific and reproducible quantitative assessments
of protein S-nitrosylation (Wang, 2012). Many modifications
have also been done on BST and Mass spectrometry to reduce
experimental cost, increase specificity, detection efficiency and
sensitivity (Liang et al., 2024). Moreover, the ability to resolve
nitrosylation patterns with greater precision has implications for
understanding sex differences and age-related remodeling in cardiac
function. These advanced technologies hold promise for refining
our understanding of how S-nitrosylation contributes to both
homeostasis and disease, particularly when integrated with omics
identification methods.

On the cautionary side, sex differences and protein
S-nitrosylation amongst other key players are still quite complex
and their effects on cardiac function and stress response are
context-dependent, may vary greatly depending on the degree
of modification or stimulus, duration, species, age, sex, and co-
morbidities of the subject. These need to be considered to enable the
adoption of balanced personalized strategies towards relieving CVD
burden globally and provide more evidence for acknowledgment of
sex in clinical management of CVDs. Therefore, further research
into these biochemical and physiological sex differences could
inform sex-specific diagnostics to prevent the progression of CVD
and the development of arrhythmogenesis. This would not only be
imperative to combat the worldwide burden of CVD morbidity and

associated mortality but also contribute to improving quality of life
by influencing the development of therapeutic interventions that
take sex into consideration (Casin and Kohr, 2020).
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